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General deformation flow theory
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1. Introduction

While analyzing the relation between stresses and
strains, in mechanics of deformed bodies various theories
are applied [1-3]. Their character is determined by the
body condition. Some theories are applied for brittle bod-
ies, other for elastic bodies, the third group goes to elastic-
plastic bodies. Body behaviour under deformation is also
considered. One group of bodies under deformation can be
characterized by strengthening, on other — by weakening,
the third group — by the stability properties. Strength of
elastic-brittle body is characterized by the surface of fail-
ure [2]. Deformation in plastic body depends on the way of
loading and volumetric expansion [4-7]. Deformation of
ductile-plastic body is related to time [4, 5]. However,
most of the bodies are characterized by elastic-plastic
properties, and deformation is complicated in this case.

Theoretical studies show that [2] in case of simple
loading the results of deformational theory and yield the-
ory are the same. However, in case of complicated loading
the obtained results are different. For investigation, a thin-
walled pipe loading by tension and torsion was chosen. In
case of linear loading the results of deformational theory
and yield theory are the same, and in case of nonlinear
loading, the deformational theory shows no difference
from the trajectory of loading. Then, yield theory shows
dependence on the way of loading [2]. Thus, yield theory
fits better than the deformational theory in case of compli-
cated loading.

This study contains the analysis of deformation in
context of so-called general deformation flow theory ob-
tained after analyzing classical theories.

2. Survey of deformation theories

Experimental research [2] has shown (Fig. 1) that
deformational theory and yield theory do not satisfy the
results of certain research as well. Yield theory fits a little
better for this case.

When analyzing theoretical solutions and experi-
mental results, imperfection of these theories can be seen,
i.e. they do not fully evaluate the event of loading. The
most important is that these theories do not evaluate de-
formation speed and time.

Conditions of emerging elastic strains are charac-
terized by invariants of stress tensor, i.e.
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As plastic strains do not appear in case of com-
bined tension and compression [2], the condition of elastic-
ity with 1,(T,)=0 can be expressed as follows
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Fig. 1 Dependence between stresses of steel pipeo and
linear strains & [2]: continuous lines show experi-
mental curve; dash line — yield theory; dash-point

line — deformational theory
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where J,(D, ),J;(D, ) are invariants of stress tensor devia-

tor.
Reuss [1] gives the plasticity condition as
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Condition (3) is used more rarely because of its
complexity.

If condition (3) are based to determine material
plasticity the proposition that the material does not suffer
failure because of combined tension or compression is not
logical and all three invariants of stress deviator
\III(D(r ),JZ(DO,)and J 3(D ) are significant for failure con-

dition.

o

Endochronical theory of unelasticity does not
evaluate time of loading, and evaluates inner time of de-
formation [5]. According to the endochronical theory,
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where & is inner time; @ is unelasticity of expansion; 77 is
parameter of strain; f,, f, are functions reflecting strength-

ening and weakening.

In endochronical theory of unelasticity, load func-
tion F is obtained from equations of volumetric expansion
ratio

B=0F0c; kéF | 60 =de® =dw

wherek =d&; koF /S = def =
ratio ' =0F | do=dw/ 0&.
From Egs. (4) and (5) we can obtain that

S;d$ and inner friction

ds!' = [oF 1 00, Je (6)

and
F=(1/2)s;

where

S;+9(c)-H, =0 (7)

dg(c)/do=p'=dwldé=1,(c.c0) f(c.c0) (8)

and H, is parameter of strengthening.

Differential of parameter H, is given as
dH, = (0F / 0 oy 1 OF 1 0H, = S;dS; + do (9)

Because value 1/2S;S; =J,(D, ) is the second

invariant of stress tensor deV1ator, and plasticity condition
by Misses is also expressed through JZ(DU), loading func-

tion according to endochronical theory of unelasticity
(Eq. 7) supplement the plasticity condition by Misses with
members g(o)and H, evaluating deformation during inner

time and extend the limits of deformation behind the limit
of yielding.

Classical theories of plasticity characterize the
surface of elasticity by geometrical line in plane and circle
in space, and in endochronical theory of unelasticity, une-
lastic limit surface is a hypersphere that becomes circle in
plane. This happens because the theory of yield plasticity
analyzes an ideal elastic-plastic body (no strengthening)
and endochronical theory of unelasticity evaluates
strengthening.

The theory of ductile plasticity gives the relation
between stresses and strains [1] as

dg = DIlkm
dey = (oF 1 00, )&
dé=dt/ a,(0,¢)

doy, +d&f
(10)

where D, . is tangential moduli of plasticity; t is time;

ijkm
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& is inner time; a,(o, &) is plasticity ratio.
Tangential moduli of plasticity are obtained from
the following formula

Dijn = 2G5, 8, + (K =2G 1 3)5,6,,, (11)

ijkm
where G is shear modulus; K is volumetric modulus.
3. General deformation flow theory

The theory of ductile-plastic can be applied for
endochronical theory of unelasticity. For this, inner time
or, more certainly, plasticity ratio is to be analyzed. As we
already know, speed of deformation in endochronical the-

ory ||5|| — o0 and ||d5||/||dg|| cannot neither reach infinity

nor approach zero. Consequently, ductile ratio will not
only depend on stresses o and strains¢ as in theory of

plasticity, but on the strain speed &; as well.

Then, according to the theory of ductile plasticity
can be expressed

dé =dt/a, (¢) (12)

This uniform function of ductile ratio a, ( )can be
expanded into Taylor’s series

\T-r . .« .
[al(g)] = Po + Bjj€ij t Pijm€ijéim +
+ PijkmpaijEkmEpg T -+ (13)
where r is power index; P is variable ratios obtained

from strengthening function.
Leaving three members in the series, we need to

reject members of 1st and 3rd power ( P; = Pijmpg = 0)s
because for a, must not decrease with increasing "gij " .
Then, applying Eq. (13) we obtain
Ir
"d€" p() pljkmdgudgkm ” ”2 r (14)
[de] || || deydey,

For the analysis big strain speed ||£|| — oo and ful-

filled condition it cannot be equal to infinity or zero, nei-
ther 2—r >0 nor 2—r <0 are possible. Only 2—r =0 or
r=2 is left.

In this case, Eq. (13) is given as follows

dt .o\
@ = dt( Po + PijimEij gkm) =

=(p0dt+ Pimd &;d & )1/2 (15)

Because of impulsive deformation the start time dt
falls out of Eq. (15) and, consequently, it can be presented
as follows

112
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Thus, Eq. (6) can be given as
ol 12
def' =[oF / 00y |( Pymd ey de, )

Then,

OF /00 =$,dS; +dw/ d&+S;dS; + f'do =
=25,dS; +de/dé+ f'do=0 (17)

With do =de!" we have

def = —(25,ds,d& + pdode) (18)

Endochronical theory unelasticity [5] describes
only a limited surface, but not the surface of plasticity as
classical theories of plasticity. Also endochronical theory
of unelasticity makes no difference between loading and
unloading. Irretrievability of unloading is the main feature
of endochronical theory of unelasticity.

Therefore, Eq. (18) calculates the change of plas-
tic strains considered as absolute value and shows the
process of strains irrespective of differences between de-
formations in case of loading and unloading.

Inserting the value of d¢ from Eq. (16) into (18)

we obtain
, 12
def = ‘(zsijdsij +B'd0)( Py x d&d ) ‘ (19)

This shows additional factors having influence on
the deformation process in the suggested deformation flow
theory, describing the relation between stress and strain
compared to classical theories of plasticity; these factors
are inner friction ' and variables py,, , describing mate-

rial strengthening.
With

Pijm =N
where n is strengthening ratio analyzing the case when
1
Jn’

Therefore, the Eq. (19) can be expressed as

i=j=k=m=1 weobtain ' =

df =/ns;ds; +do (20)

&ij

where S; =0y -5;0/3, 0=0,/3.

4. Experimental

Let us compare calculation results obtained under
deformational theory, theory of yield and general deforma-
tion flow theory with the experimental ones.

Experimental reseach was made with steel pipe in
three cases. Diameter sample for testing was 16 mm, wall
tickness t=2mm; modulus of elasticity E =2:10> MPa.
The test was provided for three grade steel: 1) steel 35 —
materials characteristics: yield stress o,, =280MPa, ul-

timate strength o, =508MPa, limit deformation
A =17%, Z =45% , strengthening ratio N=0.7 ; 2) steel
45 — materials characteristics: yield stress o,, =323MPa,
ultimate strength o, =588MPa, limit deformation
A =14%, Z =40% , strengthening ratio N=0.5; 3) steel
10G2 — materials characteristics:  yield  stress
0,, =265MPa, ultimate strength o, =421MPa, limit

deformation A =21%,
n=0.6.

Z =50%, strengthening ratio
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Fig. 2 Curves of stress-strain relation for steel 35:
1 - experimental data; 2 - data under theory of gen-
eral deformation flow; 3 - data under yield theory;

4 - data under deformational theory

o, MPa

i

400

390

{0 [ S S SS0« S FS S S—

350

330

310

R e e e e e

45P1-103

Fig. 3 Curves of stress-strain relation for steel 45:
1 - experimental data; 2 - data under theory of gen-
eral deformation flow; 3 - data under yield theory;
4 - data under deformational theory



The tests were run on testing machine VEB
EU-20 and loaded by bending and torsion.

At first was loaded with torsion and after suffered
by bending. Results are reflected in Figs. 2-4. The
Figs.2 -4 represent data obtained using deformational

theory |o, = ﬂgi ; yield theory (q = i;
'\, 36‘2 + }/2 Oy
t=2; s="= e ; dt= dq ZJ — integral value the-
&y Ty Oy 1-q

ory and the theory of general deformation flow (20) with
integral values.
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Fig. 4 Curves of stress-strain relation for steel 10G2:
1 - experimental data; 2 - data under theory of gen-
eral deformation flow; 3 - data under yield theory;
4 - data under deformational theory

As the curves (Figs. 2 - 4) represent, the curve ob-
tained under general deformation flow theory is the closest
to the curve of experimental data. Regularities of relation
between stresses and strains obtained under deformational
theory are the most distant from real deformation process.

5. Conclusions

1. Neither deformational theory nor the theory of
yield plasticity do evaluate the event of deformation and do
not fully satisfy experimental results.

2. Flasticity conditions are the best described by
criteria of Huber-Mises, however, complicated loading is
better satisfied by Reuss’ criterion evaluating 2nd and 3rd
invariants of stress tensor deviator.

3. Describing the flow of deformation above the
limit of yielding based on classical plasticity theories that
do not evaluate inner material processes is not accurate
enough.

4. General deformation yield theory formulated
referring to the theory of plasticity and endochronical the-
ory of unelasticity evaluates overdue of plastic deforma-
tions during the loading and processes of inner deforma-
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tions.

5. When evaluating general deformation, flow
theory limited surface can be described more accurately
and more accurate criteria of critical strength can be ob-
tained.

References

1. Irwing, H., Shames, F., Cozzarell, A. Elastic and Ine-
lastic Stress Analysis.-Prentice Hall, A Simon Shuster
Company, Engleword Cliffs, NJ 07632, 1992.-722p.
Malinin, N.A. Applied Theory of Plasticity and Creep.
-Moscow: Mashinostrojenie, 1968.-400p.

Zilinskaité, A., Ziliukas, A. Stability of steel construc-
tion elements in case of bending and torsion.-Strength,
Durability and Stability of Materials and Structures
SDSMS’04.-Proc. of the 4th Int. Conf., September 11-
13, Palanga, Lithuania, 2007, p.94-99.

Chakrabardty, J. Theory of Plasticity. -Oxford: Pub-
lished by Elsevier Butterworth- Heinemann. Jordan
Hill, 2006.-882p.

Bazant, Z.P., Bhat, P. Endochronic theory of inelastic-
ity and failure of concrete. -J. Engng Mech. Div. Proc.
Am. Soc. Civil Engrs., 1976, v.102, p-701-722.
Dulinskas, E., Zabulionis, D. Analysis of equivalent
substitution of rectangular stress block for nonlinear
stress diagram. -Mechanika. -Kaunas: Technologija,
2007, Nr.6(68), p.26-38.

Bagmutov,V., Babichev, S. Features of stress strain
state in specimen neck at (when) computationally mod-
eling a tension process. -Mechanika. -Kaunas: Tech-
nologija, 2005, Nr.5(55), p.5-10.

A. Zilinskaite, A. Ziliukas
BENDROJI DEFORMAVIMO TEKMES TEORIJA
Reziume

Straipsnyje pateikta tampriai plastisky kiiny ben-
droji itempiy ir deformacijy rySio teorija. Nagrin¢jamos
deformaciné ir tekéjimo plastiSskumo bei endochroniné
netamprumo teorijos. Eksperimentiniai ir teoriniai tyrimai
rodo, jog paprastam apkrovimui deformaciné ir tekéjimo
teorijy rezultatai sutampa. Taciau sudétingo apkrovimo
metu gaunami rezultatai yra skritingi. Tiesinio apkrovimo
atveju rezultatai pagal deformacing ir tekéjimo teorijas
sutampa, o netiesinio apkrovimo atveju deformaciné teori-
ja nerodo skirtumo nuo apkrovimo trajektorijos. Tuomet
tekéjimo teorija rodo priklausomybg nuo apkrovimo kelio.
Taigi tekéjimo teorija geriau tinka sudétingo apkrovimo
atveju negu deformaciné teorija. Endochroniné netampru-
mo teorija leidzia iSsamiai ivertinti laiko itaka medziagos
deformavimo procese. Endochroninéje netamprumo teori-
joje apibréziamas tik ribinis pavirSius, o ne plastiskumo
pavirsius kaip klasikinése plastiSkumo teorijose. Sudétingo
deformavimo atveju siiloma tinkamiausia bendroji defor-
mavimo tekmés teorija, jvertinanti plastiniy deformacijy
vélavima apkrovimo metu ir vidinio deformavimo proce-
sus.



A. Zilinskaite, A. Ziliukas
GENERAL DEFORMATION FLOW THEORY
Summary

This article represents the theory of general rela-
tion between stresses and deformations in elastic-plastic
bodies. Deformation theory, the theory of yield plasticity
and endochronical theory of unelasticity are analyzed. Ex-
perimental and teoretical studies show that in case of sim-
ple loading the results of deformational theory and yield
theory are the same. Howevwer, in case of complicated
loading the obtained results are different. In case of linear
loading the results of deformational theory are the same
and in case of nonlinear loading the deformational theory
show no difference from the trajectory of loading. Then
yield theory shows dependence on the way of loading.
Thus, yield theory fits better than the deformational theory
in case of complicated loading. Endochronical theory of
unelasticity allows full evaluation of time influence on the
processes of material deformation. Endochronical theory of
unelasticity describes only a limited surface, but not the
surface of plasticity as classical theory of plasticity. In case
of complicated deformation, as the most applicable the
general theory of deformation flow is suggested; this the-
ory evaluates overdue of plastic deformations during the
loading and processes of internal deformation.
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A. Xununckaiite, A. JKumrokac

OBOBIIEHHAA TEOPUA TNTACTUYECKOI'O
JEO®OPMIPOBAHUA

PeszomMme

B Hacrosimieit ctathe mpemiokeHa 00OOIICHHAs
TEOpHsl CBS3M MEXIy HAIpPSHKEHUSIMH M J1ehOpManusiMu
JUISL yTIPYTOIUTACTHYECKUX Tell. AHAIM3UPYIOTCS Jiedop-
MalMOHHAs TEOpHs, TEOpHs TEKY4YeCTH M TakKe 3HIO-
XpOHHAsE TEOpHs HEYNPYTrOCTH. OKCIIEPUMEHTAIbHBIE H
TEOPETHYECKNE MCCIECIOBAHMS MTOKA3hIBAIOT, YTO TIPH IIPO-
CTOM HarpyXeHHH pe3yJIbTaThl Je(OpPMalMOHHON TEOPUH
U TEOpPHUHU TEKY4YECTH COBIIAJIA0T. B ciydae cioxHOTro Ha-
TPYXKEHUsI PE3yJbTaTbl CTAaHOBUTCS pasnuuHbIMH. [lpn
JIMHEHHOM Harpy»eHUH pPe3yJIbTaThl 10 Je(opMaluoHHOM
TEOPUU U TEOPUU TEKYYECTH COBIAJAIOT, a MPU HEJMHENU-
HOM HarpyxeHuu JieopManvoHHas TEOpUsl He TOKa3bIBa-
€T TPAaeKTOpHUU HarpyxeHus. B To Bpems Teopust Tekyde-
CTH yKa3bIBaeT Ha ITyTh HarpyXeHus. Takum o0pazoM Teo-
pHS TEKY4YECTH TIPH CII0KHOM Harpy>XeHUH HauboJjiee mpu-
emiieMa. DHIOXPOHHAs TEOpHs HEYNPYroCTH MO3BOJISET
OoJiee TIOJTHO OLIEHWTH BIMSHHWE BPEMEHH Ha IPOIECC Je-
(opmupoBaHus. B oTIMUMK OT KITaCCHYECKUX TEOPHH ITa-
CTUYHOCTH, B SHJOXPOHHOI TEOpPHH HEYNPYTOCTH OIHCHI-
BAcTCsl MpEAENbHAasl MOBEPXHOCTh TEKydecTH. B ciyuae
CIOKHOTO AehOpMHUPOBAHMS TIpemIaraeTcss 000OIeHHas
TEOpHUsl TEKY4ECTH, OL[CHUBAIOLIAsl 3ara3/ibIBaHHe TUIACTH-
4yeckux jaehopMaluii ¥ BHyTPEHHHUE MTPOLIECCHI.
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