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1. Introduction 

 

In past 5 decades flow shop scheduling may be a 

challenging area for researchers. Its main aim is to work out 

the job sequence of processing jobs on a given set of ma-

chines. In manufacturing environment flow shop scheduling 

is taken into account as most category of problem. A general 

flow shop scheduling during which n jobs are to be pro-

cessed through m machines is to be considered. Fixed and 

non-negative processing times are thought of here. the fore-

most important assumptions created are that every job will 

be processed on only one machine at a time, the operations 

don't seem to be preventive, the jobs are out there for pro-

cessing at time zero and set-up times are sequence independ-

ent. Here we have a tendency to think about the permutation 

flow shop problem, identical job sequence is taken into ac-

count on each machine for manufacturing. In flow shop 

scheduling minimizing makespan and total flow time may 

be a difficult task for several of the researchers. Therefore 

we thought of minimizing makespan as objective for my 

present work using meta-heuristic approach by improvising 

the Genetic algorithmic program. During this effective ge-

netic algorithm (EGA), worst solutions are aloof from that 

algorithm by adding robust factor concept.  

The first research involved to the flow shop sched-

uling problem was planned by Johnson [1]. Johnson repre-

sented a certain algorithm to reduce makespan for the n-jobs 

and 2-machines flow shop scheduling problem. Once the 

flow shop scheduling problem enlarges as well as additional 

jobs and machines, it becomes a combinatorial optimization 

problem. It’s clear that combinatorial optimization prob-

lems are in NP-hard problem class, and close to optimum 

solution techniques are most popular for such problems. In 

recent years, metaheuristic approaches like Tabu Search, 

Genetic algorithms, simulated annealing, differential evolu-

tion, and artificial immune systems are very fascinating to 

solve combinatorial optimization problems relating to their 

computational performance. The recent studies for the flow 

shop scheduling problem with makespan criteria, it's obvi-

ous that the solution methods supported metaheuristic ap-

proaches are often planned. Mainstream of studies for the 

flow shop scheduling problem focuses to reduce makespan. 

For instance, the flow time, the machine idle times are main 

measures in minimizing total scheduling cost. Whereas 

makespan decrease results in total production run utiliza-

tion, flow time decrease results in stable consumption of re-

sources, fast turn-around of jobs and work-in-process inven-

tory minimization. So as to reduce the production cost, it's 

desired to attain each these two objectives at the same time. 

Rajendran [2, 3] given one branch-and-bound algorithm and 

two heuristic algorithms aimed at two machine flow shop 

scheduling problem through makespan because the primary 

criterion and total flow time. Neppalli, Chen, and Gupta [4] 

planned two genetic algorithms for this problem. T’kindt, 

Gupta, and Billaut [5] presented mathematical program-

ming designs, a branch-and-bound process, and a heuristic 

algorithm. Later, Jeen Robert et al. [6] have given a hybrid 

algorithm for Minimizing Makespan in the flow shop Envi-

ronment. Yeh [7] created a memetic algorithm to solve this 

problem.  

Recently, ant colony optimization (ACO) approach 

has become additional preferred to solve combinatorial op-

timization problems. This heuristic algorithm combines 

simulated annealing search and a local search algorithm. 

This study is that the initial application of ACO metaheuris-

tic to multiobjective m-machine flow shop scheduling prob-

lem with esteem to the both objectives of makespan and to-

tal flow time. The performance of planned algorithm was 

related with two heuristic algorithms developed by Rajen-

dran [8] and Ravindran [9] for these category problems and 

Genetic algorithm. Computational studies were showed on 

the yardstick problems from Taillard [10] because the test 

problem so as to verify the algorithm’s performance. During 

this literature survey we tend to found several algorithm are 

accustomed solve flow shop scheduling problem in manu-

facturing field by many of the researchers, however we 

might found that genetic algorithm is very old algorithm 

however very powerful algorithm to solve flowshop sched-

uling problem. At the same time Muthiah [18] was de-

scribed an opposite genetic algorithm and it was applied in 

Job shop scheduling problem. Thus we used genetic algo-

rithm to solve flowshop scheduling however it's in effective 

approach by modifying its method routes strategies. Here 

we tend to addressed effective genetic algorithm (EGA) to 

solve flowshop benchmark problem, and also the results ob-

tained by EGA are compared with earlier reportable results 

by using ant colony algorithm ACO by Betul Yagmahan 

[11] and Andrea Rossi [12].  

 

2. Problem description and notations 

 

Consider an m-machine flow shop problem where 

there are n jobs to be processed on the m machines among 

an equivalent order. We’ve got a tendency to completely 

take under attention of the permutation schedules, i.e., the 

same job order on each machine. The objective of this paper 

is to improve a developed Real Coded Genetic Algorithm 

and Efficient Genetic Algorithm to hunt out the most effec-

tive or near best sequence in flowshop environment by min-

imizing makespan. Meanwhile, the sequence among which 
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each machine processes all jobs is identical on all machines.  

Makespan is one among the foremost necessary 

criteria in every production systems; it's up to the whole 

completion time of all the activities. Minimizing this crite-

rion caused higher usage of the resources specially machin-

ery and manpower. In each simple and hybrid flow shop, the 

method is to transform the flow shop into a network form, 

then a linear programming model with the objective of min-

imizing the entire completion time of all the actions are con-

structed. Minimizing total completion time of all the activi-

ties is similar to minimizing makespan among the produc-

tion system. The result is that the sequencing and scheduling 

of all the activities are determined. Besides, the following 

assumptions are thought of throughout this study: 

 Each machine can process at the foremost one job at 

a time and each job is processed on just one machine 

at any given time. 

 The schedule is non-preemptive; which suggests 

once a job starts to be processed on a machine, the 

process cannot be interrupted before completion. 

 The number of jobs and their process times on each 

machine are known ahead and are non-negative inte-

gers. 

 The individual operation setup times are little com-

pared with their processing times, and are enclosed 

within the processing times. 

 The prepared time of all jobs is zero, which suggests 

that everyone jobs are available for processing at the 

start. 

The handling time t(i,j) is specified for any job i 

on any machine j. Given a permutation of the jobs, the ac-

complishment times of jobs on the machines, makespan are 

calculated as follows: 

   1 1
,1 ,1 ,C J t J  (1) 

     1
,1 ,1 ,1 , 2, ,

i i i
C J C J t J i n


   , (2) 

     1 1 1
,1 , 1 , , 2, , ,C J C J J t J j j m     (3) 

        1
,1 , , , 1 , ,

2, , ; 2, , .

i j i i
C J max C J j C J j t J j

i n j m


  

 

 

(4)

 

(i) Makespan Cmax is the length of time required to 

finish processing all jobs, i.e.: 

 1 2
, , , ,

max n
C max C C C    (5) 

where Cn is the completion time of job n. 

The problem is to seek out a permutation of jobs 

thus on minimize the makespan of jobs. Since flow-shop 

scheduling problem has been shown to be NP−complete 

problem, for practical purposes, it has always a lot of ac-

ceptable to use an approximation technique that generates a 

close to best solution effectively. Throughout this paper an 

effort is made to boost the prevailing genetic algorithm pro-

cedures to use to permutation flowshop scheduling prob-

lems to provide higher results. The subsequent notations are 

utilized during this paper: 

n number of jobs 

m number of machines 

pij processing time of job i on machine j 

pm probability of mutation 

P to probability for Roulette wheel selection 

p sc probability for sub chromosomal crossover 

Psm probability for sub chromosomal mutation 

P(k) population at kth generation 

X* , X** best and second best chromosomes 

R real random number is 0 and 1 

Ng maximum generation 

 

3. Simple genetic algorithms (SGA) 

 

Genetic Algorithms may be a world class optimi-

zation algorithm that look for improved performance by 

sampling areas of the solution space that have high proba-

bility of resulting in a good solution. They reproduce the 

natural evolutionary process in this, in every generation, the 

fittest individuals have a superior chance to produce off-

springs by collaborating features of the parents or by alter-

ing one or a lot of the parent’s characteristics whereas, the 

worst individuals are possibly to die. Decisions that need to 

be created for applying GA include individual or chromo-

some illustration, technique of crossover, probability of 

crossover, technique of mutation, probability of mutation, 

and population size. GA is of course parallel and exhibits 

implicit parallelism, that doesn't evaluate and improve a sin-

gle answer, however analyses and modifies a set of solutions 

at the same time (Goldberg, [15]). The potential of a GA to 

control on many solutions instantaneously and collect infor-

mation from all current solutions to direct search reduces the 

possibility of being trapped in a very local optimum.  

In general, simple Genetic algorithm (SGA) con-

sists of the subsequent steps: 

Step 1: Initialize a population of chromosomes. 

Step 2: Evaluate the fitness operate of each body. 

Step 3: create new chromosomes by applying genetic oper-

ators like crossover and mutation to current chromosomes. 

Step 4: evaluate the fitness worth of the new population of 

chromosomes. 

Step 5: If the termination condition is satisfied, stop and 

come the simplest chromosome; otherwise, go to Step 3. 

 

4. Real coded genetic algorithms (RCGA)  

 

To compensate for the excessive computation time 

needed by the SGA, the important genetic algorithm (IGA) 

emphasizing on the coding of the chromosomes with float-

ing purpose illustration was introduced and established to 

possess important improvements on the computation speed 

and exactness (Wei-Der Chang [14]; Goldberg [15]). Real 

Coded Genetic algorithm (RGGA) is same as that of 

straightforward genetic algorithm provided instead of taking 

binary values it'll take real values as [0, 1].  

In real coded genetic algorithm the subsequent 

steps are to be followed: 

Step 1: randomly generate N chromosomes on initial popu-

lation within the search. 

Step 2: Calculate the fitness for every chromosome. 

Step 3: Perform reproduction, i.e. choose the higher chro-

mosomes with probabilities supported their fitness values. 

Step 4: Perform crossover on chromosomes selected in 

higher than step by crossover probability. 

Step 5: Perform mutation on chromosomes generated in 

higher than step by mutation probability. 
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Step 6: If reach the stop condition or get the best solution, 

one could stop the process, else repeat Steps 2-6 until the 

stop condition is achieved. 

Step 7: Get the best solution.4. 

 

5. Effective genetic algorithm (EGA) 

 

To enhance the performance of straightforward ge-

netic algorithm, an efficient genetic algorithm has been de-

veloped to induce higher results. It’s just a modification of 

straightforward genetic algorithm. GA is impressed by Dar-

win‘s Theory concerning evolution - "survival of the fit-

test”. GA represents an intelligent exploitation of a random 

search wont to solve optimization problems. Within the sim-

ple GA-based approach, the varied stages like evaluation, 

selection, crossover and mutation are repeatedly executed 

when initialization till a stopping criterion is met. The algo-

rithm works on multiple solutions at the same time. In this 

proposed EGA tool the initial population is processed by 

Nawaz, Enscore, and Ham (NEH) heuristic technique. Dur-

ing this a general purpose schedule optimizer for manufac-

turing flow shops planning using genetic algorithms. A per-

formance measures for planning is make-span Cmax that has 

been used most optimum utilization of resources to extend 

productivity and stated as maximum completion time of last 

job to exit from the system: 
 

 1 2
, , , ,

max n
C max C C C  

 

where Cmax is the makespan that needs to be decreased. Ef-

fective Genetic algorithm consists of the subsequent steps: 

Step 1: Generate Initial Population using NEH principle. 

Step 2: evaluate fitness function value of chromosomes. 

Step 3: selection procedure is done by roulette wheel tech-

nique. 

Step 4: Use sub chromosomal level crossover. 

Step 5: Use sub chromosomal level mutation (inverse tech-

nique, single purpose mutation). 

Step 6: Robust- Replace heuristic technique applied. 

Step 7: chromosomal level mutation. 

The elaborated flow chart of EGA is given in 

Fig. 1. The planned algorithm can work with these steps that 

are within the flow chart. The subsequent parameters were 

described before the program works: 

Initial Population: 1000. 

Number of generation: 250. 

Crossover probability: 0.9. 

Mutation probability: 0.05. 

 

5.1. Generation of initial population 

 

A set of initial population are indiscriminately gen-

erated in step with the problem size and one initial seed is 

incorporated by NEH heuristic (Nawaz et al. [16]) for the 

initial population. 

 

5.2. Evaluate fitness function 

 

In order to mimic the natural process of the sur-

vival of the fittest, the fitness analysis function assigns to 

every member of the population a value reflective their rel-

ative superiority (or inferiority). Every chromosome has an 

evaluation criterion supported the objective function. Since 

IGA is used for maximization problems, a minimization 

problem may be appropriately converted into a maximiza-

tion problem using a fitness function. The fitness function 

is:   

  1
max

f x C  (6) 

5.3. Selection procedure 

 

In EGA only classical roulette wheel selection 

technique is incorporated for improving results (Goldberg 

[15]) is taken into account. In roulette wheel selection, par-

ents are selected according to their fitness value. The higher 

the fitness the additional chances to be selected. The subse-

quent procedure is used for selection. 

 

5.4. Sub chromosomal level crossover 

 

In this step the initial chromosomes are reformed 

by subjecting sub chromosomal crossover. The whole chro-

mosome string length is splited into sub chromosomes of 

equal length and these sub chromosomes are moved indis-

criminately within the string to create a new chromosome.  

Then the makespan values of corresponding new 

chromosome (child) are calculated, and it's compared with 

parent chromosome. Finally that chromosome is producing 

less makespan value that chromosome are maintained. 
 

 
 

Fig. 1 Flow chart of EGA 
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Parent chromosome 

1 2 3  4 5 6  7 8 9  10 

1  2  3  4 

  

Sub-chromosome length =3 

After sub-chromosomal crossover (child) 

7 8 9  10  1 2 3  4 5 6 

3  4  1  2 

 

5.5. Sub-chromosomal level mutation 

 

Mutation generates an offspring solution by alter-

ing the parent’s feature indiscriminately. The most effective 

chromosome obtained from sub-chromosomal crossover is 

subjected for mutation operation. During this work, two dif-

fering types of mutation operators are used specifically in-

verse mutation and single point mutation. 

5.5.1. Inverse mutation 

In this step, indiscriminately choose two positions 

of i and j from a sequence. The portion of the sequence be-

tween these two positions is reversed to get a brand new mu-

tated sequence. The new sequence represents the sequence 

of operations after mutation. Then the makespan values of 

corresponding new sequence are calculated, and it's com-

pared with old sequence. Finally that sequence is producing 

less makespan value that sequence is sustained. 

Original Sequence 

10 8 9 7 6 4 5 3 2 1 

 

Mutated Sequence 

10 2 4 3 8 7 9 6 5 1 

Mutation between positions 2 and 9.

5.5.2. Single point mutation 

 

 In this mutation technique, a random operation is 

chosen within the sequence and moved random position 

within the sequence. Then the makespan values of the re-

sulting sequence are calculated and its value is compared 

with previous sequence. At last, the sequence which pro-

duces lees makespan that might be continued for following 

step. 

Before mutation 

10 8 9 7 6 4 5 3 2 1 

 

After mutation 

10 8 9 7 4 5 3 2 1 6 

 

5.6. Robust- replace heuristic 

 

 In this step, indiscriminately generate ten se-

quences for implementation supported mutation and their 

corresponding makespan value and robust factors are calcu-

lated as shown in Table 1. Value of robust factor is calcu-

lated using the formula Robust Factor: 

1
max

R C . (7) 

 Then calculate the average value of the robust fac-

tor for the ten set of sequences. The sequences having very 

less robust factor compared with the typical robust value are 

selected for making new schedule. The maintained sched-

ules are given in Table 2. For better understanding of this 

process, here we have a tendency to thought of benchmark 

problem (IPTA001) proposed by Taillard [10] is chosen. 

The problem size is 20 jobs and 5 machines 

 

Table 1  

Initial sequences 

Sequence Makespan 
Robust  
Factor 

3 17 9 8 15 14 11 16 13 19 6 4 5 18 1 2 10 7 20 12 1286 0.000778 

3 17 19 8 15 14 11 16 13 9 6 4 5 18 1 2 10 7 20 12 1322 0.000756 

3 13 4 14 5 15 6 16 7 17 8 18 9 19 20 2 1 10 11 12 1519 0.000658 

3 17 9 8 1 5 15 14 11 16 13 19 6 4 12 2 10 7 20 18 1377 0.000726 

3 12 17 20 9 7 8 10 15 2 14 1 11 18 16 5 13 4 19 6 1485 0.000673 

17 9 8 3 15 14 11 16 13 19 20 12 10 7 2 1 18 6 5 4 1497 0.000668 

6 15 3 9 7 11 1 2 17 13 4 8 19 16 5 18 12 14 10 20 1311 0.000763 

6 17 7 8 9 1 11 12 15 13 4 3 19 16 5 18 2 14 10 20 1377 0.000726 

17 6 3 9 8 15 14 11 16 13 19 4 5 18 1 2 10 7 20 12 1323 0.000756 

6 17 3 9 8 15 14 11 16 13 19 4 5 18 1 2 10 7 20 12 1345 0.000743 

Average Robust factor= 0.000725 

 

Table 2  

Sequences retained 

Sequence Makespan Robust Factor 

3 17 9 8 15 14 11 16 13 19 6 4 5 18 1 2 10 7 20 12 1286 0.000778 

3 17 19 8 15 14 11 16 13 9 6 4 5 18 1 2 10 7 20 12 1322 0.000756 

3 17 9 8 1 5 15 14 11 16 13 19 6 4 12 2 10 7 20 18 1377 0.000726 

6 15 3 9 7 11 1 2 17 13 4 8 19 16 5 18 12 14 10 20 1311 0.000763 

6 17 7 8 9 1 11 12 15 13 4 3 19 16 5 18 2 14 10 20 1377 0.000726 

17 6 3 9 8 15 14 11 16 13 19 4 5 18 1 2 10 7 20 12 1323 0.000756 

6 17 3 9 8 15 14 11 16 13 19 4 5 18 1 2 10 7 20 12 1345 0.000743 
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5.7. Chromosomal level mutation 

The two mutation processes are allotted among the 

chromosomes within the population whereas the sub chro-

mosomal level mutation is restricted within a single chro-

mosome. The mutation process includes inverse mutation 

and single point mutation as given in sec 5.5. 

 

6. Result analysis and discussion 

 

The bench mark issues planned by Taillard [17] are 

tested against the meta-heuristic technique by Effective ge-

netic algorithmic rule (EGA). Numerous sizes of the issues 

with twenty jobs and five, 10, twenty machines were tested 

and therefore the same issues were tested exploitation the 

EGA methodology and therefore the results are shown in 

Table 3. 

From Table 4, it's found that the planned new meta-

heuristic algorithmic rule that's EGA is giving higher results 

in comparison to any or all different algorithms. It’s con-

jointly found that the developed EGA is incredibly abundant 

appropriate for twenty jobs five machines drawback, as a 

result of out of ten samples (IPTA001… IPTA010) EGA is 

giving seven higher results. Conjointly for twenty jobs ten 

machines drawback EGA is giving seven higher results in 

comparison different results. Then the program is dead for 

twenty jobs twenty machines drawback out of eight samples 

EGA has created seven higher results. From this Table 4 re-

sults, it's terminated that the developed EGA is giving 

higher results in comparison to any or all different algo-

rithms conjointly it's giving best for big sized issues. The 

secret writing of the each RCGA & EGA were developed in 

Matlab atmosphere and therefore the programming was 

tested on associate Intel Core i5 processor 1.6 gigacycle per 

second system with 4GB RAM. 

For the Taillard [10] benchmark drawback the ob-

tained results by planned new meta-heuristic methodology 

(EGA) is compared with existing algorithms (Rajendran [8] 

and Ravindran at al [9] and Yagmahan, B., &amp; Yenisey, 

M. M. [11] and Andrea Rossi [12]). Table 3 Consolidated 

results of the benchmark issues by EGA (Best makespan se-

quence) and Table 4 displays the comparison of results of 

Taillard Benchmark drawback with totally different heuris-

tics. Conjointly the proportion of improvement is calculated 

are given in Table 5 and Table 6. 

 yy RCGA yy
Percentage Improvement C C C   (8) 

where Cyy is erformance measure reported by Yagmahan, 

B., & Yenisey, M. M. [11]; CRCGA is performance measure 

obtained by RCGA algorithms. 

Percentage improvement of RCGA algorithmic 

rule over the past literature results is delineated in Table 5. 

From that it is ascertained that RCGA provides a pair 

of.94% average improvement in makespan with relevance 

(Rajendran [8]), conjointly it created three.02%, 5.61% and 

5.53% average improvement in makespan over HAMC1, 

HAMC2 and HAMC3 Ravindran et al. [9] according values. 

Once more the algorithmic rule is tested with Yagmahan, 

B., &amp; Yenisey, M. M. [11] however RCGA has created 

solely zero.16% of average improvement in makespan. 

Then the performance of RCGA is tested with NPFA-ACO 

developed by Andrea Rossi [12] and it's out performed by -

1.55%. Then we've got an inspiration that to boost the per-

formance RCGA by Effective genetic algorithmic rule 

(EGA) by modifying its parameters. 

Percentage improvement of EGA algorithmic rule 

over the past literature results is delineated in Table 6. From 

that it is ascertained that RGA provides a 5.77% average 

improvement in makespan with relevance Rajendran [8], 

conjointly it created 5.83%, 8.35% and 8.26% average im-

provement in makespan over HAMC1, HAMC2 and 

HAMC3 Ravindran et al. [9] according values. Once more 

the algorithmic rule is tested with Yagmahan, B & Yenisey, 

M. M. [11] however EGA has created 3.08% of average im-

provement in makespan. Then the performance of EGA is 

tested with NPFA-ACO developed by Andrea Rossi [12] 

and it's performed 1.42% of average improvement in 

makespan. Any have EGA has created 21 best makespan se-

quences out of 28 benchmark Taillard problems. 

Figs. 2 to 4 represents diagrammatically the perfor-

mance of the important coded genetic algorithmic and Ef-

fective Genetic algorithmic over Rajendran [8], Y&Y [11] 

and NPFS-ACO [12] algorithms. Every bar in Figs. 2 to 4 

shows the effectiveness of RCGA and EGA over all differ-

ent algorithms within the chart. 

 

Fig. 2 Chart showing the comparison of EGA & RCGA algorithm with Rajendran [8] 
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Fig. 3 Chart showing the comparison of EGA & RCGA algorithm with Y&Y [11] 

 

 

Fig. 4 Chart showing the comparison of EGA & RCGA algorithm with NPFS-ACO [12] 

 

Table 3  

Consolidated results of the benchmark problems by EGA (Best makespan sequence) 
 

Benchmark 

Problem Best makespan sequence 

Objective 

function 

No.of jobs=20; No.of machines=5 Makespan 

TA001 
3 17 9 8 15 14 11 16 13 19 6 4 5 18 1 2 10 7 20 12 

1286 

TA002 
6 10 17 7 19 14 20 3 9 18 12 15 1 13 16 5 4 11 2 8 

1359 

TA003 
16 14 19 11 3 20 18 7 1 12 10 5 2 9 4 17 6 8 13 15 

1132 

TA004 
13 9 16 17 11 19 10 6 7 15 1 12 5 20 2 3 8 14 4 18 

1325 

TA005 
3 5 12 10 19 9 18 17 15 13 4 16 6 2 14 11 1 7 8 20 

1250 

TA006 
11 5 8 17 20 13 6 16 1 7 12 14 18 10 15 9 4 19 3 2 

1220 

TA007 
5 2 15 11 6 20 13 19 1 17 7 9 12 3 8 4 16 14 18 10 

1251 

TA008 
17 12 9 2 14 10 18 4 16 19 7 8 6 5 20 15 1 3 13 11 

1221 

TA009 
4 2 10 12 1 18 17 6 16 3 13 11 9 5 20 14 7 15 8 19 

1257 

TA010 
7 19 11 12 16 6 1 13 10 2 18 17 5 20 3 14 8 4 15 9 

1145 
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Benchmark 
Problem Best makespan sequence 

Objective 
function 

No.of jobs=20; No.of machines=10 

TA011 4 5 9 10 15 18 2 17 3 6 12 20 13 8 14 19 11 1 7 16 1652 

TA012 12 17 5 13 15 7 20 9 11 19 10 1 6 2 3 4 18 16 8 14 1729 

TA013 4 7 9 2 16 5 12 13 11 15 1 20 6 14 17 10 3 18 19 8 1534 

TA014 18 20 3 11 9 13 4 16 15 1 10 2 7 8 6 19 12 14 17 5 1419 

TA015 16 8 4 20 18 14 15 13 9 6 1 7 3 17 2 5 19 12 11 10 1502 

TA016 19 8 20 3 18 16 11 14 6 15 13 4 5 7 12 17 10 9 2 1 1433 

TA017 19 6 7 10 17 1 4 8 20 18 9 2 5 16 14 15 13 11 12 3 1545 

TA018 17 8 20 4 7 18 14 2 5 9 19 3 6 11 1 13 15 10 16 12 1604 

TA019 20 11 16 14 12 8 17 4 2 1 19 3 13 18 7 15 10 5 6 9 1617 

TA020 5 12 14 13 17 9 19 4 7 8 16 6 20 2 10 3 18 1 15 11 1644 

No.of jobs=20; No.of machines=20  

TA021 8 9 10 12 13 15 16 17 11 5 1 20 14 2 18 6 7 3 4 19 2380 

TA022 18 3 11 4 5 13 1 12 16 19 15 6 14 10 20 17 7 9 8 2 2150 

TA023 19 4 1 13 5 20 11 9 16 8 15 17 18 3 12 2 10 14 6 7 2393 

TA024 14 3 18 5 2 8 12 4 6 20 15 13 1 7 19 16 10 17 9 11 2250 

TA025 10 2 5 19 9 11 15 13 3 18 17 4 20 12 14 1 16 8 7 6 2373 

TA026 18 6 11 2 8 20 16 9 17 4 13 15 10 14 5 1 3 7 12 19 2290 

TA027 10 12 16 14 5 19 18 6 7 17 4 2 11 15 20 8 9 3 1 13 2362 

TA028 4 2 16 10 20 5 1 14 6 7 3 11 17 19 13 12 8 18 15 9 2249 

 

Table 4 

Comparison of results of Taillard benchmark problems with different heuristics 
 

Benchmark 

Problem 

UB/ Best 

Known 

Rajendran [8] Ravindran et al. [9] Yagmahan and 

Yenisey [11] 

NPFS-

ACO 

[12] 

RCGA EGA 

HAMC1 HAMC2 HAMC3 

 No.of jobs=20; No.of machines=5  

TA001 1278 1359 1297 1324 1307 1297 1290 1297 1286 

TA002 1358 1378 1373 1409 1409 1383 1389 1371 1359 

TA003 1073 1230 1206 1210 1210 1203 1100 1149 1132 

TA004 1292 1393 1402 1423 1418 1377 1344 1355 1325 

TA005 1231 1307 1334 1387 1387 1311 1250 1276 1250 

TA006 1193 1282 1238 1281 1281 1245 1217 1234 1220 

TA007 1234 1387 1322 1359 1332 1303 1258 1259 1251 

TA008 1199 1344 1287 1404 1404 1265 1235 1280 1221 

TA009 1210 1335 1307 1382 1382 1303 1258 1290 1257 

TA010 1103 1191 1195 1298 1221 1179 1127 1162 1145 

 No.of jobs=20; No.of machines=10  

TA011 1560 1711 1774 1812 1787 1681 1693 1685 1652 

TA012 1644 1916 1791 1817 1832 1749 1785 1775 1729 

TA013 1486 1617 1643 1784 1783 1554 1583 1636 1534 

TA014 1368 1533 1531 1595 1584 1490 1452 1490 1419 

TA015 1413 1588 1722 1557 1586 1455 1516 1558 1502 

TA016 1369 1565 1612 1674 1667 1564 1445 1522 1433 

TA017 1428 1622 1594 1624 1628 1590 1524 1576 1545 

TA018 1527 1800 1631 1659 1659 1595 1650 1671 1604 

TA019 1586 1717 1769 1842 1823 1689 1659 1686 1617 

TA020 1559 1831 1744 1831 1793 1719 1670 1718 1644 

 No.of jobs=20; No.of machines=20  

TA021 2293 2610 2491 2539 2546 2428 2396 2446 2380 

TA022 2092 2301 2491 2491 2586 2281 2225 2215 2150 

TA023 2313 2411 2422 2433 2506 2515 2446 2455 2393 

TA024 2223 2471 2567 2693 2722 2299 2346 2363 2250 
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Benchmark 
Problem 

UB/ Best 
Known 

Rajendran [8] Ravindran et al. [9] Yagmahan and 
Yenisey [11] 

NPFS-
ACO 

[12] 

RCGA EGA 

HAMC1 HAMC2 HAMC3 

TA025 2291 2427 2420 2453 2493 2473 2439 2424 2373 

TA026 2221 2466 2557 2641 2663 2339 2331 2356 2290 

TA027 2267 2174 2448 2528 2515 2378 2428 2396 2362 

TA028 2183 2418 2464 2473 2472 2418 2321 2368 2249 

 

Table 5 

Percentage improvement of RCGA algorithm over the past literature 
 

Benchmark Prob-

lem 

Imp.% of RCGA 

over [8] 

Imp.% of RCGA 

over HAMC1 

Imp.% of RCGA 

over HAMC2 

Imp.% of RCGA 

over HAMC3 

Imp.% of 

RCGA over 

Y&Y [11] 

Imp.% of RCGA over 

NPFS-ACO [12] 

No.of jobs=20; No.of machines=5     

TA001 4.56 0.00 2.04 0.77 0.00 -0.54 

TA002 0.51 0.15 2.70 2.70 0.87 1.30 

TA003 6.59 4.73 5.04 5.04 4.49 -4.45 

TA004 2.73 3.35 4.78 4.44 1.60 -0.82 

TA005 2.37 4.35 8.00 8.00 2.67 -2.08 

TA006 3.74 0.32 3.67 3.67 0.88 -1.40 

TA007 9.23 4.77 7.36 5.48 3.38 -0.08 

TA008 4.76 0.54 8.83 8.83 -1.19 -3.64 

TA009 3.37 1.30 6.66 6.66 1.00 -2.54 

TA010 2.43 2.76 10.48 4.83 1.44 -3.11 

No.of jobs=20; No.of machines=10     

TA011 1.52 5.02 7.01 5.71 -0.24 0.47 

TA012 7.36 0.89 2.31 3.11 -1.49 0.56 

TA013 -1.18 0.43 8.30 8.24 -5.28 -3.35 

TA014 2.80 2.68 6.58 5.93 0.00 -2.62 

TA015 1.89 9.52 -0.06 1.77 -7.08 -2.77 

TA016 2.75 5.58 9.08 8.70 2.69 -5.33 

TA017 2.84 1.13 2.96 3.19 0.88 -3.41 

TA018 7.17 -2.45 -0.72 -0.72 -4.76 -1.27 

TA019 1.81 4.69 8.47 7.52 0.18 -1.63 

TA020 6.17 1.49 6.17 4.18 0.06 -2.87 

No.of jobs=20; No.of machines=20     

TA021 6.28 1.81 3.66 3.93 -0.74 -2.09 

TA022 3.74 11.08 11.08 14.35 2.89 0.45 

TA023 -1.82 -1.36 -0.90 2.04 2.39 -0.37 

TA024 4.37 7.95 12.25 13.19 -2.78 -0.72 

TA025 0.12 -0.17 1.18 2.77 1.98 0.62 

TA026 4.46 7.86 10.79 11.53 -0.73 -1.07 

TA027 -10.21 2.12 5.22 4.73 -0.76 1.32 

TA028 2.07 3.90 4.25 4.21 2.07 -2.02 

 

Table 6 

Percentage improvement of EGA algorithm over the past literature 
 

Benchmark Prob-
lem 

Imp.% of RCGA 
over [8] 

Imp.% of RCGA 
over HAMC1 

Imp.% of RCGA 
over HAMC2 

Imp.% of 
RCGA over 

HAMC3 

Imp.% of 
RCGA over 

Y&Y [11] 

Imp.% of RCGA over 
NPFS-ACO [12] 

No.of jobs=20; No.of machines=5     

TA001 5.37 0.85 2.87 1.61 0.85 0.31 

TA002 1.38 1.02 3.55 3.55 1.74 2.16 

TA003 7.97 6.14 6.45 6.45 5.90 -2.91 

TA004 4.88 5.49 6.89 6.56 3.78 1.41 

TA005 4.36 6.30 9.88 9.88 4.65 0.00 

TA006 4.84 1.45 4.76 4.76 2.01 -0.25 
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Benchmark Prob-
lem 

Imp.% of RCGA 
over [8] 

Imp.% of RCGA 
over HAMC1 

Imp.% of RCGA 
over HAMC2 

Imp.% of 
RCGA over 

HAMC3 

Imp.% of 
RCGA over 

Y&Y [11] 

Imp.% of RCGA over 
NPFS-ACO [12] 

TA007 9.81 5.37 7.95 6.08 3.99 0.56 

TA008 9.15 5.13 13.03 13.03 3.48 1.13 

TA009 5.84 3.83 9.04 9.04 3.53 0.08 

TA010 3.86 4.18 11.79 6.22 2.88 -1.60 

No.of jobs=20; No.of machines=10     

TA011 3.45 6.88 8.83 7.55 1.73 2.42 

TA012 9.76 3.46 4.84 5.62 1.14 3.14 

TA013 5.13 6.63 14.01 13.97 1.29 3.10 

TA014 7.44 7.32 11.03 10.42 4.77 2.27 

TA015 5.42 12.78 3.53 5.30 -3.23 0.92 

TA016 8.43 11.10 14.40 14.04 8.38 0.83 

TA017 4.75 3.07 4.86 5.10 2.83 -1.38 

TA018 10.89 1.66 3.32 3.32 -0.56 2.79 

TA019 5.82 8.59 12.21 11.30 4.26 2.53 

TA020 10.21 5.73 10.21 8.31 4.36 1.56 

No.of jobs=20; No.of machines=20     

TA021 8.81 4.46 6.26 6.52 1.98 0.67 

TA022 6.56 13.69 13.69 16.86 5.74 3.37 

TA023 0.75 1.20 1.64 4.51 4.85 2.17 

TA024 8.94 12.35 16.45 17.34 2.13 4.09 

TA025 2.22 1.94 3.26 4.81 4.04 2.71 

TA026 7.14 10.44 13.29 14.01 2.09 1.76 

TA027 -8.65 3.51 6.57 6.08 0.67 2.72 

TA028 6.99 8.73 9.06 9.02 6.99 3.10 

 

Based on the higher than discussion show that the 

planned EGA and RCGA works higher than SGA, 

HAMC’s, ACO by Y& Y [11], hymenopteran colony letter 

by Andrea Rossi [12] for all the benchmark issues and it 

giver for higher results. It is ascertained that the planned 

EGA algorithmic rule is additional economical than the pre-

sent one for resolution flowshop programming issues with 

minimizing makespan as criteria, and this work is extended 

to solve bi-objective or different appropriate objectives ei-

ther combined or individually. 

 

7. Conclusions 

 

In this paper, a new Effective Genetic algorithm 

(EGA) and Real Coded Genetic algorithm (RCGA) is 

planned to solve flow shop scheduling problems to reduce 

makespan. To verify the computational performance of the 

EGA and RCGA, an enormous experiment were conducted 

with Tailard benchmark problem for the various sizes of the 

problems with 20, 50 &  100 jobs through  5, 10  &  20 ma-

chines. The obtained results by planned EGA are one 

step ahead of all the algorithms for the flow shop schedul-

ing problem. The planned algorithm will be used for single 

or combinational problems considering completely differ-

ent conditions like total flow time, total tardiness and maxi-

mum tardiness. Furthermore the proposed algorithm will 

be implemented for scheduling problems in numerous man-

ufacturing systems such as job shops, flexible flow shops, 

and cellular manufacturing and flexible manufacturing sys-

tems with respect to completely different objectives. The 

future work includes application EGA to combinational op-

timization problems 
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R.B. Jeen Robert, R. Rajkumar 

AN EFFECTIVE GENETIC ALGORITHM FOR FLOW 

SHOP SCHEDULING PROBLEMS TO MINIMIZE 

MAKESPAN  

S u m m a r y 

In this paper, the flowshop scheduling problem 

with the objective of minimizing the makespan has im-

portant applications in an exceedingly type of industrial sys-

tems. The main concern of flow shop scheduling is to get 

the most effective sequence, that minimizes the makespan, 

time of flow, time of idle, delay, etc. the objective of mini-

mizing makespan is planned for finding the flowshop sched-

uling problem with Effective Genetic algorithm (EGA). 

EGA could be an easy and efficient algorithm that is em-

ployed to resolve for each single and multi-objective prob-

lem in flow shop environment. This algorithm can works 

simply for our real life applications. The planned algorithm 

is tested with well-known problems in literature. EGA’s res-

olution performance has been compared with the present re-

sults reported by researchers. The obtained results show that 

the planned EGA performs higher than NPFS-ACO algo-

rithms in finding the flowshop scheduling problem with the 

makespan criterion as average percentage improvement of 

1.42%. This improvement ends up in two completely differ-

ent meta-heuristic algorithms for finding flow shop planning 

problems specifically real coded Genetic algorithm (RCGA) 

and EGA. However EGA is performed well once comparing 

with RCGA. 

 

Keywords: Flow shop scheduling, Makespan, Genetic Al-

gorithm, Matlab. 
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