
 51

ISSN 1392 - 1207. MECHANIKA. 2008. Nr.3(71)

Product configurator for product data management system:
design of internal structure

L. Burneika
Vilnius Gediminas Technical University, J. Basanavičiaus 28, 03224 Vilnius, Lithuania, E-mail: Linas@mail.lt

1. Introduction

Product configuration problem emerged as a re-

search topic in the 1980s as the result of manufacturing
companies going from mass-production to mass customi-
zation. Configurators not only provide realization of the
mass-customization paradigm but also are among the most
successful applications of artificial intelligence technology.
In product configuration process a user makes adjustments
to the product (an industrial machine, a car, a personal
computer etc.) according his specific needs, using support-
ing software called the configurator. It calculates a specific
product variant that fulfills provided requirements, techni-
cal and nontechnical constraints. Choices for each avail-
able component are usually modeled as variables over
finite domains, and the knowledge about the valid product
specifications is encoded as propositional constraints over
these variables.

A tendency is observed that the economy of the
21st century will be based on highly specialized solution
providers working according concepts of agile manufactur-
ing [1]. Therefore the configuration of constantly evolving
and changing products must be supported. While configu-
ration of standardized, mostly well defined products can be
quite well achieved, the case for complex and short lifecy-
cle products or services is still an open research issue. This
work is intended for the case.

2. Related works

There is a long history in research and develop-

ment of configuration tools in knowledge-based systems.
The first attempts were made by introducing rule-based
systems. Later research progressed to the development of
higher level representation formalisms, such as various
forms of Constraint Satisfaction Problem (CSP) [2], or
description logics [3].

Configuration tasks are more dynamic in nature
and therefore a CSP representation, where all problem
variables must be known from the beginning, is not appro-
priate in many application domains. In order to solve this,
the dynamic constraint satisfaction [2] was developed,
which is more suitable for representing and solving con-
figuration tasks, because the set of problem variables may
vary according to some activity constraints. In reference
[4 - 6] a distributed dynamic CSP is defined and a
modification of the asynchronous backtracking algorithm
from [7] is applied for problem solving. The limitations of
dynamic CSP representation becomes evident, when
configuring large technical systems. To overcome this
problem a generic CSP representation [8] has been pro-
posed. There, new instances of problem variables can be
created from meta-variables during problem solving.

In CSP approaches [9, 10], the configuration can
exploit powerful constraint problem solvers for solving
complex problems [11]. The alternative symbolic approach
[12] has to split computations to an offline and an online
phase. First they compile valid user assignments to effi-
cient data structures, such as reduced ordered Binary Deci-
sion Diagrams [13]. If the compiled representation is small
enough, then the already available efficient algorithms
deliver basic configuration functionalities.

In general CSP and symbolic approaches provide
good performance parameters [13], but considering user-
friendliness requirement for configurator, both approaches
have difficulties to comprehend representation formalism.
Although commercial configurators have a user interface
layer for simplification, but it does not solve numerous
problems arising during frequent production updates. An-
other problem is that the process of constructing configur-
able product requires additional skills and is very different
from product design tasks.

The ideas for product configurator proposed in
this paper relate to previous research projects such as [14,
15]. They are looking for possible ways of configuration
problem decomposition in order to improve solving effi-
ciency and apply methods of parallel computing. My ap-
proach for product configuration evolves from similar con-
cepts – configurational knowledge representation is de-
composed and closely related to product structure. How-
ever representation formalism is not symbolic, but object
driven. The objects of model are connected mostly accord-
ing product structure and have references to engineering
data on Product Date Management (PDM) system. The
task of this work is to express information about product
configurations as a net of interconnected objects, further
called the configuration model, and provide architectural
details for further implementation as the software system.

The product configuration model defined in this
paper is not ordinary sales configurator, but falls into engi-
neer-to-order category. The configuration model is de-
signed taking into account high structural complexity of
real life products that are dynamic by nature and undergo
continuous improvements. This is the reason why architec-
ture of model includes close relations with PDM system.

The configuration model has dualism in the way
product variants are expressed: by class inheritance and by
constraint links. Another original feature of the model is an
object driven approach, allowing to add new variants faster
and easier than conventional configurators.

3. The configuration model - multilayer structure

The structure configuration model consists of two

layers: the understandable for user abstract layers, and
physical layer for the implementation. Abstract layer deals

 52

with assembly, property and constraint abstract classes.
They are closely related to the usage of product configura-
tor. Physical layer provides information about the imple-
mentation of configuration model as software system,
therefore its structure is different from abstract layer. It is

described by Unified Modeling Language (UML). Every
entity of abstract configuration model layer is represented
by instances of C++ classes that further on this paper are
called objects.

A

B

a2 A

B

a2

a3

A

B

a2

a4 B

B1

B2

A1.1

A1.2

Generic
assembly

Assembly alterna-
tives

Generic
product

Two alternatives A1 and A2 got by inheritance.
Each has more information added

Fig. 1 Generic class inheritance example in configuration model

Product configuration model is constructed using

concepts of object oriented modeling and classification of
components, where the main entity is an abstract generic
assembly class. Every abstract generic assembly class may
contain references to other abstract classes and items from
PDM system. An assembly class is an abstraction of real
product assembly. In the Fig.1 class A defines a generic
assembly, which always contains at least two components:
another assembly class B and component a2. Other two
classes are derived from base assembly class A, where each
derived class introduces additional information. Class A1
has extended assembly structure by a new component a3,
while class A2 overrides inherited component a2 by a4.
Abstract classes A1.1 and A1.2 are inherited from A1 for
addition of even more details into product structure, how-
ever for clarification this is not shown in figure. Every ab-
stract class existing at a leave node of inheritance tree
represents a particular configuration of a root class. In this
example the abstract class A has three configurations. A
generic class B has two classes derived, making two con-
figurations B1 and B2 of assembly B. It follows that the
product defined by class A has six configurations in total.

Experience shows, that in most cases new product
variants are designed by finding existing, the most closely
fulfilling customer requirements product, and modifying it.
Therefore new design efforts are minimized by heavily
reusing previous work. The principle of inheritance pro-
vides an easy way to add new variants to configuration
model, but existing variants are conserved.

Choices for product configuration can be easily
determined from the model. In the example inheritance tree

of class A is a question itself with 3 possible choices for
the user: class A2, A1.1 and A1.2. The tree of class B pro-
vides two choices. During configuration process of this
example product user has to answer two questions in order
to get fully defined assembly of the class A.

Ability to define structure for a class and inheri-
tance in the configuration model provide tools for compact
description of multiple product variants. It is also easier to
understand for engineer and has flexibility for making
changes in configurations.

4. Physical layer - design of internal structure

4.1. Properties

In abstract layer of configuration model properties
add some static information to generic classes. In physical
layer there are three types of property classes: enumeration
(PropEnum), range of values (PropRange) and arbitrary
value (PropArbitrary). An object of enumeration contains
links to a fixed list of values that are hold in objects of Val-
ueHolder type. The ValueHolder object may have at least
one value, however in some cases there can be more values
of different types. A C++ class template Value lets to in-
stantiate objects of simple data types, like integer, real or
string. It is also possible to have some fixed additional val-
ues on PropEnum and each ValueHolder objects. In Fig.2
this is represented as on-to-many relations.

Property range itself is a class template, which al-
lows creations of objects of primitive data types. This ob-
ject holds information about upper and lower limits of the

 53

range as well as increment. PropRange may have addi-
tional fixed values the same way as in enumeration object.

Very similar to property range is the property of
arbitrary value. It is also a class template, so objects of
different data types can be instantiated. PropArbitrary ob-
ject may have additional fixed values.

For convenience objects of properties are linked
by pointers to PropGroup objects. Any property objects of
different type can be grouped together. PropGroup object
is a self linked object, therefore a tree shaped structure can
be created for the classification of other properties.

PropEnum

+*valueBoxArray: ValueHolder
+*valueArray: Value

PropArbitrary

+desc: Descriptor
+value: DataType

DataType

ValueHolder

+*valueArray: Value
+*parent: PropEnum
+desc: Descriptor

+addValue()
+removeValue()

0..*1

Value

+value: DataType
+desc: Descriptor
+*parent: ValueHolder

DataType

1..*
1

0..*

1

PropGroup

+*propertyArray: Property
+*PropGroupChildren: PropGroup
+*PropGroupParent: PropGroup
+desc: Descriptor

0..*

1

PropRange

+desc: Descriptor
+valueLimLow: DataType
+valueLimUp: DataType
+valueIncrement: Datatype = 0
+*valueArray: Value
+*propRangeInstArray: PropRangeInst

DataType

Descriptor

+description: string
+name: string

0..*

1

0..*1

0..* 1

0..*

1

0..*

1

Property

+desc: Descriptor
+*group: PropGroup
+*linkArray: CfgObject

Fig. 2 Class diagram for properties

4.2. Main objects

The central class of physical model is CfgObject,
which contains a common functionality for evaluating par-
ticular product variant, according user choices. Other
classes are derived from CfgObject. A backbone of con-
figuration model is constructed from AssemblyItem and
PartItem classes that are derived from AbstractItem
(Fig. 3). Every generic “assembly class” is an object in-
stantiated from AssemblyItem class, shown in Fig. 3. “Ge-
neric derived assembly classes” are also separate objects of
AssemblyItem type, but they are linked by pointers to each
other. PartItem is a simple object, containing reference of
an item taken from the PDM system.

Object of AssemblyItem may have multiple links
to another AssemblyItem or PartItem objects. This is ac-
complished by using objects of AbstractLink type. There
are two types of links. The simplest link PdmItemLink
holds an identification of item in PDM system. This type
of the link is useful for attaching documents from PDM
system to objects of configurator. ItemLink object can hold
one pointer to any object of AbstractItem type. ItemLink
has information about quantity and units of measurement.
Using objects of AbstractItem and AbstractLink a recursive
tree of generalized parts and assemblies can be con-
structed.

A special type of object is CommonFeature. This
object contains pointer references to AbstractItem objects

sharing the same set of properties. CommonFeature objects
may be derived from each other for user convenience. Si-
milarly as in AbstractItem, information about object-to-
object inheritance is represented by arrays of pointers.

Alternative components are referred to the com-
ponents, which are completely replaceable from engineer’s
point of view. This is a very often situation in manufactur-
ing industry. Object of AlternativeItems type creates a list
of replaceable components by using the array of pointers to
AbstractItem objects. The effect of AlternativeItems object
can be defined by setting its scope. If the scope refers to
particular AssemblyItem object, then component alterna-
tives are local to this object.

Finally, object of class Product defines a space for
particular family of designed and manufactured products.
Every other object has reference to Product object. How-
ever object cannot belong to more than one Product objects
simultaneously. This allows having different configuration
models for different products, but parts of configuration
model cannot be shared among products.

4.3. Constraint links

Some information about choices is represented by
inheritance of abstract generic classes. But in reality more
complex interdependencies between components usually
exists. For the representation of such dependencies Con-
straintLink class are introduced to configuration model.

 54

The ConstraintLink object is a logical implication,
that can be explained as If…Then statements. If some ob-
jects evaluated positively on product configuration are con-
nected to incommingLink, then all objects connected as

outgoingLinks must be set as logically implied. The Con-
straintLink may have a negative behavior, then objects
connected to outgoingLinks are rejected from product vari-
ant.

AbstractItem

+*propertyArray: Property
+*derivedItemsArray: AbstractItem
+*derivedFrom: AbstractItem
+*alternative: AlternativeItems

AssemblyItem

+*itemArray: AbstractLink
+*itemOverrideArray: ItemLink

PartItem

+pdmItemID: long

Product

+*itemArray: CfgObject

CommonFeature

+*propertyArray: Property
+*itemArray: AbstractItem
+*derivedArray: CommonFeature
+*derivedFrom: CommonFeature

ItemLink

+*item: AbstractItem
+quantity: double
+*unitOfMeasur: UnitsOfMeasurement
+*parent: AbstractItem

UnitsOfMeasurement

+desc: Descriptor

AlternativeItems

+*itemArray: AbstractItem
+*scope: CfgObject

AbstractLink

PdmItemLink

+pdmItemID: long

PdmItemRegister

+pdmItemIdArray: long
+*whereUsedArray: CfgObject

CfgObject

+desc: Descriptor
+evaluator
+*belongsTo: Product
+*constraintArray

ConstraintLink

+ID
+*incommingLinks: CfgObject
+*outgoingLinks: CfgObject
+behaviour

Fig. 3 Class diagram for the main classes of physical configuration model

5. Case study for configuration of laser micromachining
device

As an illustration of application of product con-

figurator, this section provides a small example based on
laser cutting device. Lasers are a powerful tool for micro-
machining applications. A focused laser beam is concen-
trated onto a small target of a few microns in diameter. The
laser-material interaction in this target area is controlled by
laser parameters such as wavelength, pulse energy and
pulse duration. All these parameters depend on material
and cutting regimes. To achieve proper cutting under vari-
ous conditions a different hardware is necessary. To pro-
vide a solution, manufacturing company offers multiple
different laser models, each of them has many optional
components, suitable for specific tasks.

The purpose of example in Fig. 4 is to show how
variants of a product could be defined by principles of the
configuration model. However only a small subset of de-
vice is analyzed, explaining several components and op-
tions. The main abstract assembly class “Picosecond mode
locked Nd:YAG laser” contains everything, that is com-
mon to all other laser models of this type. There are Con-
trol panel, Casing and Power supply in the structure of the
class. The components of this class belong to every model,
regardless of other technical parameters. However this
class already provides a possibility to choose power supply
(single phase or three phases) and PC interface (RF232 or
USB).

In order to implement various pulse energy out-
puts, different laser models are designed in classes PL1,
PL2 and PL3, which are derived from the main class. The
output parameters of laser depend on design of Optical
block. A new class representing this component is created
and added into structure of PL1 model. The standard laser
wavelength is 1064 nm, however other wavelengths are
also available. For this reason new classes are created de-
riving the Optical block class. The new classes have differ-
ent structure and components, implementing necessary
functions. The structure of standard optical block is shown
in more detail on Fig. 4. Alternative optical blocks, shown
as Option1 and Option2, may have different design and
structure.

All classes are enclosed by Picosecond laser class,
forming the complete configuration model for the product.
Usage of the configuration model begins from the root
class – the user has to select one laser model from three
alternatives. Once it is done - PC interface and power sup-
ply must be determined. If PL1 model was chosen initially,
then optical block must be selected as well.

From the physical layer point of view, every solid
line rectangle in the diagram represents AssemblyItem ob-
ject. The structure of AssemblyObject is enclosed by
dashed lines. Every thin line representing structural link is
the ItemLink objects. In the Standard optical block class
usage of ItemLink objects are shown explicitly. Links be-
tween AssemblyItem objects represent inheritance – it is
shown as white arrows pointing to the parent object, from
which derivatives are created.

 55

PL2 30 mJ

PL3 50 mJ

Single phase 208-
240 VAC 10 Hz

Optical block

Option1
532 nm wavelength
1,8 mJ pulse energy

Option2
355 nm wavelength
1,2 mJ pulse energy

Collimator

Pokels holder
Power supply

Casing

PC interface

RS 232

USB 2.0

Three phases 208-380
VAC, 20 A, 60 Hz

Quantity = 3
Units= Items

Quantity = 1
Units= Items

Part1

Part2

Picosecond mode
locked Nd:YAG laser

PL1 4 mJ Standard
1064 nm wavelength
4 mJ pulse energy

Control Panel

Picosecond laser : Product class

Fig. 4 Example of configuration model for micromachining device

6. Conclusions

1. In this paper a formal representation of con-

figuration model is created and defined as net of intercon-
nected objects, closely related to product structure. Con-
figuration model is designed to allow representation of
multiple product variants logically and compactly. New
variants can be added by inserting classes or deriving exist-
ing ones. Usage of product configurator system, based on
configuration model would streamline engineering work
and preparation of product variant documentation for
manufacturing.

2. The product configuration model includes de-
scription of object types, attributes and architecture
schemes, intended for further implementation of configura-
tion model as a software system.

References

1. Anužienė, L., Bargelis, A. Decision support system

framework for agile manufacturing of mechanical
products. -Mechanika. -Kaunas: Technologija, 2007,
Nr.3(65), p.51-57.

2. Soininen, T., Gelle, E., Niemel, I. A Fixpoint
definition of dynamic constraint satisfaction.-In 5th In-
ternational Conference on Principles and Practice of
Constraint Programming - CP99. -Alexandria, USA,
1999, p.419-433.

3. McGuinness, D.L., Wright, J.R. Conceptual modeling
for configuration: a description logic-based approach.
artificial intelligence for engineering design.-Analysis
and Manufacturing, Special Issue: Configuration De-
sign, 1998, 12(4), p.333-344.

4. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.
Distributed configuration as distributed dynamic con-

straint satisfaction. -In Proceedings of the 14th
IEA/AIE, Budapest, Hungary, 2001, p.434-444.

5. Yokoo, M. Distributed constraint satisfaction - founda-
tions of cooperation in multi-agent systems.-Springer,
Berlin, Germany, 2001, p.47-54.

6. Bargelis, A., Česnulevičius, A., Stasiškis, A., Šačkus,
A. Intelligent manufacturing engineering based on
multi agent tools. -Mechanika. -Kaunas: Technologija,
2003, Nr.1(39), p.40-48.

7. Dechter, R. Enhancement schemes for constraint proc-
essing: backjumping, learning, and cutset decomposi-
tion.-Artificial Intelligence, 1990, 41(3), p.273-312.

8. Fleischanderl, G., Friedrich, G., Haselbock, A.,
Schreiner, H., Stumptner, M. Configuring large sys-
tems using generative constraint satisfaction.-IEEE In-
telligent Systems, Special Issue on Configuration,
1998, 15(17), 13(4), p.59-68.

9. Freuder, E.C., Carchrae, T., Beck, J.C. Satisfaction
guaranteed. IJCA workshop on configuration. -Eigh-
teenth Int. Joint Conf. on Artificial Intelligence, 2003,
15(17), p.646-651.

10. Gottlob, G., Leone, N., Scarcello, F. A comparison of
structural CSP decomposition methods. Artificial Intel-
ligence, 2000, 124(2), p.243–282.

11. Beuche D., Papajewski, H., Schröder-Preikschaft,
W. Variability management with feature models. pro-
ceedings of software variability management work-
shop.-University of Groningen, 2004, 53(3), p.333-352.

12. Hadzic, T., Subbarayan, S., Jensen, R.M., Andersen,
H.R., Møller, J., Hulgaard, H. Fast backtrack-free
product configuration using a precompiled solution
space representation.-Proc. of the Int. Conf. on Eco-
nomic, Technical and Organizational aspects of Product
Configuration Systems, 2004, p.28-29.

13. Subbarayan, S., Jensen, R.M., Hadzic, T., Andersen,
H.R., Hulgaard, H., Møller, J. Comparing two im-

 56

plementations of a complete and backtrack-free interac-
tive configurator.-CP 2004 Workshop on CSP Tech-
niques with Immediate Application, 2004, p.97-111.

14. Wen-lei Zhang, Yu-shun Fan, Chao-win Yin. Ap-
proach of product configuration based on product fam-
ily genealogy.-Shenyang Institute of Automation, Chi-
nese Academy of Sciences, Shenyang, 2006, 12(11),
p.1741-1746.

15. Magro, D., Torasso, P. Supporting product configura-
tion in a virtual store.-Lecture Notes In Computer Sci-
ence, Proc. of the 7th Congress of the Italian Associa-
tion for Artificial Intelligence on Advances in Artificial
Intelligence, 2001, v.2175, p.176-188.

L. Burneika

GAMINIO KONFIGŪRATORIUS SKIRTAS GAMINIO
DUOMENŲ VALDYMO SISTEMAI: VIDINĖ SANDA-
RA

R e z i u m ė

Šiame darbe pasiūlyta nauja gaminio konfigūrato-
riaus idėja ir pateiktas konfigūracijų aprašo modelis. Mo-
delis buvo kuriamas taip, kad juo būtų galima aprašyti rea-
lius sudėtingos sandaros gaminius, kurie dažnai tobulina-
mi. Modelyje informacija apie gaminį pateikiama kaip
tarpusavyje sujungtų įvairių tipų objektų tinklas. Objektuo-
se saugoma informacija apie gaminio junginius, kompo-
nentų ryšius ir loginius apribojimus. Kai kurių tipų objektai
jungiami su gaminio duomenų valdymo sistemoje (PDM)
saugomais dokumentais. Siūlomas konfigūracijų aprašo
modelis leidžia lanksčiai perteikti inžinerines žinias apie
gaminio variantus.

L. Burneika

PRODUCT CONFIGURATOR FOR PRODUCT DATA
MANAGEMENT SYSTEM: DESIGN OF INTERNAL
STRUCTURE

S u m m a r y

This work proposes a new idea of product con-

figurator and defines a configuration model. The configu-
ration model is designed taking into account high structural
complexity of the real life products that are dynamic by
nature and undergo continuous improvements. Information
about product in the model is expressed as a structured net
of interconnected objects of different types. Objects hold
information about product assemblies, structural links and
logical constraints. Some objects have references to docu-
ments or items on Product Data Management system. The
proposed configuration model allows flexible representa-
tion of knowledge about product configurations.

L. Burneika

КОНФИГУРАТОР ПРОДУКТА ДЛЯ СИСТЕМЫ
УПРАВЛЕНИЯ ДАННЫХ ПРОДУКТА: ПРОЕКТ
ВНУТРЕННЕЙ СТРУКТУРЫ

Р е з ю м е

Работа предлагает новую идею конфигуратора
продукта и определяет модель конфигурации. Модель
конфигурации разработана принимая во внимание вы-
сокую структурную сложность реальных продуктов,
которые являются динамическими по своей природе и
подвергаются непрерывным усовершенствованиям.
Информация о продукте выражена как структуриро-
ванная сеть связанных объектов различных типов.
Объекты содержат информацию о сборках продукта,
структурных связях и логических ограничениях. Неко-
торые объекты имеют ссылки на документы в системе
управления данных продукта. Предложенная модель
конфигурации позволяет гибкое представление знании
о конфигурациях продукта.

Received January 04, 2008

	Product configurator for product data management system: design of internal structure
	1. Introduction
	2. Related works
	3. The configuration model - multilayer structure
	4. Physical layer - design of internal structure
	5. Case study for configuration of laser micromachining device
	6. Conclusions

