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1. Introduction 

It is known that for the analysis of normal sec-
tions of flexural, eccentrically tensioned and eccentrically 
compressed members according to acting regulations 
STR 2.05.05:2005 [1] and EC2 [2] different stress-strain 
(σc-εc) diagrams for concrete in compression may be used: 
parabola with descending branch, parabola-rectangle and 
bi-linear. Rectangular diagram for the stresses in concrete 
compression zone can be applied as well. For engineering 
applications, direct application of nonlinear stress diagrams 
is too complicated and thus inconvenient. For simplifica-
tion of the analysis in many codes [1-7] rectangular stress 
diagram is substituted for nonlinear stress diagram in con-
crete compression zone. Coefficients applied for the substi-
tution of these diagrams have to ensure this substitution to 
be equivalent, i.e. carrying capacity of the compression 
zone calculated using both nonlinear and rectangular stress 
diagrams should be the same. 

Articles [8, 9] deal’ with the substitution of rec-
tangular stress diagram of compression zone in normal 
section of flexural members for nonlinear stress diagram. 
A general method making it possible to perform equivalent 
substitution of the diagrams was presented. Using men-
tioned method equivalency of the substitution of said dia-
grams was analyzed, i.e. concurrence of centers of the dia-
grams and equality of resultants of these diagrams. In arti-
cle [9] equivalency of the substitution of rectangular stress 
diagram for parabola-rectangle one according to STR [1], 
EC2 [2], DIN [3] and SNB [5] was considered. It was de-
termined that replacement of the diagrams according dif-
ferent methods of the codes for reinforced concrete struc-
tures is not quite equivalent. I.e. the area of nonlinear stress 
diagram to be replaced and that of the rectangular stress 
diagram are not equal and coordinates of the centers for 
these diagrams are not equal either. It will be observed that 
the most equivalent from all investigated diagram substitu-
tion methods was found to be the substitution of rectangu-
lar diagram for parabola- rectangle stress diagram accord-
ing to DIN [3]. 

Though normal section of flexural members in 
codes [1-3] can be analyzed using the presented in EC2 
σc-εc diagrams for concrete in compression: parabola, pa-
rabola- rectangle and bi-linear, but coefficients of rectan-
gular stress diagram of concrete compression zone in the 
mentioned codes are different. Besides the mentioned 
codes in some methods [10, 11], coefficients ostensibly 
allowing equivalent substitution of rectangular diagrams 
for the said nonlinear diagrams are presented as well. 
These coefficients for the same σc-εc diagrams according to 
different methods are different as well. Therefore, in the 
article coefficients for rectangular stress diagram used in 
various regulations and methods are analyzed. These coef-

ficients are compared with experimental data presented by 
other authors. 

 
2. The main dependences

For rectangular cross-section members the com-
pression zone resultant (Fc) and its moment (Mc) in relation 
to the stress resultant in tensile reinforcement of reinforced 
concrete flexural members are determined according to the 
following well-known general dependences 
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where σc is concrete stress distribution function in concrete 
compression zone, z is a coordinate in coordinate system 
YOZ (Fig. 1), x is compression zone depth, b is the width 
of cross-section. It is obvious that direct application of 
nonlinear diagram for stress in compression zone is incon-
venient since integration is required. For example the uni-
versal method of the integration proposed in [12, 13] is 
complicated in comparison with a case when a rectangular 
stress diagram is used. Therefore, for simplification of the 
calculation rectangular diagram is substituted for nonlinear 
stress diagram in compression zone. 

In the case when rectangular stress diagram is 
used, resultant Fc of stress in concrete compression zone 
and its moment Mc about stress resultant in tensile rein-
forcement are determined according to such known general 
dependences 

 c c cF f b x f b dη λ η λξ= =  (3) 
 

 ( ) (0.5 1 0.5c c cM f b x d x f b d )2η λ λ η λ ξ= − = − λξ  (4) 

where fc is compressive strength of concrete, d is the dis-
tance between  the top of a beam and stress resultant in 
tensile reinforcement (Fig. 1, a), ξ is relative compression 
zone depth ξ = x/d. Coefficients η and λ by means of which 
the width and depth of rectangular stress diagram are 
changed in such a way that the areas of rectangular stress 
diagram and of equivalent to it nonlinear stress diagram 
would be equal, coordinates of gravity centers for these 
diagrams would be equal as well (Fig. 1). Other meaning 
of coefficients η and λ is as follows. Coefficient η is the 
ratio of areas of nonlinear diagram and of equivalent to it 
rectangular diagram while the depth of such rectangular 
stress diagram is equal to λx and the width is the same as 
that of nonlinear diagram, i.e. fc [8, 9]. Coefficient η also 
can be treated as the ratio of widths of rectangular and of 
equivalent to it nonlinear stress diagram. Coefficient λ is 
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the ratio of depths of rectangular and of equivalent to it 
nonlinear stress diagram [14] or the depth of rectangular 
stress diagram described in normalized coordinates, i.e. 
λ = xeff when x = 1. Some methods [10, 11, 15] and other, 
especially composed on the basis of DIN 1045, instead of 
separate coefficients η and λ present their product ηλ. In 
many methods, e.g. [10, 11], instead of coefficient λ, a 
coefficient corresponding to 0.5λ is given.  

Coefficients η and λ can be determined in such 
way [8, 9] 

 2 2c cF Sη =  (5) 
 

 2 c cS Fλ =  (6) 

here Fc is compression zone resultant and Sc is the moment 
of resultant Fc about the layer of concrete under the highest 
compression. In the case of parabola with descending 
branch diagram for rectangular cross-section the compres-
sion zones Fc and Sc are such [8] 
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where x is the depth of concrete compression zone, εс1 and 
εсu1 are the strain at the maximum stress and the ultimate 
strain of the compressive concrete for the parabola σc-εc 
diagram with descending branch respectively. These coef-
ficients and other coefficient k can be found in EC2 and 
STR [1]. 

In the case of parabola-rectangle diagram for rec-
tangular cross-section compression zones Fc and Sc are 

such [9] 
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here εс2 and εсu2 are strain at the maximum stress and the 
ultimate strain of the compressive concrete for the parab-
ola-rectangle σc-εc diagram respectively. These coefficients 
and factor n can be found in EC2 and STR [1] as well. 

According to EC2 for rectangular stress diagram 
coefficients are determined by the following formulae 
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According to STR [1] the coefficients for rectan-
gular stress diagram are described not in the same way as it 
is in EC2, ACI 318 or DIN 1045, but by the physical sense 
the coefficient for concrete design strength α and concrete 
compression zone deformability factor ω correspond with 
η and λ coefficients [14]. These coefficients are calculated 
using such formulae [1] 
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 0.008STR cda fλ ω= −   (14) =

here a is the coefficient allowed for concrete type: for 
normal-weight concrete a = 0.85, for fine grain Group A 
concrete a = 0.80, for fine grain Group B concrete 
a = 0.75, for light-weight concrete a = 0.80, fcd is design 
concrete strength in MPa 

 
Fig. 1 Idealized stress diagrams in cross-section compression zone of a flexural member in failure stage: a – variation of 

deformations along cross-section height, b – parabola with descending branch diagram, c – parabola-rectangle dia-
gram, d – rectangular stress diagrams: 1 – equivalent 2 – not equivalent 
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where α is coefficient depending on the stress diagram in 
concrete compression zone. For rectangular stress diagram 
α = 0.9, for nonlinear stress diagram α = 1.0. However, in 
our analysis coefficient α is the same as the coefficient η in 
Eqs. (3) and (4). Therefore in calculations of fcd according 
to formulae (15) α = 1.0 will be taken. Coefficients η and λ 
calculated according to formulae (5) - (15) when a = 0.85 
are given in Table. 

Wide known are formulae proposed by H. Rüsch 
[15] for the determination of coefficients ηλ and 0.5λ  

 ( )6 12, when 2%R cu cu cuηλ α ε ε ε= = − ≤  (16) 
 

 (,when 2 3.5 %
3

cu
R

cu

)3 2
cu

εηλ α ε
ε

= = ≤ ≤
−  (17) 

 

 
( )
80.5 ,when 2%

4 6
cu

a
cu

k cu
ελ
ε

= = ≤
−

ε−

(

 (18) 

 

 )
( )

(3 4 20.5 , when 2 3.5 %
2 3 2
cu cu

a c
cu cu

k )u
ε ε − +λ ε
ε ε

= = ≤ ≤
−

 (19) 

here εcu is in %.  
Performed analysis revealed that coefficients ηλ 

and 0.5λ calculated using Eqs. (16) - (19) correspond to the 
products ηparab-rectλparab-rect and 0.5λparab-rect of coefficients η 
and λ for parabola- rectangle stress diagram within the in-
terval of (8 ≤ fck ≤ 50) MPa, i.e. when εс2 = εсu2 = 3.5·10-3. 
In the case of higher concrete classes coefficients ηλ and 
0.5λ calculated using Eqs. (16) - (19) do not correspond 
with the products ηparab-rectλparab-rect and 0.5λparab-rect of coef-
ficients for parabola-rectangle stress diagram. For exam-
ple, when (8 ≤ fck ≤ 50) MPa ηλ and 0.5λ values calculated 
using Eqs. (17) and (19) correspond with the values of 
ηparab-rectλparab-rect and 0.5λparab-rect, ηλ = 0.973·0.832= 0.81, 
0.5λ = 0.416 = 0.832/2 (Table). However, in the case of 
high concrete classes, e.g. when fck = 90 MPa: 

0.5λ = 0.394 ≠ 0.5λparab-rect = 0.706/2 = 0.353, and ηλ = 
= 0.744 ≠ ηparab-rectλparab-rect = 0.826·0.706 = 0.5683. In 
methods [10, 11] for the substitution of rectangular stress 
diagram for parabola-rectangle stress diagram just the co-
efficients calculated according to Eqs. (16) - (19) are used. 

According to [3] when (8 ≤ fck ≤ 50) MPa 
λ = 0.95, η = 0.8. One can see that coefficients for the same 
stress diagram differ not only in regulatory literature but in 
other methods of analysis as well. 

 
3. Analysis of coefficients for rectangular stress  

diagram  
 
Coefficients for rectangular stress diagram pre-

sented in previous chapter are obtained analytically. How-
ever, coefficients for rectangular stress diagram in ACI 318 
[4, 16] are obtained experimentally by means of eccentric 
compression of columns in such a way that one face of the 
column always remains un-deformed (Fig. 2).  

In many publications, e.g. [16 - 19], experimen-
tally determined products of coefficients k1k3 and relative 
coordinates k2 of compression zone resultant are calculated 
using such formulae [17, 19] 
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here k1 = fav/σmax is the ratio of average stress to the maxi-
mum stress, k2 = 0.5xeff/x is the ratio of resultant coordinate 
to compression zone depth, k3 = σmax/fc is the ratio of the 
maximum stress to cylindrical strength [16, 17]. It can be 
seen from (20) that k1k3 = fav/fc. If according to ACI 318 it 
is taken that the area of rectangular stress diagram in com-
pression zone is equal to k3fc then the depth of rectangular 
stress diagram is equal to k1x. It indicates that coefficient k1 
is not a ratio between the depths of nonlinear and of rec-
tangular equivalent to it stress diagrams, i.e. k1 ≠ xeff/x 
when xeff = 2k2x. However, in [16] it is just treated that 
k1 = xeff/x when xeff = 2k2x. In reference [20] coefficient k1 
is treated otherwise, as the ratio between areas of nonlinear 
and rectangular stress diagrams when rectangular stress 
diagram depth is equal to the depth of nonlinear stress dia-

Table  
Coefficients for rectangular stress diagram 
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parabola with descending branch diagram  coefficients by [8] or (5) – (8) 
ηparab 0.852 0.832 0.844 0.858 0.863 0.875 0.869 0.864 0.880 0.878 0.907 0.905 0.87 0.85 0.839 
λ parab 0.934 0.924 0.907 0.889 0.872 0.855 0.847 0.839 0.821 0.813 0.773 0.746 0.719 0.709 0.700 

parabola–rectangle diagram coefficients  by [9], or (5), (6), (9), (10) 
ηparab-rect      0.973     0.947 0.921 0.877 0.845 0.826 
λ parab-rect      0.832     0.784 0.754 0.724 0.710 0.706 

rectangular diagram according to STR 2.05.05:2005  [1]  coefficients by (13) and (14) 
ηSTR      0.90     0.875 0.850 0.800 0.750 0.700 
λSTR 0.807 0.786 0.765 0.743 0.717 0.690 0.663 0.637 0.610 0.583 0.560 0.536 0.492 0.449 0.408 

rectangular diagram according to EC2  coefficients by (11) and (12) 
ηEC2      1     0.975 0.950 0.900 0.850 0.800 
λ EC2      0.800     0.788 0.775 0.750 0.725 0.700 
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gram. According to this consideration the coefficient cor-
responds with the product of coefficients η and λ, i.e. 
k1 = ηλ (Fig. 1, d). 

 
Fig. 2 Column under eccentric compression for the deter-

mination of coefficients for rectangular stress dia-
gram – a; concrete stress diagram in cross-section of 
the column – b 

We will prove that k1 ≠ xeff/x when xeff = 2k2x. For 
the sake of briefness we will introduce notation 
Ftot = F1+F2. From (20) we obtain  

 ( )1 3tot ck F k f bx=  (22) 

If according to [16] xeff = 2k2x and k1 = xeff/x then 
k1 = 2k2 and taking in to account (22) and k1 = 2k2 equation 
(21) can be written in such form 
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Or after rearrangement, in such form 
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Let us examine separate member ( )2
3tot cF k f bx . 

Since Ftot/(bx) = σmax, and fc = σmax/k3 then 
( )2

3tot c totF k f bx F= . Then equation  becomes such (24)

 ( )1 1 2 20.5 tot totF F F a F a= − + x  (25) 

Rearrangement of  gives 0.5(25) Ftotx = (F1a1– 
–F2a2). Since a1= 0.5x and Ftot = F1+F2 then (25) after rear-
rangement and collecting of terms may be written in the 
form of F2a2 = 0.5F2x either a2 = 0.5x or a2 = a1. It shows 
that (23) is correct only when a2 = a1, i.e. both forces are 
applied in the center of column cross-section. Naturally it 
is not correct. Then the statement that k1 = xeff/x when 
xeff = 2k2x as it is considered in [16] is not correct. Thus 
k1 ≠ xeff/x, when xeff = 2k2x. Actually k1x < xeff = λx = 2k2x 
(Fig. 2). An important conclusion can be made here that 
coefficients k3k1 and k2 calculated using Eqs. (20) and (21) 
do not provide equivalent replacement of the diagrams. We 
shall stress that the rectangular diagram is equivalent to the 
nonlinear diagram only when the area or resultant of the 

rectangular stress diagram is equal to the area or resultant 
of the nonlinear stress diagram and coordinates of gravity 
centers of these diagrams are equal. It should be stressed 
that coefficients for rectangular diagrams are calculated 
according to Eqs. (20) and (21) in many references [16, 19, 
21]. Coefficients for rectangular stress diagram are being 
determined for compression zone of high strength con-
crete, fiber concrete beams. Nevertheless we will stress 
once more that k3fc wide and k2x deep rectangular stress 
diagram is not equivalent to nonlinear stress diagram ac-
cording to the definition of equivalency of the diagrams 
presented in this article. Although ACI 318 and other ref-
erences [4, 16, 17, 19, 21] consider that rectangular stress 
diagram mentioned above is equivalent. Actual physical 
resultant of such rectangular stress diagram does not coin-
cide with actual resultant of nonlinear stress diagram. 

We will show how it is possible to calculate coef-
ficients for equivalent rectangular stress diagram when 
values of coefficients k1k3, k3 and k2 = λ/2 presented in 
many publications are given. Let the maximum stress in 
nonlinear stress diagram is σmax = fck3. Then resultant of 
compression zone 

 1 2 3 1c tot cF F F F k f k xb= = + =  (26) 

Resultant of equivalent rectangular stress diagram 
is such 

 1 2 3c tot cF F F F k f xbη λ= = + =  (27) 

Comparison of (26) and (27) after collecting of 
terms gives 

 1kη λ=  (28) 

Since λ = 2k2 [8, 9] then (28) will take the form  

 1 31 1

2 22 2
k kk k

k k k
η

λ
= = =

3

f

3 f−

 (29) 

Theoretically calculated coefficients for stress 
diagrams are given in Table and experimentally deter-
mined coefficients for rectangular stress diagram according 
to [16, 17, 19] are shown in Fig. 3. Line 3 in Fig. 3, a is 
drawn using Eq. (29) when coefficients k1 and k2 are calcu-
lated according the following formulae given in [17] 

  (30) 3
1 0.94 5.578 10 cmk −= − ⋅

 

  (31) 2 0.5 1.813 10 cmk = − ⋅

where fcm is the average strength of concrete 
(7 ≤ fcm ≤ 55) MPa. Line 3 shown in Fig. 3, a is drawn ac-
cording to (31). 

 In Fig. 3, a circles and rhombs (○ and ◊) indicate 
coefficients η calculated using formula (29) when k2, k1k3 
and k3 are taken from [16, 19]. In Fig. 3, b the values of 
coefficients k2 or λ/2 taken from [16, 19] are denoted by 
circles and rhombs (○ and ◊) respectively. In these publica-
tions coefficients k2, k1k3 and k3 are calculated according to 
formulae (20) and (21), test diagram is shown in Fig. 2. It 
should be stressed that the nonlinear denoted in this figure 
by ACI 318 is empirical one [4, 16] 
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We shall stress that according to ACI 318 ηACI and 
λACI are denoted by symbols of α1 and β1. 

 
Fig. 3 Ratios of rectangular to nonlinear stress diagram 

widths – a and ratios between coordinates of gravity 
centers of these diagrams – b. 1 - 3 – empirical de-
pendences obtained according to experimental data, 
1, 2 according to [16], 3 according to [17], ○ and  
◊ – experimental data of various authors 

It can be seen in Fig. 3, b that within the interval 
of (7 ≤ fcm ≤ 55) MPa line 3 according to Eq. (31) of [17] 
practically corresponds with theoretically calculated 
nonlinear λparab/2. In this figure also it can be seen that the 
dependence denoted by line 3 may be quite accurately ex-
trapolated towards the side of the higher concrete strength 
values. For comparison with (31) linear approximation of 
coefficient λparab given in [8] is presented: λ = 0.987-3.1·10-

3fc, then λ/2 = 0.493-1.55·10-3fc. It is seen that the said de-
pendences differ not much.  

Fig. 3, a shows that the difference between em-
pirically determined and theoretically calculated values of 
coefficient η is quite substantial. Coefficient ηparab in-
creases with the growth of concrete class from 16 to 
75 MPa while other coefficients do not change or decrease.  
Coefficient ηparab differs quite greatly from dependence 
denoted by line 3. 

Fig. 3 shows that concrete compression zone co-
efficients η and λ/2 vary in general within quite wide limits 
for the same strength of the concrete. In reference [19] on 
the basis of experimental data it is stated that coefficients η 
and λ are influenced by the scale factor. Therefore it is 
complicated to give unambiguous answer to the question 
what accurate values of coefficients η and λ should be. It is 
clearly seen in the Fig. 3 that values of coefficient λSTR/2 
are the least ones. When fcm = 90 MPa, λSTR/2 = 0.204, and 

it is much less in comparison with other coefficients.  
We shall demonstrate that such small values of 

coefficient λSTR for equivalent stress diagram are impossi-
ble when hypothesis of plane sections is valid. It is known 
that in the case of high strength concrete stress diagram of 
compression zone is close to triangle. For the limit case it 
can be assumed that the stress diagram of compression 
zone concrete is triangle. Gravity center coordinate for 
such diagram is equal to 1/3x, here x is the depth of trian-
gular stress diagram. Gravity center coordinate for equiva-
lent diagram has to coincide with the gravity center coor-
dinate of triangular stress diagram and the areas of these 
diagrams have to be equal as well. Then the depth of 
equivalent rectangular diagram is xeff = 2/3x. Hence ratio 
λtriang between depths of triangular and of equivalent to it 
rectangular stress diagrams is obtained  

 2 3 0.667triang effx xλ = = ≈  (33) 

Equality of equivalent diagrams is as follows 

 1 2 2 3c c triangf x f xη=  (34) 

Hence it is found that the ratio of widths of the diagrams 
ηtriang is such 

 3 4 0.75triangη = =  (35) 

Thus it is obvious that the limit values of ratios 
for widths and depths of the diagrams are 0.75 and 0.667, 
and in all cases the product of these ratios cannot be less 
than 0.75·0.667 ≈ 0.5. However ηSTR < 0.75 when 
fck > 80 MPa, while λSTR < 0.667 when fck ≥ 35 MPa and 
λSTR is substantially less than 0.667 in the case of high con-
crete classes (Table). According to ACI 318 also 
min(λACI) = 0.65 < 0.667. The smallest value of η according 
to Canadian code [22] is 0.67, it is less than the limit value 
ηtriang = 0.75 as well. Some in ACI 318 denoted values of 
coefficients α1 and β1 or 2k2 experimentally determined 
and theoretically defined and corresponding coefficients η 
and λ [19, 23, 24] are less than the values of (33) and (35) 
respectively 

Carrying capacity of reinforced concrete member 
depends on limit depth of compression zone when failure 
of flexural member takes place due to crushing of concrete 
and simultaneous reaching the yield stress limit in rein-
forcement. Therefore, hereafter we are going to compare 
limit values of compression zone depths determined on the 
basis of the hypothesis of plane sections and according to 
formulae presented in STR [1]. 

 
4. Analysis of compression zone limit 

 
In cross-section the limit state calculations of 

flexural, eccentrically compressed and tensioned members 
according to EC2 and STR [1] limit values of concrete 
compression strains εcu2 or εcu3 are applied corresponding 
to whether the parabola-rectangle diagram of σc-εc or bi-
linear diagram of σc-εc is used. Deformation of tensile rein-
forcement is applied equal to εud which corresponds to the 
highest stress in reinforcement. When accurate value of εud

 

is not known EC2 recommends to take εud = 0.02. How-
ever, when this value of εud

 is used the limit value of rela-
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tive compression zone depth does not exceed 0.15. It is 
very small value. Therefore in many methods, e.g. [7, 10, 
25, 26], for the case of nonprestrressed tensile reinforce-
ment the limit value of compression zone depth is calcu-
lated taking deformations corresponding to the yield limit 
of reinforcement εyd = fyd/Es. Here fyd and Es are design 
strength and elasticity modulus of tensile reinforcement. 
On the basis of assumption used in EC2 that hypothesis of 
plane section is valid the limit value of relative compres-
sion zone depth ξlim is calculated in this way [7, 10, 25, 26] 
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here ξlim,EC2 ∈{ξlim,parab, ξlim,parab-rect}, εcu is concrete in com-
pression ultimate (limit) strain εcu ∈{εcu1,εcu2}, εcu = εcu1 
when parabola diagram with descending branch is used, 
εcu = εcu2 when parabola-rectangle diagram is used, εyd is 
strain of tensile reinforcement at yield stress or strain at 
conventional yield stress, fyd is design strength of tensile 
reinforcement 

  fyd = fyk/1.1 (37) 

It should be remarked that the hypothesis of plane 
section for the section through the crack is not entirely 
correct since reinforcement in concrete slips under the ac-
tion of great internal force. Therefore when yield stress is 
reached average reinforcement strain at the crack is greater 
than fy/Es. Here fy is tensile reinforcement strength. Other-
wise the hypothesis of plane sections is not entirely correct 
and due to the fact that in compression zone of the section 
through the crack warping of the cross-section takes place. 
This warping greatly depends on the bond between rein-
forcement and concrete [27]. The poorer the reinforcement 
bond the greater warping of the cross-section. It is known 
that the reinforcement bond depends on concrete shear 
strength, reinforcement diameter, stress in reinforcement at 
failure and other factors. Therefore actual relative concrete 
compression zone depth is smaller in comparison with the 
calculated using formula (36). 

According to STR [1] limit value of relative com-
pression zone depth ξlim,eff for rectangular stress diagram is 
determined by 
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here σs,lim is reinforcement stress with allowance for rein-
forcement yield limit, σsc,lim is limit stress in compression 
reinforcement. For reinforced concrete (without prestress) 
when fyk ≤ 400 MPa, σs,lim = fyd  is taken; when 
fyk > 400 MPa, σs,lim = fyd + 400 MPa is taken. For structures 
from normal weight, small grain lightweight concrete 
σsc,lim = 500 MPa. Factor λSTR in formula (38) is determined 
according to (14). 

Direct comparison of ξlim and ξlim,eff,STR is impossi-
ble, since, as it was already mentioned, ξlim is the depth of 
nonlinear stress diagram compression zone, while ξlim,eff,STR  
the depth of rectangular stress diagram. If the depths of 
nonlinear diagram ξlim,parab and ξlim,parab-rect  are multiplied by 

corresponding coefficients ηparab and ηparab-rect

 , ,lim eff lim EC2ξ λξ=  (39) 

here ξlim,eff  ∈{ξlim,eff,parab, ξlim,eff,parab-rect}, ξlim,EC2 ∈{ξlim,parab, 
ξlim,parab-rect} according to (36) and λ ∈{λparab,λparab-rect} from 
Table, then the depths of rectangular stress diagrams 
ξlim,eff,parab and ξlim,eff,parab-rect equivalent to parabola and pa-
rabola-rectangle stress diagrams are obtained. Then the 
values of ξlim,eff,STR and ξlim,eff,parab and ξlim,eff,parab-rect can be 
compared. 

Mentioned above limit depths of compression 
zone ξlim,eff,parab, ξlim,eff,parab-rect ξlim,eff,STR determined by for-
mulae  (38) and (39) for different values of characteristic 
reinforcement strengths, 400, 500, 600 and 800 MPa, are 
shown in Fig. 4. One can see in Fig. 4 that 
ξlim,eff,parab > ξlim,eff,parab-rect when fck < 36 MPa and when 
fck ≥ 36 MPa ξlim,eff,parab practically is equal to ξlim,eff,parab-rect.  

Formula (36) shows that limit value of relative 
compression zone depth depends on ultimate concrete 
strain εсu. In design codes EC2 and STR [1] this strain de-
pends only on concrete class and character of σc-εc dia-
gram. However, theoretically it has been determined [28] 
that in the case of short-time load, when a beam is de-
stroyed during 1 hour, and fcm = 20.68 MPa, for tee cross-
section members εсu ≈ 0.22%, for rectangular cross-section 
members (0.3 ≤ εсu ≤ 0.35)%, for triangular cross-section 
members (0.38 ≤ εсu ≤ 0.48)%. Value of εсu may vary 
within wide limits depending on load action duration. Ac-
cording to [29] compressive concrete ultimate strain for 
long term loading is about 2 - 3 times greater in compari-
son with that for the short term loading. According to [7] 
εсu varies within the limits of (0.42 ≤ εсu ≤ 0.56)% depend-
ing on relative air moisture for the case of long term load-
ing. In general the value of εсu can vary from 0.18 to 1% 
[4, 15, 16, 18, 28, 30]. Thus actuall compression zone 
depth varies within quite wide limits. Strain values pre-
sented by codes for diagrams of parabola with descending 
branch, parabola-rectangle and bi-linear diagrams are con-
ditional. All earlier mentioned factors affect load carrying 
capacities of structures determined by tests. Therefore 
comparison of experimental data with theoretical results is 
possible only in the case when conditions of tests comply 
with the conditions of validity for diagram σc–εc. When 
fck = 90 MPa the ratio of ξlim,eff,parab/ξlim,eff,STR  varies from 
1.5 to 1.8 depending on fyk.  Such great difference between 
ξlim,eff,parab and ξlim,eff,STR also ξlim,eff,parab-rect and ξlim,eff,STR  
emerges due to very small values of λSTR for higher con-
crete classes. Therefore it is possible to conclude that for 
higher concrete classes greater values of ξlim,eff,STR would be 
applied. When λSTR = 0.667 is taken then the smallest val-
ues of ξlim,eff,STR should be equal to 0.518, 0.491, 0.467, 
0.444 for fyk ∈ {400, 500, 600, 800} MPa. Also it should 
be noted that the difference between ξlim,eff,STR and 
ξlim,eff,parab-rect and ξlim,eff,parab  emerges and due to the fact 
that the value of εcu = 2.5·10-3 is taken in formula (38) 
which is substantially less than the values of εcu specified 
in EC2. It should be stressed that calculation method of 
limit value of relative compression zone depth according to 
STR is analogous to that of SNiP [31]. But according to 
SNiP [31] the maximal value of characteristic compressive 
cube strength of concrete is 60 MPa. 
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5. Conclusions 

1. It was determined that for high strength con-
crete some values of coefficients for rectangular stress dia-
gram according to STR 2.05.05:2005 and these given ac-
cording to other methods determined experimentally and 
defined theoretically are less than  the maximum coeffi-
cient values obtained according hypotheses of plane sec-
tion and of full bond between reinforcement and concrete. 

2. It was determined that the ratio between depths 
of rectangular and nonlinear diagrams experimentally ob-
tained is very close to theoretically obtained ratio between 
the depths of equivalent rectangular and nonlinear with 
descending branch stress diagrams according to EC2. 
However experimentally determined ratios between widths 
of the said diagrams differ substantially from the ratio be-
tween widths of theoretically determined equivalent rec-
tangular and nonlinear stress diagrams according to EC2. 

3. It was determined that limit depths of concrete 
compression zone depths calculated according to the 
method of STR 2.05.05:2005 and these according to hy-
pothesis of plane sections taking ultimate concrete strain 
and reinforcement yield strain or conventional yield strain 
in general differ quite substantially.  
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LENKIAMŲ GELŽBETONINIŲ ELEMENTŲ 
NORMALINIŲ PJŪVIŲ GNIUŽDOMOSIOS ZONOS 
PARAMETRŲ PAGAL EC2 IR STR 2.05.05:2005 
ANALIZĖ 
 
R e z i u m ė 

 
Straipsnyje analizuojami lenkiamų gelžbetoninių 

elementų  normalinio  pjūvio stačiakampės įtempių diagra- 

mos koeficientai pagal skirtingas normas ir metodikas. Šie 
koeficientai palyginti su eksperimentiniais kitų autorių 
duomenimis. Nustatyta, kad stačiakampės įtempių diagra-
mos kai kurių koeficientų teorinės ir eksperimentinės reikš-
mės esant aukštoms betono klasėms yra mažesnės už ma-
žiausias galimas reikšmes, gautas imant trikampę įtempių 
diagramą. Taip pat buvo analizuotas ribinis gniuždomos 
zonos aukštis pagal STR 2.05.05:2005 ir galiojant plokš-
čiųjų pjūvių hipotezei. Nustatyta, kad šių diagramų aukštis 
skiriasi gana žymiai. 
 
 
D. Zabulionis, E. Dulinskas 
 
ANALYSIS OF COMPRESSION ZONE PARAMETERS 
OF CROSS-SECTION IN FLEXURAL REINFORCED 
CONCRETE MEMBERS ACCORDING TO EC2 AND 
STR 2.05.05:2005 
 
S u m m a r y 
 

Coefficients for rectangular stress diagram used in 
various regulations and methods are analyzed. These coef-
ficients are compared with experimental data presented by 
other authors. It was revealed that theoretical and experi-
mental values of some coefficients for rectangular stress 
diagram when concrete classes are high are less than pos-
sible minimum values obtained using triangular stress dia-
gram. The limit compression zone depth value according to 
STR 2.05.05:2005 and according to hypothesis of plane 
sections was analyzed as well. It was determined that the 
depth of these diagrams differs quite substantially. 
 
 
Д. Забулёнис, Е. Дулинскас 
 
АНАЛИЗ ПАРАМЕТРОВ СЖАТОЙ ЗОНЫ БЕТОНА 
НОРМАЛЬНЫХ СЕЧЕНИИ ЖЕЛЕЗОБЕТОННЫХ 
ЕЛЕМЕНТОВ СОГЛАСНО EC2 И STR 2.05.05:2005 

 
Р е з ю м е 
 

В статье анализируются коэффициенты пря-
моугольной диаграммы напряжений нормальных сече-
нии изгибаемых железобетонных элементов согласно 
различным нормам и методикам. Анализируются ко-
эффициенты прямоугольной диаграммы напряжений, 
представленные в различных нормах и методиках. Эти 
коэффициенты сравнены с опытными коэффициента-
ми, полученными другими авторами. Установлено, что 
некоторые значения коэффициентов сжатой зоны бе-
тона при высоких его классах меньше чем минималь-
ные, установленные принимая треугольную диаграмму 
напряжений. Также анализируется граничная высота 
сжатой зоны бетона согласно STR 2.05.05:2005 при 
гипотезе плоских сечений. Установлено, что граничная 
высота этих диаграмм различается значительно. 
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