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1. Introduction 

Torsional vibrations in drive shafts are impercep-
tible by human senses. There is no noise, no vibrations on 
the machine bed human beeings can hear or feel. But 
measurements of the shaft torque show up to 25 times of 
the nominal machine torque [1] during the change over 
from one stable operation point to another like speed rever-
sal or switch on situations. Especially in low-damped drive 
systems – as servo drives or direct driven machines – reso-
nance excitation of torsional vibrations is critical to the 
mechanical strength of the shaft [2]. 

Resonance excitation of a vibrational system may 
be caused by different occurences: 

1. impact;  
2. excitation of the system with resonance fre-

quency; 
3. excitation by a sweep function.  

An impact always happens at switch on, switch 
off operations. Excitation with resonance frequency is un-
usual but happens when the torsional resonance frequency 
is the net frequency or nearby. A sweep function excitation 
is the most problematically situation, because it runs conti-
nously through a wide range of frequencies. A sweep func-
tion is characterized by the following equation (1) and 
looks like Fig. 1. 
 
 f(t)=sin(2πF(t)t) (1) 
 
with F(t)=k1(t).

The research of torsional vibrations in various be-
haviors is also dedicated in papers [3-7]. This paper ex-
plains a sweep function excitation as the result of nonlinear 
parametric excitation. 

 
2. Mathematical description of the induction machine 

for transient phenomena 
 

Transient phenomena in an induction machine are 
difficult to describe, because quasistationary approaches 
cannot be employed, as no stable operation point during 
transients exists. Linearization is likewise inappropriate, as 
the nonlinear effects of interest in this instance are elimi-
nated by definition. The Kovacs space vector theory [8] is 
suitable for describing induction machine transients. The 
space vector theory leads to a set of nonlinear differential 
equations which cannot be solved in a general manner. 
Numerical methods are necessary to solve this set of non–
linear differential equations. So it is possible to describe 

the transient behaviour of induction machines in the time 
scale. 
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Fig. 1 Sweep function and excitation result 
 

The description of the induction machine by the 
space vector theory in complex numbers looks as follows 

 

 ( ) ( ) ( ) ( )S S SS S
du t r i t t jf t
dt
Ψ Ψ= + + S    (2) 

 ( ) ( ) ( ) ( ) ( )R RRR R
du t r i t t jf t t
dt
Ψ Ψ= + + R    (3) 

 ( ) ( ) ( )S hS S Rt x i t x i tΨ = +   (4) 

 ( ) ( ) ( )R hR R St x i t x i tΨ = +     (5) 
 
u is voltage space vector, i is current space vector, Ψ is flux 
space vector, f is frequency, r is resistor, x is inductive re-
actance, index S is stator, index R is rotor. 

Variables are all space vectors and additionally 
the rotor frequency fR(t). 

The equation for the electrical torque  me  is  
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where  is a normative time constant, which represents 
the time the nominal torque of the induction machine needs 
to speed up the rotor mass to nominal rpm. 

1mt

These equations show three things: 
1. the system has a product of variables 
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t

Ψ−
, which shows the nonlinear-

ity of the set of equations; 
2. the rotor frequency fR is a time dependent parame-

ter in equation (3) in combination with the rotor 
flux ( ) ( )R Rf t tΨ ; 

3. the system has only terms in the first derivation, 
what means, that the system is not able to swing. 
Looking to the mechanical system, we have a free 

two–mass torsion oscillator. Θ1 is representative for the 
rotor, where the eletrical torque Me is the input to the tor-
sional oscillator, i.e. drive system. Via a shaft, a flywheel 
with the mass Θ2 is coupled to the rotor mass Θ1. The shaft 
can be considered as a spring with the stiffness c and a 
damper with the damping constant k (Fig. 2). 

 

 
 

Fig. 2 Single degree–of–freedom torsional system 
 

The differential equations for the torsional system 
are as follows [1] 
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According to the second derivation of the vari-

ables α1(t) and α2(t) the mechanical system is able to 
swing. The torsional oscillator with low damping constant 
is a very good indicator for vibrations caused by the elec-
trical torque Me(t). 

Angular speed ( )1
d t
dt
α of Θ1 is linked to the ro-

tor freqency fR(t) as follows 
 

 ( ) ( )( )1
2

S R
d t f f
dt p

πα = − t    (9) 

 
The set of differential equations from Eq. (2) to 

Eq. (9) has to be solved. 

3. Numerical simulation of the run-up phase for an in-
duction machine 

 
A test constellation as in Fig. 2 is assumed to si-

mulate the transient phenomena. To solve the described set 
of differential equation, a special numerical differential 
equation solver is used. To start the simulation, the stan-
dardized voltage space vector uS Eq. (2) jumps from 0 to 1. 

This jump function is causing electromagnetic 
compensation phenomena in the electrical torque Me dur-
ing start up (Fig. 3, a).  
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Fig. 3 a - simulation electrical torque (run-up); b - analysis 
of electrical torque after switch on; c - parametric 
excitation of the shaft torque (run-up); d - simulated 
speed (run-up) 

d 
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The frequency starts with line frequency (50 Hz) 
and goes down to 43 Hz as analysed in Fig. 3, b. 

The electrical torque shows the behavior of sweep 
function, as shown in Fig. 1. Responsible is the parametric 
excitation in Eq. (3), where the rotor frequency fR(t) is mul-
tiplied with the flux space vector ΨR(t). According to Eq. 6, 
ΨR(t) is one of the multiplier for the electrical torque Me, 
which explains the sweep behavior. 

The conclusion is, that the sweep frequency of the 
electrical torque runs from line frequency (50 Hz) at start 
up down to 0 Hz at nominal speed. 

The shaft torque Mw shows in the first half second 
(Fig. 3, c) an overlay from the forced electrical torque 
(50 Hz - 43 Hz) and the resonance frequency of 28 Hz 
from the torsional oscillator. 

Further on at about 1.2 seconds the amplitude of 
the shaft torque increases again with only the resonance 
frequency of 28 Hz of the torsional vibration system. 

Looking at the speed (Fig. 3, d) at that moment, 
the relative speed is n = 0.44. 

Eq. 9 can also be written in a normative way as 
follows 
 

 
1

1 R

S

fN
N f

= −    (10) 

 

with 
1

0 44N .
N

= , fR is calculated to fR = (1–0.44)·50 Hz = 

= 28 Hz. 
28 Hz is the resonance frequency of the mechani-

cal system. Thus parameter fR leads to the excitation of 
torsional vibration system, that can be explained by 
Eq. (3). This is a typical parametric excitation phenomena. 

Understanding the parametric excitation as a 
sweep function, the excitation condition can be determined 
very easily by Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4 Excitation condition diagram for run-up 
 

To prove this theory a simulation is made with re-
sonance frequency of 75 Hz of the torsional vibration sys-
tem. The motor is 55 kW induction machine with a squirrel 
cage rotor. As the maximum excitation frequency is 50 Hz, 
no resonance excitation is shown in the shaft torque. 

To show the power of the space vector model it is 
to expect, that the resonance frequency should be excited 
during reversal, because the rotor frequency fR runs from 
100 Hz to 0 Hz during reversal. According to Eq. (10) the 

torsional system with the resonance frequency of 75 Hz 
should be excited at a speed of  

 

 
1

75Hz1 1 0
50Hz

R

S

fN .
N f

= − = − = − 5  (11) 

 
The simulation for reversal starts with the condi-

tions at idle speed of 1500 rpm. 
After the switch, the torsional oscillator is excited 

at its resonance frequency of 75 Hz (Fig. 5, a) by the im-
pact of the electrical torque. After decline of the amplitude, 
the resonance frequency is again excited (Fig. 5, a) by the 
parameter fR. 
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Fig. 5 a - parametric excitation of the shaft torque during 
reversal; b - simulation of the speed during reversal; 
c - simulation of electrical torque (reversal) 

 
The parametric excitation takes place as calcu-

lated according Eq. (11) (Fig. 5, b). 
High amplitudes of the shaft torque, which are up 

to about 25 times of the nominal torque of the electrical 
machine, shows the feedback of the mechanical system to 
the electrical system during the parametric excitation. 

Fig. 6 shows the impact of electrical torque with 
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about 20 times of the nominal torque. The shaft torque 
reacts with an amplitude of about 30 times of the nominal 
torque, due to the low damping of D = 0.007. 

 
 

Fig. 6 Electrical impact and response of shaft torque at 
reversal switch 

 
So the excitation diagram of Fig. 4 can be ex-

panded as follows 

 
Fig. 7 Expanded excitation diagram 

 
With the excitation diagram for an induction ma-

chine, it is very easy to predict parametric excitations of 
torsional vibrations during transients as speed up or rever-
sal. 
 
4. Experimental results 
 

According to Fig. 2 a test rig was designed 
(Fig. 8). 

 

 
 

Fig. 8 Test rig to investigate torsional vibrations 
The motor is a 1.8 kW induction machine with 

squirrel cage and synchronous speed N1 of 3000 rpm. The 
resonance frequency of the mechanical system is f0 = 
= 33.5 Hz. No damping clutches are used so the damping is 
D = 0.007. 
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induction machine Ferraris 

 
Fig. 9 a - measured parametric excitation of the shaft tor-

que (run-up); b - measured speed (run-up); c - mea-
sured electrical torque (run-up); d - measured spec-
trum of the electrical torque (run-up) 

d 

To determine the electrical torque Me, also angu-
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lar acceleration ( )1 tα  of the rotor mass has to be measured 
according to Eq. (12). 
 
 ( ) ( ) ( )1 1e WM t M t tΘ α= +  (12) 
 

The shaft torque has been measured with strain 
gauges, applied on the shaft. Angular acceleration ( )1 tα  
has been measured with Ferraris sensor, which has been 
developed by the author [9]. The measuring chain was ap-
proved linear for the range 0 - 1000 Hz (–3 dB). 

The shaft torque shows the same typical paramet-
ric excitation of the resonance frequency (33.5 Hz) as al-
ready simulated with the space vector theory (Fig. 3, c). 

The measured speed shows, that the excitation 
happens, when the condition according to Eq. (10) is ful-
filled 
 

 
1

33 5Hz1 1 0 3
50Hz

R

S

fN . .
N f

= − = − = 3     (13) 

 
The electrical torque shows the typical transient 

phenomena with the sweep effect. 
In the spectrum of the electrical torque (Fig. 9, c) 

sweep effect is also visible. It shows a wide range of fre-
quencies below 50 Hz and lower amplitudes down to 0 Hz 
according the amplitudes in Fig. 9, c. The feed back of the 
mechanical resonance is also visible with a clear peak 
around 33 Hz. 

The alternating torques after switch-on are clearly 
recognizable, with the values of roughly 6 times rated 
torque. Of special note is the fact, that the electrical torque 
frequently becomes negative, resulting for example in the 
much-feared “chattering teeth” effect on rigidly-coupled 
gears (geared motors) [10]. 

 
5. Conclusion 
 

During transient phenomena the induction ma-
chine causes parametric all excited torsional vibrations. 
The excitation mechanism is a sweep that runs through all 
frequencies from 100 Hz to 0 Hz. In low damped systems 
this might cause an overload of  torque in the mechanical 
system. 

As amplitudes of the torque become also nega-
tive, in geared drives chattering of the teeth will reduce the 
lifetime of the gearbox. 
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P. Hantel, M. Bogdevičius, B. Spruogis,  
V. Turla, A. Jakštas 
 
PARAMETRIŠKAI ŽADINAMO INDUKCINIŲ 
VARIKLIŲ VARANČIOJO VELENO VIRPESIŲ 
ANALIZĖ 
 
R e z i u m ė 
 

Tiriant pereinamuosius procesus, surijusius su pa-
rametriniu žadinimu ir silpnu kylančių virpesių slopinimu 
indukciniuose varikliuose, reikia spręsti netiesines diferen-
cialines lygtis. Variklio elektrinių ir mechaninių kintamųjų 
dydžių derinys diferencialinėse lygtyse apsunkina vykstan-
čių reiškinių fizikinę interpretaciją.  

Šiame darbe parodyta, kaip varančiojo veleno 
nestacionarius virpesius, kylančius pereinamųjų procesų 
metu, galima paaiškinti parametriniu žadinimu. Žadinimo 
proceso analizė leido sudaryti diagramas, kuriomis naudo-
jantis galima nustatyti virpesius žadinančių kritinių greičių 
diapazonus. 
 
 
P. Hantel, M. Bogdevičius, B. Spruogis,  
V. Turla, A. Jakštas 
 
ANALYSIS OF PARAMETRIC EXCITED VIBRA-
TIONS OF DRIVE SHAFTS CAUSED BY INDUCTION  
MACHINES 
 
S u m m a r y 
 

A description of transient phenomena in an induc-
tion machine in connection with oscillation excitation in 
low–damped drive systems requires the solution of a sys-
tem of nonlinear differential equations. The coupling of 
variables from the electrical and mechanical system in the 
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differential equations complicates physical interpretability 
of the observed phenomena. The paper shows how nonsta-
tionary oscillations in the drive shafts, produced by tran-
sients in the induction machine, are explained in terms of 
parametric excitation. The knowledge of the excitation 
mechanism enables a simple excitation diagram to be con-
structed, indicating critical speed ranges for the excitation 
of oscillations. 
 
 
П. Гантель, М. Богдявичюс, Б. Спруогис,  
В. Турла, А. Якштас 
 
АНАЛИЗ ПАРАМЕТРИЧЕСКИ ВОЗБУЖДАЕМЫХ 
КОЛЕБАНИЙ ВЕДУЩЕГО ВАЛА 
ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ 
 
Р е з ю м е 
 

Описание переходных процессов в индукци-
онных  двигателях,  связанных с параметрическим воз- 

буждением и недостаточным демпфированием возни-
кающих колебаний требует решения систем нелиней-
ных дифференциальных уравнений. Совокупность пе-
ременных величин электрической и механической час-
тей двигателя в дифференциальных уравнениях ус-
ложняет физическую интерпретацию происходящих 
явлений. В данной работе показано, как нестационар-
ные колебания ведущего вала, возникающие в пере-
ходных процессах, можно объяснить параметрическим 
возбуждением. Анализ процесса возбуждения позво-
лил построить диаграммы возбуждения, с помощью 
которых можно определить критические диапазоны 
скоростей, возбуждающих колебания. 
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