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1. Introduction 
 

Among various numerical techniques, the discrete 
(distinct) element method (DEM) became widely recog-
nised after the pioneering work published by Cundall [1] 
and later work of Cundall and Strack [2]. The representa-
tion of granular media as an assembly of contacting parti-
cles termed hereafter as discrete elements was seen as a 
more realistic approach compared to continuum models. In 
the DEM, the particles of granular media are treated as 
individual objects and all dynamical state variables of each 
particle are tracked during the simulation. The DEM al-
lows the simulation of motion and interaction between the 
particles, taking into account the microscopic geometry 
and various constitutive models. 

The main advantage of DEM is a possibility to 
model highly complex poly-dispersed systems using the 
basic data on individual particles without making oversim-
plifying assumptions. This makes DEM different from the 
conventional discretization methods used in the continuum 
mechanics, such as the finite difference, finite element and 
boundary element methods, helping to avoid difficulties 
encountered in describing the microscopic nature of the 
granular media at the continuum level.  

Basically, the DEM as computational methodol-
ogy of DEM responds to physical nature of granular mate-
rials. Among huge amount of comprehensive research 
some review papers may be recommended ( Herrmann and 
Luding  [3], Džiugys and Peters [4], Tomas [5], Kruggel-
Emden et. al. [6] ). The DEM is a multidisciplinary subject 
comprising fundamental concepts of molecular dynamics,  
Allen et. al. [7], Pöschel and Schwager [8] and traditional 
Finite Element Method, Munjiza [9]. Concerning computa-
tional procedure, the most detailed and transparent presen-
tation of algorithmic structure and the details of the DEM 
are given by Peters and Džiugys [10]. Different program-
ming approaches used for the development of sequential 
software codes for discrete element method and perform-
ance of separate procedures are investigated in [11]. In 
addition to various granular problems comprising particle 
motion in hopper [12], compacting (Procopio and Zavali-
angos [13], axissymmetrical particle flow Markauskas 
[14]), segregation (Džiugys et. al. [15]), the application of 
DEM to solid problem also plays a significant role. 

Various aspects and problems are faced in simula-
tion of solid bodies by applying DEM technique. It is 
widely recognised that the macroscopic properties of the 
particulate assemblies depend on their single particle prop-
erties and the interaction between contiguous particles, 
while modelling of the mechanical behaviour of particu-
lates can be reflected by inter-particle stiffness models. 
The influence of stiffness on the microscopic and macro-
scopic deformation characteristics of differently shaped 

particulate assemblies is considered by Moreno-Atanasio 
and Antony [16].  

The fundamental issues such, as selection of real-
istic inter – particle modulus, evaluation of  relationships 
between microscopic characteristics of particles and mac-
roscopic characteristics of the solid body are related to the 
generation of particle composition. Various models have 
been investigated in the works of Hentz et. al. [17], An-
tonyuk et al. [18], Mishra and Thornton [19], D‘Addetta 
and Ramm [20]. 

Simulation of solid body by particles requires 
generation of the initial state of particles, which may be 
regarded as generation of the initial conditions. In any 
case, artificial simulation stage will be required [17, 20, 
21] for these purposes. This may be done by slightly dif-
ferent approaches. It is observed that this initial simulation 
stage may affect the final result, however, a unified ap-
proach is still under development.          

The paper presents a physically adjustable con-
cept for the simulation of solid specimen for compression 
test. This type of tests is widely used for the evaluation of 
material properties. A particular emphasis is placed on the 
integrity of generation scenario containing contact-free and 
contacting phases in compacting and load-free stabilization 
phase. The approved scenario is illustrated by applying 
mono-sized and poly-disperse assemblies of particles.       

 
2. Discrete concept and methodology 
 

The time-driven (TD) discrete element method as 
originally proposed in [1], is explored to simulate the be-
haviour of granular material. This method is better suited 
for a longer time of particle collision than for free path of 
particles. 

Granular material is regarded as a system of the 
finite number N of spherical particles, characterised by 
radii Ri (i = 1, …, N) and the prescribed material proper-
ties.  

The dynamical behaviour of an individual particle 
i is considered by applying the Newton’s second law. 
Three independent translations and three independent rota-
tions expressed in terms of the forces and torques at the 
centre of the particle are as follows 
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here mi, and Ii are mass and inertia moments, while vectors 
xi and θi initiate the position of the particle centre and the 
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orientation of particle i, respectively. Vectors Fi and Ti 
present the sum of external contact force, and gravity force 
as well as the corresponding torques. 

The main focus of the TD methods is on evalua-
tion of contact forces 
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where dcij is particle geometry-dependent vector, pointing 
from the particle centre to contact centre. 

The particle deformation due to collision is as-
sumed to be approximated by the overlap area of the 
spheres. The contact point Cij is defined to be in the centre 
of the overlap area with the position vector Xcij. The depth 
of overlap hij is defined by expression  

( ) ijjiij RRh x−+=α  (5) 

and is provided that it is much smaller than the particles 
radii Ri and Rj, where interaction area of particles is 

0>ijh  (6) 

here, 1α ≥ is overlap factor used for artificial connection 
of the particles in neighbourhood. In most carry of granular 
material 1=α .    

Methodology of calculating the forces Eqs. (3)-(4) 
depends on the particle geometry and mechanical proper-
ties as well as on the constitutive model of the particle in-
teraction. The presented inter-particle contact model con-
siders a combination of elasticity, viscous damping and 
friction force effects. Actually, the contact between two 
material particles is modelled by a unilateral spring and 
dashpot in the normal and spring and dashpot as well an 
additional slider in tangential direction. 

Hence, the inter-particle contact force vector Fij  
describing the contact between the particles i and j may be 
expressed in terms of normal and the tangential compo-
nents and , respectively. The normal direction of 
the contact surface is defined by a unit vector n

n
ijF t
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ij extending 
through the centre of the overlap area. The unit vector tij of 
the tangential contact direction is perpendicular to nij. 

The normal component  presenting, actually, a 
repulsion force comprises elastic and viscous ingredients. 
The tangential component  reflects static or dynamic 
frictional behaviour. The static force describes friction 
prior to gross sliding and comprises elastic and viscous 
ingredients, while the dynamic force describes friction 
after gross sliding and is expressed by the Coulomb’s law. 
Contact behaviour is characterized by microscopic parame-
ters such as interaction stiffness ,  and damping co-
efficients γ
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n and γt, which may be explicitly expressed in 
terms of interacting particle data. Inter-particle friction is 
defined by internal friction coefficient μ which may be 
different, depending on whether particle-particle or parti-
cle-wall contact is considered. 

When overlap parameters Eqs. (5)-(6) are known, 
contact forces acting between two particles may be evalu-
ated explicitly. For Hook contact model, the forces are 

n
ijijnijij

n
ij

n
ij mhk vnF γ−=  (7) 

( )t t t t
ij ij ij ij ij t ij ij ijmin k h m ,γ μ= − − −F t δ v F n  (8) 

where mij is reduced mass,  is normal velocity of contact 

centre, is tangential displacement vector,  is tangen-
tial velocity of contact centre. The stiffness parameters are 
defined as 
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where E is elastic modulus, G is shear modulus, ν  is Pois-
son coefficient and Rij reduced radius of particles.  

For evaluating the contact force vector Fij in (3), 
all contacts between the particles and their neighbours 
must be detected. Generally, contact detection problem is 
of the size O(N2) for the system containing N particles. In 
order to reduce the number of all particle pair combina-
tions, a simple cellular decomposition known as link-cell 
method [22] was used for contact detection. A detailed 
description of the DEM technique applied may also be 
found in [23, 24]. 

The dynamical state of granular material is deter-
mined by numerical integration of Eqs. (1)-(2). In order to 
find a reasonable compromise between accuracy and com-
putational efficiency, explicit one-step or predictor–
corrector integration schemes are mainly used [25].  

The predictor-corrector scheme represents a two-
step procedure. Let us denote the time dependent variables, 
positions xi, velocities vi = dxi/dt, accelerations 
ai = d2xi/dt2 and the higher-order time derivatives 
b3i = d3xi/dt3, b4i = d4xi/dt4 and b5i = d5xi/dt5 of particle i by 
vector . The new value variables 
at time increment t+Δt are predicted by a simple series 
expansion up to a desired order of accuracy 
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Here, incremental vector  presents the 
required terms of the expansion series. Then, according to 
the new positions and velocities, the particle forces and 
accelerations are corrected and acceleration increment Δa
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i 
is updated. Finally, the vector of particle variables is cor-
rected as follows 
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Here, the correction vector is calculated by 
using the given integration constants c

p
iyΔ

j. For details the [10] 
may be referred. 

The discussed methodology was implemented 



 7

into the original DEMMAT code [24], which was em-
ployed for described simulation below.   

 
3. Problem formulation and basic data 
 

For the simulation of solid specimen for compres-
sion tests the following scenario is proposed. It comprises 
several implementation steps: contact free multiaxial com-
paction, multiaxial compaction of contacting particles, 
load-free simulation after instant fragmentation and, fi-
nally, axial compression. 

The three-dimensional computational domain 
containing particles presents a box in the form of a rectan-
gular parallelepiped (Fig. 1). The dimensions of the box 
sides are equal to those usually used for standard concrete 
specimens, assuming that the ratio of longitudinal speci-
mens height, H, and cross sectional dimension, a, are equal 
to 4 (hence, H = 160 mm, a = 40 mm ).  

 
Fig. 1 Illustration of the material loading: a - multiaxial 

compression, b - uniaxial compression 

Basic physical parameters of the particles used 
throughout simulation are presented in Table 1.  

It should be noted that the microscopic data of 
particles ρ, E and ν are assumed to be the same as the mac-
roscopic values obtained during the experiment of speci-
men made of cement used for refractory concrete.  

 
Table 1 

Physical data of particles 
 

Quantity Value 
Particle density ρ 2300 kg/m3

Normal Young’s modulus E 13 GPa 
Poisson’s ratio ν 0.2 
Normal damping coefficient γn 150 s-1

Shear damping coefficient γt 100 s-1

Particle-particle friction coefficient μ 0.3 
Particle-wall friction coefficient μw 0.0 

Here, the values of the viscous damping coeffi-
cient γ are prescribed on the basis of values given in refer-
ences and rely on personal computational experience. Fric-

tional properties are defined by particle-particle friction 
coefficients μ exhibit a relatively rough material with per-
fect sliding on the wall.  

Two compositions were generated for the purpose 
of simulation. The monosized material was simulated by 
3500 particles with the diameter d = 1.9 mm. The initial 
composition of the particles presents a homogeneous or-
thogonal lattice type structure, where particles are embed-
ded into the centres of cells to ensure that they are not in 
contact at the beginning of motion. 

The lattice structure is defined by 40x10x10 cells 
with the maximum number of cells, usual equal to 4000. 
After creating of material part of the cells remain empty, so 
giving the form for compaction. The chart of the initial 
composition is given in Fig. 2.  

 

a

b
a Fig. 2 The initial composition of particles: a - monosized 

material; b - polydispersed material 

In the framework of the current investigation, 
generation of the polydispersed material is performed by a 
constructive algorithm as proposed in [26]. Polydispersive 
character of the composition of particles of different sizes 
is characterized by the heterogeneity ratio between the 
maximal and minimal diameters of the particles  

b

min

max

d
d

=α  (13) 

and the normal distribution law. Finally, the material is 
defined by the up-scaled size distribution curve and given 
characteristic particle diameter. The polydispersed materi-
als with α = 4.3 will be used in the simulations described 
below.  

For generating the required particle composition 
and locating particles in the given initial space the algo-
rithm presented by Jiang et.al. [27] was utilized. The algo-
rithm runs iteratively and, after some trial and error cycles, 
a relatively dense contact less particle composition is ob-
tained. The number of particles or the particle volume may 
be controlled within the prescribed limits. By applying the 
above algorithm, 3499 particles with maximal diameter, 
dmax = 3.925 mm and dmin = 0.918 mm, were generated. 
The obtained composition (Fig. 2, b) was applied in further 
simulation. 
 
4. Simulation of compression and the results obtained  
 

Motion of the particles is obtained by numerical 
integration of Eqs. (1)-(2). For the explicit integration 
schemes [5, 6], it is obtained in terms of the particle mass 
m and stiffness kυ
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here, kn is defined according to Eq. (9). The factor β = 20 is 
assumed in our examples. The values of the time integra-
tion step Δt were predefined by the size of the smallest 
particle. Finally, the time step equal to Δtm = 0.295 μs for 
monosized specimen and Δtp = 0.143 μs for polydispersed 
material was applied.  
 
4.1. Multiaxial compaction 

 
In order to form the specimen, the initially gener-

ated domain filled with contact less particles was subjected 
to triaxial compression (Fig. 1, a). The compaction was 
performed by the motion of rigid walls and controlled in 
time t by a constant rate vn, (vn = 0.01 m/s). In order to 
reach the solid state, the compaction time Tp = 0.237 s was 
required for polydispersed material and Tm = 0.432 s – for 
monosized material. The size of the polydisperse specimen 
was reduced under compression by 11.85 and 2.96%, re-
spectively, in the transverse and longitudinal directions, 
while monosized specimen was reduced by 21.6 and 5.4%, 
respectively. 

 
Fig. 3 Final state of the compacted material of contact-free 

particles: a - mono-sized, b - poly-dispersed  

Final states of the compacted material are pre-
sented in Fig. 3. They exhibit particle behaviour of differ-
ent nature. The rectangular cells have a tendency to be 
transformed into pyramidal (triangle) lattice. This tendency 
is not fully accomplished because of the lack of the free 
space and the influence of boundaries. The triangle struc-
ture prevails in the middle part, while the rectangular struc-
ture remains near the ends. The completely chaotic rear-
rangement is observed in the polydispersed specimen. 

Compaction comprises two different phases of the 
material behaviour. The initial contactless phase may be 
considered as a gas phase. Let us consider time variation of 
internal variables. The transformation to the solid phase 
was controlled by considering time variation of the side 
wall pressure p(t) and packing density D(t) (Fig. 4). In the 
gas phase, the wall pressure variation remains zero (Fig. 4, 
a), while transformation to a solid phase is indicated by the 
jump. Transition time T1M = 0.349 s for monosized and T1P 
= 0.137 s for polydispersed material is clearly indicated in 
the figure. 

Thus, the obtained time required to reach the solid 
phase for polydisperse material is considerably shorter than 
this time for monosized material. This difference shows 

that the initial conditions, however, were more favourable 
for compacting the polydispersed particles than the mono-
sized ones. 

 

 
Fig. 4 Time variations of the wall pressure (a) and packing 

density (b) a 
Quality of the contact-less compaction is illus-

trated by the values of transitional packing densities. The 
transitional density D1M ≈ 0.60 for the monosized material 
approaches the theoretical limit D0TH ≈ 0.64 [28], which 
illustrates the acceptable quality of the simulations. The 
polydispersed material, with D1P ≈ 0.61, exhibits slightly 
better simulation quality.  

b 

Compaction of a solid phase may be also exam-
ined by considering wall pressures and coordination num-
bers as the functions of the packing density 

Variation of the coordination number versus the 
packing density is plotted in Fig. 5 The graphs shown 
clearly illustrate the microscopic behaviour of granular 
materials and phase change during compaction. 

It should be noted that higher values of packing 
densities, as depicted in Fig. 4, b and Fig. 5 are addressed 
for the formation of crystaline-like structures and the exer-
tion of the particles deformations. 

The second phase is characterized as the bulk 
solid phase, where particles come into contact with each 
other, while densification is possible due to the particles’ 
rearrangement and microscopic deformation of the contact-
ing particles. The solid phase is characterized, finally, by a 
stable structure of particles, forming a contact force net-
work. 

Generally, the coordination number varies be-
tween two limits. The lower limit Zmin denotes the initiation 
of the solid phase. For the monosized material Z1min = 5.72, 
while for the polydispersed material Z2min = 4.292. The 
upper limit characterises the imaginary ideal packing struc-
ture. In the case of monosized material, perfect structure 
would be tetrahedral with Zmax = 8, thus numerically ob-



 9

tained value Zmax = 6.9, reflects the deficiency of the lattice 
structure. For polydispersed material a definition of the 
ideal structure would require some specific investigation.  

 
Fig. 5 Variation of coordination number versus packing 

density  

Analytical description of the relationship between 
coordination number Z and density D is given by Arzt [29] 
and Fleck [30]. For monosized packing, the increase in 
average coordination number against relative density has 
been modelled by analytical approaches that consider ei-
ther the concentric growth of a particle in a Voronoi cell 
[29] or the reduction of the centre to centre spacing be-
tween two representative particles [30]. For the isostatic 
conditions it reads: 
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here, Di and D are the initial and current relative densities 
of the powder compact, while Z0 is initial coordination 
number and C is constant.  

For describing the numerical results according to 
best fit asymptotic constant values  Z0 = Z1M = 6.8, C = 30 
and Di = D1M = 0.60 were used for monosized material, 
while Z0 = Z1P = 5.6, C = 35 and Di = D1P = 0.61 were 
used for polydispersed material.  

The analytically according to Eq. (10) obtained 
curves are added to the graph in Fig. 5. The picture illus-
trates good agreement with the numerical results. 

In order to examine the quality of the solid com-
paction, the relationship between wall pressure p and den-
sity D was also studied. Analytical description of the above 
relationship p =P(D) was derived based on the experimen-
tal results of  Sridhar and Fleck [31]. The power law with 
the power factor 5/4 was established and the following 
formula was suggested for analytical description 

(
5
4

c cp p D D= −                                            (16)  

It is valid when, D > Dc , while pc and  Dc are constants. 
The relevance of analytical approximation was 

checked by using least square approximation by introduc-
ing the dimension quality factor f varying between 0 and 1 
as follows 
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The perfect confidence would yield f = 1, where, 
p stands for experimental curve, while pai denotes the re-
sults of approximation. The values of experimental fitness 
with analytical function are given in Table 2. 

 

 
Fig. 6 Pressure curves: a - analytical approach and experi-

ment (Sridhar et al.); b - analytical approach and 
theoretical calculation  

The relevance of the suggested expression was 
proved against two experimental curves given in [31]. Bas-
ing on that, the constants pc and Dc were obtained. The 
values of pc constants were taken from the graph in Fig. 6. 
 

Table 2 
Constants of the pressure curves 

 

Material Dc pc f 
SF I 0.71552 436.6441 0.847513 
SF II 0.722977 351.7507 0.889686 

DEM  poly 0.604162 3237.276 0.797388 
DEM mono 0.598595 4299.227 0.822893 

 
The values of the constants are given in Table 1, 

while graphical illustration of the experimental curves SF I 
exp and SF II exp, as well analytical by obtained results SF 
I anal and SF II anal are presented in Fig. 6, a. It is obvious 
that analytical approximation is practically valid for the 
entire range except for the first point. 

The suggested expression (15) was better applied 
to evaluating of the DEM simulation results. A comparison 
of the results is also presented in Table 2 and illustrated in 
Fig. 6, b. Based of these results it could be stated that DEM 
simulation describes the nature of compaction and the 
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compacted state be regarded as a physically adjustable.  
 

4.2. Fragmentation and stabilization of the specimen  
 

The main aim of the present simulations was to 
generate a specimen as a solid body composed, however, 
of particles. Actually, this body consists of real granules 
and binding matrix, while microscopic interparticle forces 
are neglected at the macroscopic level.  

Assuming that the compacted particles present a 
desired body, instant fragmentation would be the simplest 
artificial procedure to achieve the final goal. Two main 
differences between the physical state of the simulated 
granular packing and the real solid body should be out-
lined. 

Firstly, it concerns the internal forces. In the ideal 
case, granular packing should have the maximal density 
with almost zero selfequilibrium interparticle forces. In our 
case, densification is achieved due to of increased parti-
cles’ overlap, resulting in the increase of interparticle 
forces. Secondly, the real binding matrix of material is 
simply considered as an empty space. This simplification 
directly affects interparticle contacts and is characterized in 
terms of the reduced values of the coordination number. 

Transformation of granular packing to the solid 
body was implemented by instant fragmentation. Fragmen-
tation occurs when side walls are removed. The unilateral 
interparticle model was replaced by bilateral interparticle 
springs. The interparticle forces are obtained accordingly 
to conventional expressions (7), however, physical mean-
ing is slightly different. Original expression (7) is applied 
for calculation of repulsion force. In the case of attractive 
(tension) force overlap hij obtained according to Eq. (5) is 
replaced by interparticle displacement  

ij ij i jh x R R= − −  (19) 

valid upon condition 

ijji xRR ≤+  (20) 

The influence of the binding matrix was incorpo-
rated by increasing the coordination number. It was done 
by increasing the particles overlap in Eq. (5) characterized 
by the factor α ranging from 1.1 to 1.6.  

Fragmentation of the specimen was performed by 
introducing overlap factor α = 1.4 for the monosized and 
for the polydispersed sample. Consequently, it yielded a 
jump of the coordination number Z from 8 up to 10.49 and 
from 6.9 up to 10.3 for monosized and polydispersed mate-
rials, respectively. 

The stabilisation phase continued for 0.06 s. It 
may be characterised by permanent expansion of the 
specimen. The behaviour of the particles is illustrated by 
considering translational and rotational energy of the parti-
cles (Fig. 7). It is clearly observed that a considerable re-
duction of energy occurred practically instantaneously, in a 
short time interval of 0.15 s. The fluctuations of energy are 
practically stable at the end of the time period under con-
sideration. However, the curves exhibit different energy 
levels, which are by two orders lower for the poly-
dispersed example. 

There is no direct possibility to diminish the in-

ternal forces. It is clear that this influence became smaller 
with the increase of the number of particles or heterogene-
ity ratio. The influence of the internal forces in the artifi-
cially generated body may be evaluated indirectly by ex-
amining distortion in the shape, while the distortion magni-
tude may be considered as quality indicator. 

 

 
Fig. 7 Translational and rotational kinetic energy: a - poly-

dispersed; b - monosized specimen  

 

a 

Fig. 8 Final state of the generated specimen: a - polydis-
persed; b - monosized 

b 

The final states of two generated specimens are 
presented in Fig. 8. Quantitatively, the final shape is char-
acterized by the largest 0.11% distortion for monosized 
and by 0.07% distortion for the polydispersed material 
models. 

Qualitatively, the largest distortions occur at the 
specimen ends. Explanation follows that particles located 
in the end regions have got smaller space for rearrange-
ment during compacting. In may by concluded, the ob-
tained shapes exhibit good quality for the simulation of 
compression.  

A different character of the deformation behav-
iour of both specimens is illustrated by considering the 
motion of particles during deformation. The trajectories of 
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100 randomly selected particles were shown for the sake of 
illustration. The particles of the monosized specimen ex-
hibit strong transversal motion that causes a large deforma-
tion of cross section during deformation. The motion of 
polydispersed specimen (Fig. 9, b) exhibits the chaotic 
character of trajectories. This local self-equilibrium 
mechanism leads to lower global deformation. 

 
Fig. 9 Trajectories of the hundred randomly selected parti-

cles: a - monosized solid material; b - polydispersed 
solid material 

4.3 Uniaxial compression 
 

Uniaxial compression is a testing procedure em-
ployed for the evaluation of physical parameters and mac-
roscopic behaviour of solid materials For realistic simula-
tion of the macroscopic behaviour, the proper relationship 
between microscopic and macroscopic parameters is re-
quired. However, the detailed examination of these rela-
tionships will be beyond the scope of current paper. Our 
focus is on the the most important quantity, elasticity 
modulus E. 

The relaxed state of the particles is used further in 
numerical simulation. Uniaxial compression is imple-
mented (Fig. 1, b) by the motion of two rigid end-walls 
with velocity vn = 0.1 m/s. Compression starts when the 
stabilisation is assumed to be achieved. 

Compression results are presented in Fig. 10. 
Graph results show the relationship between wall pressure 
and axial strain. The tangents of the curves indicate the 
character of the elasticity modulus.  

 
Fig. 10 Pressure-strain relationship during compression for 

various materials  

It could be observed that initial deformation stage 
reflects influence of microscopic changes vanishing by 
increase of loading. The macroscopic elasticity modulus as 
a tangent of deformation curve could be extracted from the 
linear segment.  

Thus, polydispersed material yields elasticity 
modulus EP = 3.7 GPa, while monodispersed material 

yields elasticity modulus  Em = 1.78 GPa. The above values 
are below the applied microscopic value Emicr = 13.0 GPa. 
The results obtained illustrate that two different composi-
tions of particles with identical micromechanical properties 
finally yield different macroscopic elasticity modules.  

Therefore, polydispersed composition preventing 
the formation of the crystalline-like structure, yields 
smaller difference between microscopic and macroscopic 
parameters and is preferable for simulations of uniaxial 
compression. The obtained values fit expectation, however, 
detailed calibration of the parameters acquires futures in-
vestigations.   a 

5. Conclusions  
 

Simulation of solid specimen for the compression 
test was examined. The suggested scheme comprises tri-
axial compacting and load-free stabilization after fragmen-
tation. Compaction of contact less particulate material re-
sponds to the phase of granular gas, while transition to 
bulk solid is controlled by packing density values of wall 
pressures and jump coordination number. On the basis of 
the numerical results obtained for monosized and poly-
dispersed materials the following conclusions have been 
drawn. 

b 

1. The quality of contact less compaction was 
checked by the obtained values of packing density. The 
results for monosized material, yielding 6.25% difference 
compared to theoretical limit (Dth = 0.64), reflected the 
quality with sufficient accuracy.  

2. For evaluating the wall pressure a new analyti-
cal formula was suggested. The expression was validated 
by the already known experimental results and the agree-
ment was observed. 

3. Final compaction of contacting particles was 
controlled by the limit value of packing density D and evo-
lution of coordination number Z and wall pressure p. It was 
found that for monosized material the coordination number 
Z practically reached the limit, while time variation of Z 
and p fitted analytical predictions. 

4. The final shape after relaxation is characterized 
by smaller distortions and a lower kinetic energy level for 
polydispersed material models.  

5. Results fit general tendency that in reliable 
simulation of solid body by particles microscopic elastic 
modulus is considerable higher compared to macroscopic. 
Precise relationship between both parameters is predefined 
by contact force network, while polydisperse model is 
preferable against monosized composition. 

6. The suggested simulation scenario is physically 
observable; therefore it has some advantages over more 
simple but more artificial simulations. It allows us to con-
trol the inside of the ongoing processes in practically ob-
servable limits. However, more comprehensive research is 
still required for evaluating particles’ composition. 
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A. Maknickas, R. Kačianauskas, R. Kutas 

VIENTISO BANDINIO GENERAVIMAS  
DISKREČIOMIS DALELĖMIS GNIUŽDYMO TESTUI 
ATLIKTI  

R e z i u m ė 

Remiantis fizikinės darnos idėja, nagrinėjamas 
vientiso bandinio generavimas diskretinių elementų meto-
du. Bandinio formavimas apima triašio sutankinimo ir 
laisvo stabilizavimo, įvykus staigiai fragmentacijai, etapus. 
Sutankinimas apima dujinės fazės virsmą į vientisą kūną. 
Buvo nagrinėjami mono ir polidispersiniai dalelių rinki-
niai. Modeliavimo kokybė buvo vertinama tiriant tankio, 
slėgio ir koordinačių skaičiaus pokyčius. Bandinio būsenos 
buvo vertinamos nagrinėjant kinetinę energiją ir formos 
distorsiją. Gauti skaitiniai rezultatai palyginti su žinomais 
sprendiniais ir kitų tyrimų duomenimis. Rezultatai parodė, 
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kad polidispersinė struktūra tiksliau atspindi makroskopinį 
tamprumo modulį.  

A. Maknickas, R. Kačianauskas, R. Kutas 

GENERATION OF SOLID SPECIMEN FOR COM-
PRESSION TESTS BY DISCRETE PARTICLES  

S u m m a r y 

Physically adjustable concept and discrete ele-
ment simulations aimed at generating a solid specimen for 
the compression test is investigated. The suggested scheme 
comprises triaxial compacting and load-free stabilisation 
after instantaneous fragmentation. Compacting involves 
the contact-less gas phase and transition to solid phase. 
Two compositions of monosized and polydispersed parti-
cles are simulated numerically. Simulation quality during 
compacting is controlled by considering packing density, 
wall pressure and coordination number. Quality of the final 
state is evaluated by kinetic energy and shape distortion. 
Obtained numeric results were compared with other known 
solutions and data. Results showed that polydispersed 
structure more correctly represents macroscopic elasticity 
modulus.  

А. Макницкас, Р. Качянаускас, Р. Кутас 

ГЕНЕРИРОВАНИЕ СПЛОШНОГО ОБРАЗЦА 
ДИСКРЕТНЫМИ ЧАСТИЦАМИ ДЛЯ ТЕСТОВ 
СЖАТИЯ  

Р е з ю м е 

Исследовано генерирование сплошного образ-
ца дискретными частицами. Генерирование охватыва-
ло трехосное сжатие и свободную релаксацию после 
мгновенного сцепления частиц. Уплотнение включает 
бесконтактную газовую фазу и переход в твердую фа-
зу. Численно изучены два разных образца из моно и 
полидисперсных частиц. Качество числовых результа-
тов во время уплотнения было подвержено контролю, 
по плотности упаковки, давлению на стены и числу 
сцеплений. Качество финального состояния было оце-
нено по кинетической энергии и дисторсии формы. 
Полученные цифровые результаты сравнены с извест-
ными решениями и данными других исследований. 
Результаты показали, что полидисперсная структура 
точнее отражает макроскопический модуль упругости. 
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