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1. Introduction 
 

The principal structural members of many com-
mercial buildings are the so-called heavy timber structures. 
Their elements are beams, columns, decks, or truss mem-
bers made from glue-laminated or large-dimension sawn 
timber. As compared to steel and concrete structures, 
heavy timber structures are recognized as having good fire 
resistance. There are many examples of such structures 
surviving fire exposure without collapse [1]. However, the 
relatively high fire resistance of heavy timber structures 
does not automatically mean that they are safe from fail-
ures caused by fires. 

The fire resistance of timber structures is assessed 
using the same methods as for other materials. The today’s 
practice of the fire-resistance calculation remains determi-
nistic. However, the fire is, by its very nature, an uncertain 
phenomenon. This generates a need for a probabilistic 
modeling of both fire severity and structural response to 
fire. From the structural point of view, the final result of 
such a modeling should be the probability of failure (ex-
ceedance of a fire limit state). The fire safety of a particu-
lar structure can then be verified by comparing the failure 
probability with some prescribed tolerable value. 

The estimation of the failure probability is com-
plicated by the fact that direct statistical data gained from 
post-mortem investigations of natural fires is sparse and 
not very accurate [2]. Thermal actions induced on struc-
tures by natural fires are usually predicted by applying 
deterministic computer fire models [3 - 5]. The stochastic 
(Monte Carlo) simulation is suggested for an assessment of 
uncertainties related to output of such models [6]. The 
combined application of deterministic computer fire mod-
els and Monte Carlo method is called the probabilistic fire 
simulation. It can produce information for estimating the 
failure probability of a specific structure exposed to fire. 
Hietaniemi [7, 8] provides an example of how such infor-
mation can be applied to estimating the probability that a 
glue-laminated beam will fail during fire. 

The present paper seeks to refine the procedure of 
the failure probability estimation by applying results of 
probabilistic fire simulation. The basic idea is that this es-
timation should include a fragility function developed for a 
timber structure under analysis. The failure probability can 
be expressed and estimated as a mean of fragility function 
values. It is shown how to estimate the failure probability 
by computing a sample of fragility function estimates ob-
tained using the results of computer fire simulation. The 
fragility function can be used in the case where the prob-
lem of the failure probability estimation involves measures 
of both aleatory and epistemic uncertainty. 

2. The problem of probabilistic verification of fire 
safety 

 
The failure of a structure subjected to a fire is 

verified using three failure criteria, namely, the criteria of 
load-bearing capacity, insulation and integrity [9, 10]. In 
case where a load-bearing structure is not intended for per-
forming any insulation function, only the first of these cri-
teria will have to be assessed in the design for fire safety. 
A verification of the load-bearing criterion is understood as 
the verification that the fire resistance of the structure (or 
each part of the structure) is greater than the severity of the 
fire to which the structure is exposed [1]. The general ex-
pression for the verification of the criterion has the form 

Fire resistance ≥ Fire severity (1) 

The above criterion can be verified in the time domain, the 
strength domain, and the temperature domain. The com-
parison of the fire severity and fire resistance in the time 
domain is by far the most common procedure for all types 
of structures, whereas the temperature domain is not used 
for timber structures because there is no critical tempera-
ture for fire exposed timber [1]. 

In the deterministic structural analysis for fire 
safety, the verification of structure in the time domain and 
strength domain is done by checking the respective ine-
qualities: tf ≥ treq and md,fi = rd,fi – ed,fi ≥ 0, where tf is the 
calculated time to failure; treq is the required time of fire 
resistance (required time to failure); and md,fi, rd,fi, ed,fi are 
design values of safety margin, resistance and action effect 
of the structure under fire situation, respectively. In case of 
the verification in the strength domain, the deterministic 
resistance rd,fi and action effect ed,fi should be conservative 
values (rd,fi should be less than the actual minimum resis-
tance reached during the fire; ed,fi should exceed the “real-
world” action effect at the time of the fire). Although the 
condition md,fi ≥ 0 does not contain the time treq specified in 
the building/design codes, it is stated that the inequalities 
tf ≥ treq and md,fi ≥ 0 give equivalent result as the positive 
value of the difference tfail – treq corresponds to the positive 
value of rd,fi(t) – ed,fi(t) at the moment t = treq. 

The fire severity (destructive potential) of natural 
(real, not nominal) fires is influenced by many random 
factors and so can be highly uncertain. Uncertainties can 
be inherent in the response of structure to fire. For in-
stance, the burning of external wood in a timber structure 
and its conversion to a layer of char can be uncertain in 
terms of the char thickness and distribution over the sur-
face of structural element. This will result in uncertainties 
related to the resistance of timber structure. Therefore it 
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makes sense to measure the fire safety of a structural ele-
ment by a probability that the element will fail during the 
time [0, treq] or, in short, by the failure probability Pf(treq). 
This can be expressed as 

Pf(treq) = P(Tf < treq) = P(Mfi(t) ≤ 0 | ∀t ∈ [0, treq]) (2) 

where Tf is random time to failure; Mfi(t) is time-dependent 
and random safety margin at the time t. With the probabil-
ity Pf(treq), the verification of the conditions tf ≥ treq and 
md,fi ≥ 0 can be replaced by checking their probabilistic 
analogue 

Pf(treq) ≤ Pf,tol (3) 

where Pf,tol is tolerable value of failure probability. A veri-
fication of the condition (3) will require to calculate an 
estimate the failure probability Pf(treq) for a specific situa-
tion of exposure to fire. 

In a general way, the failure probability Pf(treq) 
can be expressed through the so-called instantaneous fail-
ure probability at time t, namely, P(Mfi(t) ≤ 0). The failure 
probability Pf(treq) can then be obtained by integrating 
P(Mfi(t) ≤ 0) over the interval [0, treq] 
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 The expression (4) is of a general nature and dif-
fers from the usual expression of a structural failure prob-
ability by the fact that in the latter the function 
P(Mfi(t) ≤ 0) is averaged over the design working life of 
the structure (structural lifetime), td, and not the relatively 
short required time to failure, treq (e.g. [11, 12]). In addi-
tion, one can expect that the realizations of the random 
variables Mfi(t) are much easier to predict over the time treq 
than the time td. 

To facilitate the estimation of Pf(treq) for a timber 
structure exposed to fire, the expression (4) should be re-
formulated by taking into account two specific processes: 

• the dynamics of natural fire in the room and im-
mediate vicinity of the structure exposed to fire. 

• charring of outer layer of timber element and 
strength and elasticity loss in the residual cross 
section (central core). 
We think the general expression (4) can be made 

more specific by expressing the failure probability Pf(treq) 
through a fragility function. The general way to do this is 
to express Pf(treq) in the following fundamental form 
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where P(Failure | Fire severity j) is general expression of 
fragility function; P(Fire severity j) is probability that the 
severity of fire will reach the level j. The fragility function 
allows to separate the fire modelling problem from the 
problem of modelling the response of timber structure to 
fire. 
 
 

3. General expressions of fragility function 
 

Fully developed or post-flashover fires, which 
may lead to a failure of exposed structure, are rare and 
heavy-to-predict phenomena. Local fires of high intensity 
occurring in large fire compartments with a very large con-
centration of fire loads (e.g. fires in industrial buildings) 
are also highly accidental events. Statistical information on 
thermal actions, which may be induced on a structure by 
surrounding accidental fire, can not be collected and proc-
essed in the same way as information on actions applied 
during the normal use of the structure. 

In many practical problems, a prediction of ther-
mal actions will be dependent on the deterministic com-
puter fire models. Reviews of these models are presented 
by Rasbach et al [3] and Karlsson & Quintiere [13], among 
others. The deterministic models rely on the basic assump-
tion that for a given vector of initial conditions, x, the out-
come y at time t is entirely determined. This can be re-
flected by the function y(x, t | θ), where x is the vector rep-
resenting the input of a computer fire model and θ is the 
vector of parameters of this model. 

In general, the vector y can express fire develop-
ment, its characteristic features, and its consequences. 
However, it is possible to simulate by means of y(x, t | θ) 
thermal actions applied to a specific structure exposed to a 
particular fire situation. 

With the function y(x, t | θ), the safety margin re-
lated to the fire limit state function in question can be ex-
pressed as mfi(z, y(x, t | θ)), where the vector z represents 
time-independent characteristics of the structure. For a 
timber structure, components of z will represent original 
dimensions, mechanical properties of residual cross-
section, and time-independent loads applied to the struc-
ture during fire. Uncertainty in values of z can be ex-
pressed by a joint probability density function fZ(z). The 
time-dependent formation of char and so gradual reduction 
of resistance of the structure can be expressed through 
components of y(x, t | θ). 

In case where both x and z are assumed to be ran-
dom vectors, the instantaneous failure probability can be 
expressed as 

 )0))|,(,(()0)(( ≤=≤ θtmPtMP fifi XyZ  (6) 

This expression allows to define the most general fragility 
function of the structure, which is subjected to fire with the 
initial conditions given by the time-independent vector x, 
namely 
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where F is a short notation of the random event of failure 
during the time [0, treq] 

F = ( Mf (t) ≤ 0 ∀t ∈ [0, treq]) (8) 

In the function P(F | x), the components of x play the role 
of demand variables. However, the number of components 
of x can be large and these variables will not be directly 
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related to the structure, for which the fragility function is 
developed. In addition, the scenario of fire and so the 
simulation result y(x, t | θ) can be influenced by such ran-
dom events as breakage of windows or extinguishing of 
fire by fire brigade. It can be problematic to reflect an oc-
currence of these events by the vector x. 

In conventional fragility functions, the demand 
variables are characteristics of actions for which these 
functions are developed (e.g. peak ground acceleration of 
an earthquake, wind speed of a strong wind, weight of 
snow cover, see Ellingwood et al. [14], Lee & Rosowsky 
[15]). To date, fragility functions are expressed as ones 
having no more than two time-independent arguments 
(demand variables). 

The conventional approach to developing fragility 
functions can be adapted to the case of fire by subdividing 
the general problem of the failure probability estimation 
into two tasks: 

• a computer simulation of fire, which imitates the 
exposure of the structure under analysis to fire, or 
an imitation of fire by full-scale or large-scale ex-
periments (Task 1). 

• an estimation of the failure probability Pf(treq) by 
applying results of the previous task (Task 2). 
The connecting link between Task 1 and Task 2 

can be the signal (time-history) of fire actions, y(t), gener-
ated by simulation or recorded in the experiment. The 
simulated signals y(t) can be generated by means of Monte 
Carlo method [4, 16]. 

Reason for the subdivision in the two tasks is that 
it simplifies the estimation of Pf(treq) and opens several 
theoretical possibilities: 

1. Computer fire simulators and theoretical models 
underlying them can differ in accuracy and the 
time required for the simulation. The signal y(t) 
can be obtained by applying competitive models, 
say, zone models or field models [3]. Two or 
more competitive models can be used in one prob-
lem of estimating Pf(treq) by applying the scheme 
known in QRA as a weighting of alternative mod-
els [17]. 

2. A simulation of the signals y(t) prior to estimating 
the failure probability Pf(treq) may allow to utilize 
QRA tools used to quantify model uncertainties 
[18]. These tools can be used, at least in theory, 
for expressing uncertainties in the signal y(t). 

3. The information on a potential fire expressed by 
the simulated signals y(t) can be augmented by 
signals y′(t) recorded in a full-scale or large-scale 
experiment. The signals y(t) and y′(t) can be com-
bined by applying the Bayesian updating scheme. 
Components of y(t) may be considered to be time-

dependent demand variables. With y(t), the fragility func-
tion can be formulated as a probability of the failure event 
F conditioned on the given signal y(t) 
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 Then the failure probability Pf(treq) can be ex-

pressed as a mean calculated over all signals y(t) 

)))(|(()( )( tPEtP treqf YY F=  (10) 

where Y(t) is time-dependent random vector modeling the 
aleatory uncertainty related to the signals y(t); EY(t)(⋅) is 
mean value with respect to Y(t). 

If it were possible to calculate estimates 
Pe(F | y(t)) of the fragility function P(F | y(t)) for individ-
ual signals y(t) and the number of these signals, N, were 
sufficiently large, the failure probability Pf(treq) could be 
estimated by the average 
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 In other words, the mean value EY(t)(P(F | Y(t))) 
can be estimated by the average of the fictitious sample 
{Pe(F | y(t)), j = 1, 2, … , N}. The calculation of the esti-
mates Pe(F | y(t)) is dependent on the type of structure ex-
posed to fire. The interaction of timber structures with fire 
is somewhat simpler than that of steel and concrete struc-
tures. We think that this relative simplicity can be of use 
for obtaining the estimates Pe(F | y(t)). 
 
4. Peculiarities of fire fragility of timber structures 
 

A calculation of the estimates Pe(F | yj) for timber 
structures can be substantially facilitated by utilizing spe-
cific features of fire damage to these structures and making 
several simplifying assumptions. 

1. The interaction of fire with structure occurs as a 
gradual process of charring over the time [0, treq]. 

2. Charring leads to a gradual reduction of cross-
section and monotonic decrease in time of the sec-
tion resistance rfi(t) (i.e. rfi(t) is a monotonically 
decreasing function of t). The monotonic decrease 
of rfi(t) is caused by monotonic growth of the 
depth of char front (char depth, in short) d(t). 

3. Loads applied to a structure during fire can be as-
sumed to be time-independent random variables. 
This leads to a time-independence of random ac-
tion effect efi. This assumption will not be valid in 
cases where efi can be influenced by such proc-
esses as evacuation of people and goods during 
fire, concentration of people trapped by fire in 
small areas, rapid melting of snow cover due to 
the thermal effect of fire. 

4. The reduction of mechanical properties of residual 
cross-section during fire is low [9]. This allows to 
make the assumption that these properties can be 
modeled as time-independent random variables. 

5. The monotonic decrease of section resistance rfi(t) 
over the time interval [0, treq] and the time-
independence of the action effect efi will result in 
a monotonic decrease of safety margin mfi given 
by the difference rfi(t) – efi. 

6. The monotonic decrease of safety margin mfi al-
lows to express the probability of failure during 
the time [0, treq] as the probability of failure at the 
required time treq. 
The facts and assumptions listed above allow to 

replace the time-dependent safety margin mfi(z, y(x, t | θ)) 
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by a time-independent one, namely 
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where r(z, d(treq)) is the resistance of section at the time 
treq; efi(z) is action effect in the section. The char depth 
d(treq) reached at treq is introduced into the expression of 
rfi(⋅) through a simple modification of original cross-
sectional dimensions [9]. If, for instance, the original depth 
and width of a timber beam section exposed to fire on all 
four sides are the first two components of the vector z, the 
resistance of the section at the time treq should be calcu-
lated using the cross-sectional dimensions z1 – 2 d(treq) and 
z2 – 2 d(treq), where d(treq) is the char depth at treq. 

For a given signal y(t), the char depth d(treq) is ob-
tained from the expression 
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where β(⋅) is a function relating the rate of charring to the 
signal y(t); ξ is vector of arguments of β(⋅) expressing 
physical quantities on which the charring rate depends; θβ 
is vector of parameters in the expression of β(⋅). Buchanan 
[1] provides a short review of literature on the charring rate 
modeling. The state-of-the-art form of the function 
β(t, y(t), ξ | θβ) is presented by Hietaniemi [7, 8]. 

Typical components of the vector ξ are density 
and moisture content of the wood. 

The relation (13) means that the damage due to 
the fire with the given signal y(t) accumulated over [0, treq] 
can be unambiguously expressed by the single char depth 
d(treq). Consequently, the estimation of the fragility func-
tion P(F | ⋅) for the given signal y(t) can be replaced by an 
estimation of P(F | ⋅) for d(treq), namely 

0))())(,(())(|( <−= ZZy fireq etdrPtP F  (14) 

To facilitate the calculation of the fragility func-
tion estimates Pe(F | y(t)) used in the final failure probabil-
ity estimate (11), one can introduce yet another fragility 
function 

)),(|())(|( zy ′= reqtdPtP FF  (15) 

where z′ is vector including those components of z which 
express the time-independent loads acting on the structure 
during the time [0, treq]. If these loads are not excluded 
from the vector z, the fragility function P(F | ⋅) can be rep-
resented as a single-argument function 
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 The form of the functions (15) and (16) is very 
close to the one of traditional fragility functions used in the 
structural reliability assessment [14, 15]. The only differ-
ence is that the geometrical quantity d(treq) calculated by 
evaluating the integral (15) is used as a demand variable. A 
developing of the fragility functions P(F | d(treq), z′) or 
P(F | d(treq)) is a standard problem of structural reliability 
analysis. 

An application of the fragility functions 
P(F | d(treq), z′) or P(F | d(treq)) can decrease the computa-
tional effort necessary to obtain the set of N estimates 
Pe(F | y(t)) used to estimate the failure probability Pf(treq). 
However, these functions can be even more useful in the 
case where there is a need to quantify uncertainties related 
to the models used in the analysis, namely, the models 
y(x, t | θ) and β(t, y(t), ξ | θβ). 
 
5. Modeling epistemic uncertainties 
 

Expression (11) yields the point estimate Pfe of 
the failure probability Pf(treq). This can be treated as a 
measure of the aleatory uncertainty in the occurrence of the 
failure event F. However, the key models y(x, t | θ) and 
β(t, y(t), ξ | θβ) used to estimate Pf(treq) contain large num-
ber of parameters (components of θ and θβ) which can be 
uncertain in the epistemic sense. In principle, measures of 
epistemic uncertainty can also be assigned to outputs of 
these models, namely, the simulated signal y(t) and the 
charring rate β(t). 
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Fig 1 Fragility function values calculated for fixed char 

depths dj(treq) and uncertain char depths Dj(treq) 

The presence of the epistemic uncertainties gen-
erates the need to propagate them and express in the form 
of epistemic uncertainty related to the failure probability 
Pf(treq). The distribution of the epistemic uncertainty in 
Pf(treq) will quantify the accuracy of estimation of this 
probability. For the sake of brevity, the present section will  
consider how to transform the epistemic uncertainty related 
to components of the parameter vector θβ of β(⋅) into one 
related to Pf(treq). Along with this uncertainty, the estima-
tion of Pf(treq) will have to deal with an aleatory uncer-
tainty in components of the argument vector ξ of β(⋅). The 
presence of the two different sources of uncertainty will be 
denoted by the function β(t, y(t), Ξ | Θβ), where Ξ and Θβ 
are random vectors expressing the aleatory uncertainty in ξ 
and epistemic uncertainty in θβ, respectively. 

Practical estimation of the failure probability 
Pf(treq) can be carried out with simulated realizations yj of 
y(t) having the form of the sequences 

yj = {yj(tτ), τ = 1, 2, … , Nτ} (17) 

where the times tτ are obtained by dividing the time period 
[0, treq] into a relatively large number Nτ of small internals 
 Δt. The sequences yj can be generated by a Monte Carlo 
simulation of fire scenarios as described by Hostikka & 
Kesti-Rahkonen [6] and Hietaniemi [7, 8]. 

With the sequence yj, the j th simulated value of 
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the char depth d(treq) is calculated by 
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where y1j(tτ) is temperature of gases at the beam surface 
(°C); y2j(tτ) is oxygen concentration influencing beam char-
ring (%). The components of yj are graphically represented 
by Fig. 2. The conditional probability of failure of the 
beam, P(F | yj), is to be estimated for the given sequence yj 
and the required time to failure treq = 60 min.  For given ξ and θβ, the value of dj(treq | ξ, θβ) 

yields a single value of the fragility function P(F | ⋅), 
namely, P(F | dj(treq | ξ, θβ)) (Fig. 1). The aleatory uncer-
tainty in ξ expressed by Ξ can be averaged out through the 
fragility function P(F | ⋅). This operation will yield the 
probabilities 

))],|(|([)( ββ θΞθ Ξ reqjj tdPEp F=  (19) 

In case where components of the parameter vector 
θβ are uncertain in the epistemic sense and this uncertainty 
is modeled by Θβ, the function pj(θβ) will generate the 
epistemic random variables 

)( βΘjj pP =
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 They can be used to compose another epistemic 
random variable 
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 The variable fP  will quantify the epistemic un-
certainty in the failure probability P

~

f(treq) (Fig. 1). 
The distribution of the random variable  ex-

pressed, say, by a density π
fP~

0(p) can be interpreted as a 
prior distribution in the standard Bayesian updating proce-
dure [19, 20]. The prior density π0(p) will reflect the uncer-
tainties present in the char depth model (19). In principle, 
the function π0(p) can also reflect the epistemic uncertain-
ties related to the computer fire model y(x, t | θ). 

Fig. 2 Graphical representation of the realization yj = 
= {(y1j(tτ), y2j(tτ)), τ = 1, 2, … , 60} of the signal y(t) 
(Δt = 1 min): a – sequence of temperatures y1j(tτ),  
b – sequence of oxygen concentration y2j(tτ) 
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It is technically possible to update the density 
π0(p) by collecting a small-size sample of char depths {d′1, 
d′2, … , d′n}. They can be recorded at the time treq in a se-
ries of experiments which imitate the fire exposure of 
structure under analysis. The new evidence for the updat-
ing can be the sample of fragility function values given by 
{P(F | d′1), P(F | d′2), … , P(F | d′n)}. The updating will 
yield a posterior density π1(p). Both π0(p) and π1(p) can be 
used for calculating conservative percentiles related to the 
failure probability Pf(treq). These percentiles can then be 
applied to verification of the fire safety criterion (3). 
 
6. Numerical illustration 
 Fig. 3 Fragility function fitted to the estimated values of 

the conditional failure probability P(F | d(60)) A simply supported timber beam spans 4.5 m and 
carries random variable load Z1 and random permanent 
load Z2. The original width and depth of the beam are as-
sumed to be random. They are modelled by the respective 
variables Z3 and Z4. The strength of the beam is expressed 
by the random variable Z5. Probability distributions of 
these random variables are listed in Table 1. The beam can 
be subjected to a fire represented by the sequence 

 
The load due to the beam weight was added to the 

permanent load. Negative effect of corner rounding in the 
residual section is ignored for simplicity. It is assumed that 
the beam sections will be exposed to fire on three sides. 

The action effect efi(z) and the resistance 
r(z, d(60)) of the beam at mid-span are expressed in the 
form yj = {(y1j(tτ),(y2j(tτ)), τ = 1, 2, … , 60; Δt = 1 min} (22) 
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Table 1 
Aleatory random variables used in the problem (components of Z and Ξ) 

 

Name Notation Mean Coeff. of variation Distribution 
Permanent load Z1 0.5 kN/m 0.07 Lognormal 
Variable load Z2 2.0 kN/m 0.15 " 

Width Z3 0.10 m 0.03 Normal 
Depth Z4 0.25 m 0.03 " 

Timber strength Z5 15 MPa 0.17 Lognormal 
Wood density Ξ1 420 kg/m3 0.07 " 

Wood moisture content Ξ2 8.1 % 0.06 Normal 
Volumetric oxygen concentration Ξ3 20 % 0.03 " 

Initial ambient temperature Ξ4 20 °C 0.05 " 
 

efi(z) = 2.53 (z1 + z2) (23) 
 

2
435 0))6(0))(6(2(.166700))6(,( dzdzzdr −−=z  (24)  

 
 Eq. (24) is a simplified expression of resistance 
used for the sake of brevity. More accurate models of the 
resistance of glue-laminated timber beams are presented by 
Ngamcharoen et al. [21] and Toratti et al. [22]. 

With Eqs. (23) and (24), the fragility function 
P(F | d(60)) takes on the form 

×−= 0))6(2(.166700))6(|( 35( dZZPdP F   

))2.53(0))6(( 21
2

4 ZZdZ +−−×  (25) 

This function has one demand variable d(60). Values of 
P(F | ⋅) estimated by means of Monte Carlo simulation for 
the char depth range d(60) = 3 - 40 mm are shown in 
Fig. 3. This figure also contains the normal distribution 
function F(⋅) fitted to the estimated values 

P(F | d(60)) = F(d(60) | μ = 24.7, σ = 4.66) (26) 

where μ and σ are in mm. 
The charring rate β(⋅) is modeled by the random 

function β(t, y(t), Ξ | Θβ). Probability distributions of its 
aleatory arguments Ξ and epistemic parameters Θβ are 
summarized in Tables 1 and 2, respectively. The empirical 
expression of β(⋅) was adopted from Hietaniemi [7, 8] 
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where σ ′  = Stefan-Boltzmann constant [1, 23]. 
The estimation of the conditional damage prob-

ability P(F | yj) amounts to a propagation of uncertainties 
through the models (27), (13), and (26). Results of this 
propagation can be expressed by samples of the following 
quantities obtained by applying Monte Carlo simulation: 

( ) [ (60| , )]mj k j kd E dβ β= ≈Ξθ Ξ θ 1

1

(60| , )
N
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N d
ξ

ξ
−

=
∑ βξ θ  (28) 

 

Table 2 
Epistemic model parameters used in the problem 

(components of  Θβ) 
 

Param-
eter 

Original nota-
tion* 

Epistemic probability distribu-
tion** 

Θβ1 ξ U(5.5, 0.2255), % 
Θβ2 ψ0 T(2.7, 3.6, 5.0) 
Θβ3 τ T(90, 100, 110), min 
Θβ4 ϑ T(1.026, 1.162, 1.387), kW/m2

Θβ5 h T(11, 13, 15) 
Θβ6 ρ0 N(465, 93), kg/m3

Θβ7 A U(505, 1095), kJkg 
Θβ8 B U(2430, 2550), kJkg 
Θβ9 p N(0.5, 0.04) 
* In Hietaniemi [7, 8] 
** U = uniform; T = triangular; N = normal 
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Fig. 4 Visualisation of the simulation results: a – histogram 

of the values of mean char depths dmj(θβk), b – his-
togram of the fragility function values pj(θβk)  
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where θβk = value of Θβ sampled from the probability dis-
tributions given in Table 2 (k = 1, 2, … , 1000);ξl = value 
of Ξ sampled from the probability distributions given in 
Table 1 (k = 1, 2, … , Nξ; Nξ = 1000). 

The histogram of the sample {dmj(θβk), k = 1, 2, 
…, 1000} shown in Fig. 4 expresses the influence of the 
epistemic uncertainty in components of θβ on the accuracy 
of predicting the char depth for the fire characterized by 
the fixed sequence yj. The histogram of the sample {pj(θβk), 
k = 1, 2, … , 1000} expresses the degree of epistemic un-
certainty in the unknown value of the failure probability 
P(F | yj). 
 
7. Conclusions 
 

This paper presented a probabilistic approach to 
assessing the safety of timber structures exposed to fire. 
The probability that a timber structure will fail during the 
required time of fire resistance was applied as a measure 
inversely proportional to the fire safety. This probability 
can be estimated by developing a fragility function for a 
timber structure under analysis. The fragility function al-
lows to relate results of a probabilistic computer simulation 
of potential fire to the failure probability of exposed struc-
ture. 

The particular feature of timber structures is that 
the key demand variable of the fragility function is the 
depth of char front at the moment of required time to fail-
ure. Further demand variables can, if necessary, be the 
intensities of permanent and variable loads applied on the 
structure during the fire. 

An application of the fragility function can be 
very helpful in cases where the problem of failure prob-
ability estimation involves both aleatory and epistemic 
uncertainties. In this case the fragility function can be used 
for propagating epistemic uncertainties. These uncertain-
ties are usually related to mathematical models applied to 
the computer fire simulation and calculation of the char 
depth. They can be transformed through the fragility func-
tion into the epistemic uncertainty in the probability of 
failure. 
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E. R. Vaidogas, V. Juocevičius 

GAISRO VEIKIAMOS MEDINĖS KONSTRUKCIJOS 
PATIKIMUMO VERTINIMAS NAUDOJANT 
PAŽEIDŽIAMUMO FUNKCIJĄ 

R e z i u m ė 

Atsitiktiniai gaisrai pastatuose ir jų sukelti pažei-
dimai yra sunkiai nuspėjami ir neapibrėžti reiškiniai. Tiks-
liai prognozuoti gaisro veikiamos konstrukcijos suirimo 
neįmanoma. Galima tik vertinti jos patikimumą arba jam 
atvirkščią dydį – suirimo tikimybę. Pastarąją galima įvai-
riai matematiškai išreikšti. Šiame darbe suirimo tikimybė 
yra apibrėžiama naudojant medinės konstrukcijos pažei-
džiamumo funkciją. Straipsnyje aprašytas gaisro veikiamos 
masyvios medinės konstrukcijos pažeidžiamumo funkcijos 
sudarymo metodas, leidžiantis įvertinti stochastinius ir 
episteminius neapibrėžtumus. Pažeidžiamumo funkcija 
leido susieti tikimybinio gaisro modeliavimo rezultatus su 
konstrukcijos pažaidos tikimybe. Pažeidžiamumo funkcijos 
formulavimas paremtas galimybe medinės konstrukcijos 
pažaidą išreikšti medienos apanglėjimo gyliu. Medienos 
apanglėjimo gylis laikomas pagrindiniu sijos pažeidžia-
mumo funkcijos argumentu. Konstrukcijos suirimo tiki-
mybės įvertis skaičiuojamas kaip pažeidžiamumo funkcijos 
reikšmių vidurkis. 

E. R. Vaidogas, V. Juocevičius 

RELIABILITY OF A TIMBER STRUCTURE EXPOSED 
TO FIRE: ESTIMATION USING FRAGILITY 
FUNCTION 

S u m m a r y 

Natural fires occurring in buildings and damage to 
structures caused by these fires have always been uncertain 
phenomena. Failure of a structure exposed to a natural fire 
can not be predicted with certainty. The present paper de-
scribes an approach to an estimation of failure probability 

by developing a fragility function for a timber structure 
exposed to the hazard of fire. The fragility function is used 
to relate results of a probabilistic computer simulation of a 
potential fire to the probability that an exposed structure 
will fail during this fire. The developing of the fragility 
function utilizes the fact that fire damage to an unprotected 
timber structure can be expressed through the depth of char 
front. This depth is used as a key demand variable of the 
fragility function. The estimate of the failure probability is 
calculated as a mean of fragility function values. 

Э. Р. Вайдогас, В. Юоцявичюс 

НАДЕЖНОСТЬ ДЕРЕВЯННОЙ КОНСТРУКЦИИ 
ПОД ДЕЙСТВИЕМ ПОЖАРА: ОЦЕНКА ПРИ 
ПОМОЩИ ФУНКЦИИ ПОВРЕЖДЕНИЯ 

Р е з ю м е 

Непреднамеренные пожары в зданиях и по-
вреждения причиненные ими всегда были сложно 
предсказуемыми и неопределёнными явлениями. Точ-
но определить вероятность разрушения конструкций 
под аварийными влияниями пожара невозможно. В 
этой статье описан метод для создания функций по-
вреждения массивной деревянной конструкции под 
действием пожара, позволяющий оценить стохастиче-
ские и эпистемные неопределённости. Функция по-
вреждения позволила соединить результаты вероятно-
стного моделирования пожара с повреждением конст-
рукции. Моделирование функций повреждения осно-
вывается на возможности выразить повреждение кон-
струкции глубиной обугливания дерева. Эта глубина 
принята как главная переменная в компьютерном мо-
делировании функции повреждения. Вероятность раз-
рушения конструкции выражается и оценивается как 
среднее значение функции повреждения. 
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