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1. Introduction

The aim of structures design is to secure their safe
work in particular exploitation period with a view of econ-
omy. Structures design, regulated by design standards [1,
2], is based on the method of limit states and operates with
deterministic material physical properties and external ac-
tion values. Partial reliability ratios and combinations of
them secure the reliability of the structures. Direct prob-
ability design (DPD) [3-7], directly allows to control safety
bounds of the structures by using probability theory and
statistical calculations. The application of energy extre-
mum principle is natural for both mechanical and mathe-
matical view while formulating and solving deterministic
[8, 9] and stochastic [10, 11] problems of structures analy-
sis and optimization.

DPD of optimal steel trusses is analyzed in this
paper by using equilibrium finite elements [12] and
mathematical programming means [13]. The variations of
material physical-mechanical characteristics, element
cross-sections geometrical characteristics and external ac-
tions are estimated in design process as random values
approximated by normal distribution law. Mathematical
model allows designing trusses from one load case, but
since these trusses work only in elastic stage the problem
and algorithm easily can be reconstructed for trusses de-
sign from several load cases. Trusses are designed from
steel profiles (HE, IPE, TUB) considering to the dispersion
of profiles discrete characteristics and directly estimating
reliability requirements of strength and stability for bar
elements.

Solution algorithm of obtained DPD mathematical
model for optimal trusses is realized in MathWorks
MATLAB environment analysis and optimization system
JWM SAOSYS Toolbox v0.40 (Structural Analysis and
Optimization System) created by the authors’ for structures
modeling by finite elements. MATLAB characterizes by
convenient usage, numerous functional and supple
technological facilities. Jointly with optimization problems
solving key modulus Optimization Toolbox it became
effective tool for experimental systems design.

Numerical example of bridge-truss DPD sub-
jected to static loading is presented. Analysis of material
physical-mechanical properties, variations of external load-
ing and the influence of element limit reliability indices on
truss volume is performed.

Owning the data of statistical control, evaluating
the dispersion of random values more exactly and com-
plexly applying mathematical programming theory for the
solution of optimization problems we can not only guaran-
tee sought reliability of the structure elements but also to
create more economic projects.

2. Mathematical model of optimal trusses

Optimal trusses DPD considering the reliability of
strength and stability reserve is carried out by solving
nonlinear mathematical programming optimization prob-
lem:

find min L' A, (1
subjectto:  [A]N =p,, )
, N>0;
By V)2 [0 (3)
By, N<O.
AO 2 AO,min N (4)

Mathematical model of optimization problem (1-
4) consists of: objective function (truss minimal volume
criterion) (1); truss static equilibrium equations (2); truss
elements reliability indices nonlinear conditions (element
designing conditions) (3); structural restrictions (4). Here:
L is the length vector of truss elements; Ay is the areas vec-
tor of elements cross-sections (optimized parameter); [A4] is
the ratios matrix of truss equilibrium equations; N is the
elements axial forces vector; ur is the mean values vector
of truss external forces; f(*) is the elements reliability indi-
ces vector-valued function; fo,, fo,. are the limit reliability
indices vectors of the elements under tension and compres-
sion respectively. Unknowns of the problem (1-4) are:

Ay=p,, N=py.

3. Reliability of element strength reserve

Statistical probability dispersion is a characteristic
for material properties (elastic modules E; and steel design
strengths under yield bound R,;), cross-sections geometry
(cross-sections areas A4; and inertia moments /;) and exter-
nal actions F; for random values. Dispersion of the named
properties can be enough well approximated by Gauss-
Laplace’s distribution law characterized by mean value uy

and dispersion o

X={E,R, A LF}; X eN(u. o) (5)
i=1,2,3,..

The truss consist of a set K of bar elements. The
strength reserve Z, of every element under tension or com-
pression is equal to the difference between the element
axial capacity Ny, and action effect N;

Z,=N,,-N,, kek (6)



Limit state function of element strength reserve Z;, with
varying arguments we can write in the following form

Z,=z(4y,. 1,1, R, B, N, ) =z(x)
B AO,kRy,k _Nk’
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where buckling ratio function of the element under central
compression is
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The influence of the variation of beam elements
lengths /; on the element strength reserve is not considered
in this paper.

Normal distribution is characteristic to the func-
tion of element strength reserve Z;

Z, eN(,qu;O';) (10)

which is dependent on the arguments distributed under
normal law (5). Mean strength reserve u, and standard

deviation of strength reserve o, describe the normal dis-

tribution and can be defined as follows

Hz, :Z(Ao,k’lk’lk’:uRy‘k’:uEA’Nk):Z(:ux) (11)
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The definition of the real standard deviation is
realized as follows
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here v, ,v, are variation ratios of cross-section area and

inertia moment respectively. The partial derivatives values
%¢_ at the points g is calculated by such formulas:
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where the definition of the partial derivatives values 5, of
buckling ratio by numerical differentiation method is dis-
cussed in the other section.

According to the normal distribution characteris-
tics 4, and o, of the strength reserve Z; (Fig. 1) we can

define and control the probability a; of the limit state event
described by the reliability index f; of the strength reserve

ak=l—¢(ﬂk) (19)
p =4 20)
oy

The condition of element design we can write as follows

S ﬂo‘t‘k’ N, 20
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Fig. 1 Distribution of element Z;, failure and safe regions

Before designing of the structure we set strength
reserve Z; limit reliabilities Py, Po. for every element.
Applying tabels P = @(p) [1, 4] we define strength reserve
limit realibility indices Sk, fo.x Of the elements under
tension and compression.



4. Statistical indices of element internal forces

Elements axial forces vector V (the variable of the
problem) is equal to the mean axial forces vector N = u,,

in optimization problem (1)-(4). Elements axial forces un-
known standard deviations ey (12) are in the elements ax-
ial conditions (3). Truss analysis problem is needed to de-
fine these deviations.

The full system of equations of truss analysis
problem is

{[A]N =F,

(AT u-[D(p)]N =0 =

here p={E, 4,} are materials elastic modules and ele-

ments cross-sections areas vector (1n,x1). We can solve this
system of equations (22) with respect to N. We will get
then such an elastic internal forces vector solving formula,
which is expressed by influence matrix [Q(p)]

N(F.p) =[D(p)] [T ([AI[2(p)] [A] ) F -
=[o(p)]F @)

Matrix-function of internal forces influence of structure
elements has the following form
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Axial force of separate element, expressed by in-
ternal forces influence functions, we can write as follows

N, (F» P) =4 (p)E 4, (p)Fz ot G, (P)Fm (25)

Since for function Ny(F, p) arguments is characteristic
normal distribution law, the following denotation is true

Ne {N(ﬂN; diag (6 )oy )}’

26
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The standard deviation of axial force is calculated

as follows
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Performing differential calculus we can write:
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Finally standard deviation of element axial force N is cal-
culated as follows

Oy 10y =
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Calculations of partial derivatives are needed to
define standard deviations vector oy of the structure axial
forces. Searches of such derivative analytical shapes are
senseless or impossible while designing structures of vari-
ous complexities. Therefore, Richardson’s finite differ-
ences numerical extrapolation method is applied to calcu-
late the derivatives values. Function derivative of one ar-
gument at point x, is calculated as follows

1
:E[f(xo—Zh)—8f(x0—h)+

+8f (x,+h) = f (x,+2h)]+O(h*)  (31)

I (%)

where £ is set function variation.

5. Assortments: discrete characteristics fields of profiles
in structure optimization

Design of steel structures is inseparable from the
discrete sets of profiles assortments. Analyzing the distri-
bution of discrete characteristics of /-4 cross-sections
(Fig. 2) we can notice, that there is no homologous relation
among these characteristics. Therefore, the allowable point
of cross-sections geometrical characteristics

kG = {Ao’k, Ik} of the discrete field 7,4, has to be found

while optimizing. Thus, for the whole structure we can
write

[G]=[4,.G,] (32)

The mathematical model (1)-(4) of truss optimiza-
tion problem has only one optimized parameter 4, (one
problem variable), which is the vector of optimized leading
geometry. Moments of inertia of optimized cross-sections
I, compose the driven (controlled) geometry vector Gj.
Leading geometry A, is optimized by iterative solving of
optimization problem (1)-(4), while driven geometry Gy is
corrected with reference to conditions of the optimization
problem constraints (3) and admissible field bounds of
assortments 7,,,,(A4), Lin(A).



Fig. 2 Discrete values field .7, and admissible I-4
characteristics field of TUB profiles assortment

6. Trusses design algorithm and its programmable rea-
lization

The algorithm is realized in complex MATLAB
and authors’ created JWM SAOSYS Toolbox v0.40 system
of structures modeling, analysis and optimal design.
Further we will describe the main parts of truss stochastic
design algorithm (Fig. 3) and its realization.

Truss modeling. Parameterize and model the
truss by elastic equilibrium LINKI1 finite elements under
tension or compression [12]. Create the input file (Batch
and Data File) of initial data of the structure model
(SAOSYS preprocessor).

Preparing of design environment. After reading
input data file, the routine P1 of SAOSYS preprocessor
creates the database DB of the structure (MATLAB struc-
tural data field). The routine P2, which controls profiles
assortments, reads and prepares steel profiles HE, IPE,
TUB assortments from SRT database. The routine P3 col-
lects the finite elements library FELIB of SAOSYS sys-
tem. Lastly, the routine P4 creates and initiates the ensem-
ble FE of finite elements, which compose the structure.

Preparative calculations. The routine P5 creates
the ratios matrix [A4] of the truss equilibrium equations, the
mean values vector uy of the external loads and the stan-
dard deviations vector 6. Prepare the edge values vectors
Ao,mins Aomaxs Grmins Grmax Of the optimal geometry sec-
tions areas Ag; and inertia moments /; with reference to
SRT database of profiles assortments. Prepare the total
lengths vector L and the lengths vector L,,,, of the longest
elements in elements groups of the structure. Prepare the
indices vectors By, fo. of a limit reliability of the truss
elements under tension and compression respectively. Cre-
ate the material characteristics mean values and standard
deviations vectors: ug, Mgy, g, Ory,. Create the variation
ratios vectors v, v, of the optimal cross-sections areas

inertia moments respectively. Prepare the partial ratios
vectors 1, , 15 for the solution of partial derivatives with

finite differences.
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Solving of the optimization problem. Solving of
the optimization problem (1)-(4) we perform by an itera-
tive approximation way and begin with the biggest vectors
of the optimal cross-sections areas A4, = A4 and inertia

0,max

moments G, =G,

,max

Step 1: calculate finite variations of the cross-
sections areas and inertia moments for numerical solution
of functions partial derivatives

3, = a’iag(iyAu )Ao ; O = diag(ncl )Gl (33)

Calculate the standard deviations vectors of the cross-
sections areas and inertia moments

G, = diag(vAo )AO ; O = diag(le )Gl (34)

Step 2: calculate the influence matrix [Q(u,)]
(23) of the mean internal forces of the truss elements. Cal-
culate the standard deviations vector oy of the truss ele-
ments internal forces by Richardson’s method numerically
differentiating the matrix [Q(p)] according all the members
of the vector p and applying the formula (30).

Step 3: to perform one iteration the routine P6
solves the prepared optimization problem (1)-(4) of nonlin-
ear mathematical programming. If the optimization prob-
lem was solved successfully — optimal solution was found
— we have a new vector A4, of the optimal cross-sections

areas and the vector /V of the truss elements axial forces
mean values.

If the solution of the optimization problem was
not successful (an admissible point, optimal solution were
not found) — increase the areas vector 4, of the optimal
cross-sections

A, —A
l(Aé,ﬁAo,k), M> :
Ay =2 A5, keK (35
4y, otherwise
*, prev

here: 4;, = is optimal area of the optimal cross-

section in the previous iteration; & is relative threshold
(107 %) of recurring increase of Aqy; & is the partial ratio
of direct increase of 4. Correct the inertia moments vec-
tor G and return to the Step 1.

Step 4: the routine P7 performs the correction of
the cross-sections driven geometry vector Gy (the inertia
moments vector).

Step 5: Calculate the volume V of the structure

with the new A, . Perform this iterative process till con-

Jk

vergence conditions of the problem will not be satisfied:

—|A0’k_A0’k ,keK <€, —| ,_V|
/,k V!

max <g, (36)

here: V”is the volume of the previous iteration structure;
&, - € are the convergence tolerance criterions (0.1 %) of

the cross-sections areas and structure volume respectively.
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Fig. 3 The algorithm SAOSYS-TrussDPD of a direct probability design of optimal trusses

Correction procedure of the cross-section ge-
ometry G;. The concept of element groups set R we make
out while designing the truss. We optimize the geometrical
characteristics {4,,, G,} of single elements groups » € R.
These characteristics compose the vectors pair 4y and G;.
Since we operate with element groups, the entirety of ele-
ments, which enter into the » group, we make out by inter-
section of sets — K N R,. The vector Gy of optimal cross-
sections limit inertia moments — is the vector, which satis-
fies the element design conditions (3) and the bounds of
the admissible discrete fields .74 of profiles assortments

=1

lim

G =1

lim (AO ’ N’ Lma.x ’ ‘)21)7/1 ) (37)

Define the limit inertia moments [
tim = {Limr, ¥ € R} of cross-sections (elements under com-
pression — stability conditions) by solving such an equation
of reliability indices for every element

ﬁk (Ag,r’ Nk s Lmax,r’ [[im,r,k ) = ﬂO,L‘,k H (38)
keKNR, reR

Finally we define the limit inertia moment of cross-section
of elements group-set R,

1

lim,r lim,r,k >

=max{l,,,.. ke KNR} (39)

also controlling and correcting satisfaction of the limit in-
ertia moments [, in the bounds conditions of discrete
admissible fields of profiles assortments

L (A0, ) S Ly < L, (45, (40)

Solve the equation (38) by numerical method, se-
quentially increasing the argument 7, ., value of the func-

tion [i’k () by the step ¢ and controlling the inequality

ﬁk -By.. (Fig.4). Automatically it performs such a func-
tion of MATLAB-SAOSYS

x = ConFunArgValSearch(hF, y, vint, tol, <N>)

where: x is the found value (/;,,) of function argument;
hF — function handle (@ 5,(1,,,,) = ﬁk ()); y is function
result (By.); vint is the vector of search interval {/,;,,,
L.} tol is search tolerance; N is granulation of search
interval (optional parameter).

Define the discrete bounds “7,i.,, *Lyax, Of as-
sortments profiles (Fig. 5) with reference to binary-bared

search of discrete values, which is performed by such a
function

vp = BinBarSearch(vD, x, b)

where: vp is the indices vector of discrete points got into
the bar; vD is the vector (A4, .5 ) Of discrete values



aligned in the increasing order; x is the real value (A;)r );

b is the width of search bar. Define discrete bounds accord-
ing to the vector vp and perform the return of no admissi-

ble points {A&y,]lim,r} (Fig. 5 the points / and 3) to the

admissible zone (the points 4 and 5).

Bt

ﬂO,c,k

ot

I
Imin’r Imax, r

Fig. 4 The limit [j,,; definition of the element under
compression with reference to equation (38)

-

I, m

gjlrl(l.\,l‘(A ; 1‘)

Il[m’r
D *
]min,r(A O,r)

Fig. 5 Binary-bared search: return to the admissible field

Partial derivatives by the Richardson’s nume-
rical extrapolation method. To calculate the partial deri-
vatives (31) of functions such a function is created

d = RichFDE(hFun, cvX0, np, h)

where: d is the value of calculated derivative; hFun is func-
tion handle; cvXO0 is the point-vector of derivative calcula-
tion; np is the number of function argument with reference
to which differentiation is performed; h is argument finite
difference.
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7. Numerical example

Design structure. The bridge-truss subjected to
one load case (Fig. 6) is designed. Material of the elements
— steel S275: pp = 210 GPa; o = 25.200 GPa; ug, =
=275 MPa; o, = 8.333 MPa. The truss modeled by equi-
librium LINK1 finite elements consist of: 14 nodes; 30
finite elements; 3 design parameters R ; (elements cross-
sections). Truss flanges (R}, R;) are designed by IPE, and
grid (R;) — by TUB profiles. Profiles variations ratios of
cross-sections areas and inertia moments respectively are:
vy = 10%; v; =5%. The truss is subjected by nodal loads:
tr1=55kN; gp= 10.061 kKN; = 90kN; 0 =16.463 kN.

Limit reliability index of the elements under ten-
sion is set By, = 1.64 (probability of failure Py, = 0.0505);
elements under compression — £, = 3.00 (P = 0.00135).

Results. DPD of bridge-truss was performed by
iterations. 10 approximation iterations were performed at
all (Fig. 7). Calculated optimal theoretical cross-sections
and the closest found profiles for them are presented in the
table (Table). Designed structure volume is ¥'=0.210 m’.
To find the values of discrete profiles it is necessary to
perform discrete optimization of truss DPD, the realization
of which is intended in the future.

Table
Calculated optimal theoretical cross-sections (*) and the
closest profiles to these cross-sections

Profile Ao m> 1, m*

Ry * 2.636:10° 1.009-10°¢

IPE 0180 2.710-10° 1.173-10°°

IPE 180 2.395-10° 1.009-10°°
. IPE200 2.848-10° 1.424-10°

Ry: * 5.911-10° 7.881-10°¢

IPE 330 6.261-107 7.881-10°°

IPE 0300 6.283-107 7.457-10°°
__IPEA330 5474107 6.852:10°

Ry * 4.476-10* 1.034-10°

TUB 20x45x4.0 4.560-10™ 246710

TUB 25x40x4.0 4.560-10™ 3.898-10°

TUB 30x40x3.5 4.410-10" 5.083-10°

Consumption diagram of truss elements reliability
indices A4f = p,—f (Fig. 8) shows, that truss elements

E{3,8,9,22,25} are designed in the state of the limit reli-
ability index . Reliability indices of the truss bottom
flange are distributed in the interval S, = [1.640; 3.703],
top flange — fs.14 = [3.000; 5.100], grid — 530 = [1.640;
8.022].

The influence of limit reliability index on the
truss volume V(f) (Fig. 9) is performed, and the influence
of standard deviations of external loads to the truss volume
is realized through the loads reliability ratio

Ve —1
1.64

(41)

Op = Ur

Also the influence of standard deviation of the
steel yield strength o, and steel elastic modulus o on the

structure volume is performed and shown in the diagram
(Fig. 10).
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Fig. 9 Truss volume dependencies on the limit reliability
index £ and loads reliability ratio y

8. Conclusions

1. Direct probability design of optimal trusses is
an optimization problem of nonlinear mathematical pro-
gramming, which can be solved in approximation way.

2. Applying the principle of admissible fields of
assortments profiles characteristics (optimized leading G
and controlled driven geometry G;) we can directly esti-
mate the distribution of profiles discrete characteristics.

3. SAOSYS system created by the authors’ and its
modulus of trusses direct probability design TrussDPD
allows to model and design any plane trusses from assort-
ments profiles evaluating elements strength and stability

Fig. 8 Outgo diagram of truss elements reliability index
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, MPa| g, GPa

Cry
Fig. 10 Truss volume dependency on steel
standard deviations

ORry, OF

reliabilities separately in the cases of tension or compres-
sion deformation.

4. The volume of the bridge-truss analyzed in
numerical example responds fairly sensitively to the varia-
tions of the limit reliability index £, loads and material
physical-mechanical properties.

5. With reference to the data of statistical control
and applying mathematical programming theory we can
not only guarantee the safety reliability of the structure
elements but also create more economic projects.
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OPTIMALIU PLIENINIU SANTVARU TIESIOGINIS
TIKIMYBINIS PROJEKTAVIMAS MATLAB
APLINKOIJE

Reziumé

Straipsnyje nagrinéjamas optimaliy plieniniy san-
tvary tiesioginis tikimybinis projektavimas taikant mate-
matini programavima. Projektuojant atsizvelgiama | me-
dziagy fizikiniy-mechaniniy savybiy, elementy skerspjiiviu
geometriniy charakteristiky bei iSoriniy poveikiy variaci-
jas, taip pat { elementy stiprumo atsargos ir stabilumo pati-
kimumo reikalavimus. Sudarytas optimaliy santvary pro-
jektavimo netiesinio matematinio programavimo uzdavinio
matematinis modelis. Pasiiilytas santvaros elementy pro-
jektavimo i$ sortimentiniy profiliuo€iy, tiesiogiai vertinant
ju diskretiniy charakteristiky sklaida, algoritmas. Projekta-

37

vimo algoritmas realizuotas MATLAB aplinkoje, autoriy
sukurtoje JWM SAOSYS Toolbox v0.40 konstrukcijy mo-
deliavimo baigtiniais elementais, analizés ir optimalaus
projektavimo sistemoje. Pateiktas tiltinés santvaros, vei-
kiamos vienkartés apkrovos, tiesioginio tikimybinio opti-
malaus projektavimo pavyzdys.

V. Jankovski, J. AtkocCitinas

MATLAB IMPLEMENTATION IN DIRECT
PROBABILITY DESIGN OF OPTIMAL STEEL
TRUSSES

Summary

Direct probability design (DPD) of optimal steel
trusses using mathematical programming means is dis-
cussed in this paper. The variations of material physical
and mechanical properties, elements cross-sections geome-
try characteristics and external actions are considered
while designing. Strength and stiffness requirements of
truss elements are estimated. The mathematical model of
nonlinear mathematical programming problem of optimal
trusses design is created. Solution algorithm of truss ele-
ments (picked from profile assortments) design, directly
evaluating dispersion of profiles discrete characteristics, is
proposed. The finite elements structures analysis and opti-
mization software JWM SAOSYS Toolbox v0.40, which is
created in MATLAB environment, realizes design algo-
rithm. Numerical example of bridge-truss subjected by the
static load DPD is solved.

B. SIukoBcku, FO. Atkouronac

MMPAMOE BEPOATHOCTHOE ITPOEKTUPOBAHUE
OIITUMAJIBHBIX METAJIUIMYECKNX ®EPM B
CUCTEME MATLAB

Pesome

PaccmatpuBaercst psiMoe BEpOSATHOCTHOE MPOCK-
THUPOBAaHHE ONTHMAIBHBIX MeTauTHueckux (epm. Pepmbl
MIPOEKTUPYIOTCS 110 YCIOBHUSIM MPOYHOCTH M yCTOHYNBOCTH
3JIEMEHTOB C 33/laHHOW HAJeXHOCTBIO, IIPH 3TOM YUHTHI-
BAIOTCSl BapHalMy (M3MKOMEXaHHYECKUX CBOHCTB Marte-
pHAJIOB, T€OMETPUYSCKUX XapaKTePUCTUK MNpoduied u
Harpy3ok. [locTpoeHHas maremaTtndeckas MOJETb 3aJaud
HEJIMHEHHOT0 MPOTrPaMMHUPOBAHUS C YCIOBHSIMU BEpOSIT-
HOCTHOTO ONTHMAJIBHOI'O MPOEKTHPOBAaHHS U pa3paboTaH-
HBII aJTOPUTM pEIeHUs] YYUTHIBAIOT U pa3dpoc MUCKpeT-
HBIX XapaKTEepUCTUK NpoQuiie B acCOPTHUMEHTax. AJro-
PUTM peaan30BaH B KOMIUIEKCHON Cpele TEeXHHUUECKUX
BeruncineHnii MATLAB, co3znaHHOW aBTOpamMu MpHUKIa-
HomHcTpyMeHTanbHOH cuctemoit JWM SAOSYS Toolbox
v0.40 KOHEYHORJIEMEHTHOTO MOJEJIMPOBAHMS, aHAIN3a U
ONTHUMAIBHOTO TPOEKTHPOBAHMS CTPOUTENBHBIX KOHCT-
pykuuil. IlpuBoauTCs YMCIEHHBIM NpUMEp HPOEKTUPOBa-
HUSI MOCTOBOW (hepMbI MUHIMAIBHOTO 00BEMA.
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