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1. Introduction 

The aim of structures design is to secure their safe 
work in particular exploitation period with a view of econ-
omy. Structures design, regulated by design standards [1, 
2], is based on the method of limit states and operates with 
deterministic material physical properties and external ac-
tion values. Partial reliability ratios and combinations of 
them secure the reliability of the structures. Direct prob-
ability design (DPD) [3-7], directly allows to control safety 
bounds of the structures by using probability theory and 
statistical calculations. The application of energy extre-
mum principle is natural for both mechanical and mathe-
matical view while formulating and solving deterministic 
[8, 9] and stochastic [10, 11] problems of structures analy-
sis and optimization. 

DPD of optimal steel trusses is analyzed in this 
paper by using equilibrium finite elements [12] and 
mathematical programming means [13]. The variations of 
material physical-mechanical characteristics, element 
cross-sections geometrical characteristics and external ac-
tions are estimated in design process as random values 
approximated by normal distribution law. Mathematical 
model allows designing trusses from one load case, but 
since these trusses work only in elastic stage the problem 
and algorithm easily can be reconstructed for trusses de-
sign from several load cases. Trusses are designed from 
steel profiles (HE, IPE, TUB) considering to the dispersion 
of profiles discrete characteristics and directly estimating 
reliability requirements of strength and stability for bar 
elements. 

Solution algorithm of obtained DPD mathematical 
model for optimal trusses is realized in MathWorks 
MATLAB environment analysis and optimization system 
JWM_SAOSYS_Toolbox_v0.40 (Structural Analysis and 
Optimization System) created by the authors’ for structures 
modeling by finite elements. MATLAB characterizes by 
convenient usage, numerous functional and supple 
technological facilities. Jointly with optimization problems 
solving key modulus Optimization Toolbox it became 
effective tool for experimental systems design. 

Numerical example of bridge-truss DPD sub-
jected to static loading is presented. Analysis of material 
physical-mechanical properties, variations of external load-
ing and the influence of element limit reliability indices on 
truss volume is performed. 

Owning the data of statistical control, evaluating 
the dispersion of random values more exactly and com-
plexly applying mathematical programming theory for the 
solution of optimization problems we can not only guaran-
tee sought reliability of the structure elements but also to 
create more economic projects. 

2. Mathematical model of optimal trusses 

Optimal trusses DPD considering the reliability of 
strength and stability reserve is carried out by solving 
nonlinear mathematical programming optimization prob-
lem: 
 
find  min TL A0   (1) 
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 Mathematical model of optimization problem (1-
4) consists of: objective function (truss minimal volume 
criterion) (1); truss static equilibrium equations (2); truss 
elements reliability indices nonlinear conditions (element 
designing conditions) (3); structural restrictions (4). Here: 
L is the length vector of truss elements; A0 is the areas vec-
tor of elements cross-sections (optimized parameter); [A] is 
the ratios matrix of truss equilibrium equations; N is the 
elements axial forces vector; μF is the mean values vector 
of truss external forces; β(·) is the elements reliability indi-
ces vector-valued function; β0,t, β0,c are the limit reliability 
indices vectors of the elements under tension and compres-
sion respectively. Unknowns of the problem (1-4) are: 

≡ AA μ
00 , ≡ NN μ . 
 

3. Reliability of element strength reserve 

Statistical probability dispersion is a characteristic 
for material properties (elastic modules Ei and steel design 
strengths under yield bound Ry,i), cross-sections geometry 
(cross-sections areas Ai and inertia moments Ii) and exter-
nal actions Fi for random values. Dispersion of the named 
properties can be enough well approximated by Gauss-
Laplace’s distribution law characterized by mean value μX 
and dispersion 2

Xσ  
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 (5) 

=  

The truss consist of a set K of bar elements. The 
strength reserve Zk of every element under tension or com-
pression is equal to the difference between the element 
axial capacity N0,k and action effect Nk

0, ,k k kZ N N k K= − ∈  (6) 
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Limit state function of element strength reserve Zk with 
varying arguments we can write in the following form 
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where buckling ratio function of the element under central 
compression is 

( ) ((, , , , , , , ,y yE R l I A E R l I Aϕ ϕ λ=  (8) 

 (9) { ,y zI min I I=

 The influence of the variation of beam elements 
lengths lk on the element strength reserve is not considered 
in this paper. 

Normal distribution is characteristic to the func-
tion of element strength reserve Zk

( 2;
k kk ZZ N μ σ∈  (10) 

which is dependent on the arguments distributed under 
normal law (5). Mean strength reserve 

kZμ  and standard 

deviation of strength reserve 
kZσ  describe the normal dis-

tribution and can be defined as follows 
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The definition of the real standard deviation is 
realized as follows 
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here  are variation ratios of cross-section area and 
inertia moment respectively. The partial derivatives values 
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where the definition of the partial derivatives values x
ϕδ  of 

buckling ratio by numerical differentiation method is dis-
cussed in the other section. 

According to the normal distribution characteris-
tics 

kZμ  and 
kZσ  of the strength reserve Zk (Fig. 1) we can 

define and control the probability αk of the limit state event 
described by the reliability index βk of the strength reserve 
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The condition of element design we can write as follows 
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Fig. 1 Distribution of element Zk, failure and safe regions 

R

A k R k RAϕ

μ

δ μ ϕ μ+
 (14) 

 
Before designing of the structure we set strength 

reserve Zk limit reliabilities P0,t,k, P0,c,k for every element. 
Applying tabels P·=·Φ(β) [1, 4] we define strength reserve 
limit realibility indices β0,t,k, β0,c,k of the elements under 
tension and compression. 
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4. Statistical indices of element internal forces 

Elements axial forces vector N (the variable of the 
problem) is equal to the mean axial forces vector ≡ NN μ  
in optimization problem (1)-(4). Elements axial forces un-
known standard deviations σN (12) are in the elements ax-
ial conditions (3). Truss analysis problem is needed to de-
fine these deviations. 

The full system of equations of truss analysis 
problem is 
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here  are materials elastic modules and ele-
ments cross-sections areas vector (n
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p×1). We can solve this 
system of equations (22) with respect to N. We will get 
then such an elastic internal forces vector solving formula, 
which is expressed by influence matrix [Q(p)] 
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Matrix-function of internal forces influence of structure 
elements has the following form 
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Axial force of separate element, expressed by in-
ternal forces influence functions, we can write as follows 
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Since for function Nk(F, p) arguments is characteristic 
normal distribution law, the following denotation is true 
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The standard deviation of axial force is calculated 
as follows 

( ) 2

1

,
k i

m
k

N F
i i

N

F
σ σ

=

⎡ ⎛ ⎞∂⎢ ⎜ ⎟=
⎢ ⎜ ⎟∂⎝ ⎠⎢⎣
∑ F pμ μ

Performing differential calculus we can write: 

( ) ( ),

,k
k i k i

i

N
q

F

∂
= =

∂
F p

p

μ μ
μ ,q  (28) 

( ) ( ) ( )
1

,1 ,,
...

m

k k k m
F F

j j j

N q q

p p p
μ μ

∂ ∂ ∂
= + +

∂ ∂ ∂
F p p pμ μ μ μ

 (29) 

Finally standard deviation of element axial force Nk is cal-
culated as follows 
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Calculations of partial derivatives are needed to 
define standard deviations vector σN of the structure axial 
forces. Searches of such derivative analytical shapes are 
senseless or impossible while designing structures of vari-
ous complexities. Therefore, Richardson’s finite differ-
ences numerical extrapolation method is applied to calcu-
late the derivatives values. Function derivative of one ar-
gument at point x0 is calculated as follows 
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where h is set function variation. 
 

5. Assortments: discrete characteristics fields of profiles 
in structure optimization 

Design of steel structures is inseparable from the 
discrete sets of profiles assortments. Analyzing the distri-
bution of discrete characteristics of I-A cross-sections 
(Fig. 2) we can notice, that there is no homologous relation 
among these characteristics. Therefore, the allowable point 
of cross-sections geometrical characteristics 

{ }0, ,k kA I=k G  of the discrete field DI-A has to be found 
while optimizing. Thus, for the whole structure we can 
write 
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The mathematical model (1)-(4) of truss optimiza-
tion problem has only one optimized parameter A0 (one 
problem variable), which is the vector of optimized leading 
geometry. Moments of inertia of optimized cross-sections 
Ik compose the driven (controlled) geometry vector G1. 
Leading geometry A0 is optimized by iterative solving of 
optimization problem (1)-(4), while driven geometry G1 is 
corrected with reference to conditions of the optimization 
problem constraints (3) and admissible field bounds of 
assortments Imax(A), Imin(A). 
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Solving of the optimization problem. Solving of 
the optimization problem (1)-(4) we perform by an itera-
tive approximation way and begin with the biggest vectors 
of the optimal cross-sections areas = ,maxA A0 0  and inertia 
moments = ,maxG G1 1 . 
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discret point
Step_1: calculate finite variations of the cross-

sections areas and inertia moments for numerical solution 
of functions partial derivatives 

max

( )diag=A Aδ η A
0 0 0 ;   (33) ( )diag=G Gδ η G

1 1 1I-A

Calculate the standard deviations vectors of the cross-
sections areas and inertia moments 

Gk
k

0,k

I-A

min ( )diag=A Aσ ν A
0 0 0 ;   (34) ( )diag=G Gσ ν G

1 1 1

Step_2: calculate the influence matrix [Q(μp)] 
(23) of the mean internal forces of the truss elements. Cal-
culate the standard deviations vector σN  of the truss ele-
ments internal forces by Richardson’s method numerically 
differentiating the matrix [Q(p)] according all the members 
of the vector p and applying the formula (30). 

 
Fig. 2 Discrete values field DI-A and admissible I-A 

characteristics field of TUB profiles assortment 
 

6. Trusses design algorithm and its programmable rea-
lization Step_3: to perform one iteration the routine P6 

solves the prepared optimization problem (1)-(4) of nonlin-
ear mathematical programming. If the optimization prob-
lem was solved successfully – optimal solution was found 
– we have a new vector *A0  of the optimal cross-sections 
areas and the vector N of the truss elements axial forces 
mean values. 

The algorithm is realized in complex MATLAB 
and authors’ created JWM SAOSYS Toolbox v0.40 system 
of structures modeling, analysis and optimal design. 
Further we will describe the main parts of truss stochastic 
design algorithm (Fig. 3) and its realization. 

Truss modeling. Parameterize and model the 
truss by elastic equilibrium LINK1 finite elements under 
tension or compression [12]. Create the input file (Batch 
and Data File) of initial data of the structure model 
(SAOSYS preprocessor). 

If the solution of the optimization problem was 
not successful (an admissible point, optimal solution were 
not found) – increase the areas vector A0 of the optimal 
cross-sections 

Preparing of design environment. After reading 
input data file, the routine P1 of SAOSYS preprocessor 
creates the database DB of the structure (MATLAB struc-
tural data field). The routine P2, which controls profiles 
assortments, reads and prepares steel profiles HE, IPE, 
TUB assortments from SRT database. The routine P3 col-
lects the finite elements library FELIB of SAOSYS sys-
tem. Lastly, the routine P4 creates and initiates the ensem-
ble FE of finite elements, which compose the structure. 
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here:  is optimal area of the optimal cross-
section in the previous iteration; ε is relative threshold  
(10

*,
0, 0,

prev
k kA A′ ≡

-3 %) of recurring increase of A0,k; ξ is the partial ratio 
of direct increase of A0,k. Correct the inertia moments vec-
tor G1 and return to the Step 1. 

Preparative calculations. The routine P5 creates 
the ratios matrix [A] of the truss equilibrium equations, the 
mean values vector μF of the external loads and the stan-
dard deviations vector σF. Prepare the edge values vectors 
A0,min, A0,max, G1,min, G1,max of the optimal geometry sec-
tions areas A0,k and inertia moments Ik with reference to 
SRT database of profiles assortments. Prepare the total 
lengths vector L and the lengths vector Lmax of the longest 
elements in elements groups of the structure. Prepare the 
indices vectors β0,t, β0,c of a limit reliability of the truss 
elements under tension and compression respectively. Cre-
ate the material characteristics mean values and standard 
deviations vectors: μE, μRy, σE, σRy. Create the variation 
ratios vectors  of the optimal cross-sections areas 
inertia moments respectively. Prepare the partial ratios 
vectors  for the solution of partial derivatives with 
finite differences. 

,A Gν ν
0

Step_4: the routine P7 performs the correction of 
the cross-sections driven geometry vector G1 (the inertia 
moments vector). 

Step_5: Calculate the volume V of the structure 
with the new *A0 . Perform this iterative process till con-
vergence conditions of the problem will not be satisfied: 
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here: V′ is the volume of the previous iteration structure; 
0
,A Vε ε  are the convergence tolerance criterions (0.1 %) of 

the cross-sections areas and structure volume respectively. 
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1
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Fig. 3 The algorithm SAOSYS-TrussDPD of a direct probability design of optimal trusses 

 
Correction procedure of the cross-section ge-

ometry G1. The concept of element groups set R we make 
out while designing the truss. We optimize the geometrical 
characteristics {A0,r, G1,r} of single elements groups r.∈.R. 
These characteristics compose the vectors pair A0 and G1. 
Since we operate with element groups, the entirety of ele-
ments, which enter into the r group, we make out by inter-
section of sets – K.∩.Rr. The vector G1 of optimal cross-
sections limit inertia moments – is the vector, which satis-
fies the element design conditions (3) and the bounds of 
the admissible discrete fields DI-A of profiles assortments 

( * , , , )I A−≡ =lim lim maxG I I A N L D1 0  (37) 

Define the limit inertia moments I
lim.=.{Ilim,r,.r.∈.R} of cross-sections (elements under com-
pression – stability conditions) by solving such an equation 
of reliability indices for every element 

( *
0, , 0, ,, , ,k r k max r lim,r,k c kA N L Iβ =) β

}
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 ,rk K R r R∈ ∩ ∈

Finally we define the limit inertia moment of cross-section 
of elements group-set Rr

{ ,lim,r lim,r,k rI max I k K R= ∈

also controlling and correcting satisfaction of the limit in-
ertia moments Ilim,r in the bounds conditions of discrete 
admissible fields of profiles assortments 

( )0, 0,min,r r lim,r max,r r( )I A I I A∗ ≤ ≤D D ∗

k

 (40) 

Solve the equation (38) by numerical method, se-
quentially increasing the argument Ilim,r,k value of the func-
tion  by the step t and controlling the inequality 

 (

(·)kβ

0, ,-k cβ β Fig. 4). Automatically it performs such a func-
tion of MATLAB-SAOSYS 

x = ConFunArgValSearch(hF, y, vInt, tol, <N>) 

where: x is the found value (Ilim,r) of function argument; 
hF.– function handle ( @ ( ); ) (·)k lim,r kIβ β= y is function 
result (β0,c,k); vInt is the vector of search interval {Imin,r, 
Imax,r}; tol is search tolerance; N is granulation of search 
interval (optional parameter). 

Define the discrete bounds DImin,r, DImax,r of as-
sortments profiles (Fig. 5) with reference to binary-bared 
search of discrete values, which is performed by such a 
function 

vp = BinBarSearch(vD, x, b) 
∩  (39) 

where: vp is the indices vector of discrete points got into 
the bar; vD is the vector ( HE IPE TUB∨ ∨AD ) of discrete values 
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7. Numerical example aligned in the increasing order; x is the real value ( *
0,rA ); 

b.is the width of search bar. Define discrete bounds accord-
ing to the vector vp and perform the return of no admissi-
ble points {  (}*

0, ,r lim,rA I Fig. 5 the points 1 and 3) to the 
admissible zone (the points 4 and 5). 
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Design structure. The bridge-truss subjected to 
one load case (Fig. 6) is designed. Material of the elements 
– steel S275: μE = 210 GPa; σE = 25.200 GPa; μRy = 
= 275 MPa; σRy = 8.333 MPa. The truss modeled by equi-
librium LINK1 finite elements consist of: 14 nodes; 30 
finite elements; 3 design parameters R1-3 (elements cross-
sections). Truss flanges (R1, R2) are designed by IPE, and 
grid (R3) – by TUB profiles. Profiles variations ratios of 
cross-sections areas and inertia moments respectively are: 
νA = 10%; νI =5%. The truss is subjected by nodal loads: 
μF1 = 55 kN; σF1= 10.061 kN; μF2 = 90 kN; σF2.=.16.463.kN. 

Limit reliability index of the elements under ten-
sion is set β0,t = 1.64 (probability of failure Pf,0,t = 0.0505); 
elements under compression – β0,c = 3.00 (Pf,0,c = 0.00135). 

Results. DPD of bridge-truss was performed by 
iterations. 10 approximation iterations were performed at 
all (Fig. 7). Calculated optimal theoretical cross-sections 
and the closest found profiles for them are presented in the 
table (Table). Designed structure volume is V.=.0.210.m3. 
To find the values of discrete profiles it is necessary to 
perform discrete optimization of truss DPD, the realization 
of which is intended in the future. 

Table 
Calculated optimal theoretical cross-sections (*) and the 

closest profiles to these cross-sections 

 Profile A0,r, m2 Ir, m4

R1: * 2.636⋅10-3 1.009⋅10-6

 IPE O180 2.710⋅10-3 1.173⋅10-6

 IPE 180 2.395⋅10-3 1.009⋅10-6

 IPE 200 2.848⋅10-3 1.424⋅10-6

R2: * 5.911⋅10-3 7.881⋅10-6

 IPE 330 6.261⋅10-3 7.881⋅10-6

 IPE O300 6.283⋅10-3 7.457⋅10-6

 IPE A330 5.474⋅10-3 6.852⋅10-6

R3: * 4.476⋅10-4 1.034⋅10-8

 TUB 20×45×4.0 4.560⋅10-4 2.467⋅10-8

 TUB 25×40×4.0 4.560⋅10-4 3.898⋅10-8

 TUB 30×40×3.5 4.410⋅10-4 5.083⋅10-8

Fig. 4 The limit Ilim,r,k definition of the element under  
compression with reference to equation (38)

 

Return

Return

A

I b

1

2

3

4

5

A

I

I         (A    )

TUB

*

lim,r

min,r 0,r

*
0,r

I-A

I         (A    )*
max,r 0,r

 
Consumption diagram of truss elements reliability 

indices 0= −Δβ β β  (Fig. 8) shows, that truss elements 
E{3, 8, 9, 22, 25} are designed in the state of the limit reli-
ability index β0. Reliability indices of the truss bottom 
flange are distributed in the interval β1-7 = [1.640; 3.703], 
top flange – β8-14 = [3.000; 5.100], grid – β15-30 = [1.640; 
8.022].  

Fig. 5 Binary-bared search: return to the admissible field The influence of limit reliability index on the 
truss volume V(β0) (Fig. 9) is performed, and the influence 
of standard deviations of external loads to the truss volume 
is realized through the loads reliability ratio γF

 
Partial derivatives by the Richardson’s nume-

rical extrapolation method. To calculate the partial deri-
vatives (31) of functions such a function is created 

1
1.64

F
F F

γ
σ μ

−
≅  (41) d = RichFDE(hFun, cvX0, np, h) 

where: d is the value of calculated derivative; hFun is func-
tion handle; cvX0 is the point-vector of derivative calcula-
tion; np is the number of function argument with reference 
to which differentiation is performed; h is argument finite 
difference. 

Also the influence of standard deviation of the 
steel yield strength σRy and steel elastic modulus σE on the 
structure volume is performed and shown in the diagram 
(Fig. 10). 
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Fig. 6 Truss modeled with LINK1 finite elements 
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Fig. 7 Variation dynamics of iterative solution of the opti-
mal A0

Fig. 8 Outgo diagram of truss elements reliability index 
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Fig. 9 Truss volume dependencies on the limit reliability
index β0 and loads reliability ratio γF

Fig. 10 Truss volume dependency on steel σRy, σE.
standard deviations 

 
8. Conclusions 

1. Direct probability design of optimal trusses is 
an optimization problem of nonlinear mathematical pro-
gramming, which can be solved in approximation way. 

2. Applying the principle of admissible fields of 
assortments profiles characteristics (optimized leading G0 
and controlled driven geometry G1) we can directly esti-
mate the distribution of profiles discrete characteristics. 

3. SAOSYS system created by the authors’ and its 
modulus of trusses direct probability design TrussDPD 
allows to model and design any plane trusses from assort-
ments profiles evaluating elements strength and stability 

reliabilities separately in the cases of tension or compres-
sion deformation. 

4. The volume of the bridge-truss analyzed in 
numerical example responds fairly sensitively to the varia-
tions of the limit reliability index β0, loads and material 
physical-mechanical properties. 

5. With reference to the data of statistical control 
and applying mathematical programming theory we can 
not only guarantee the safety reliability of the structure 
elements but also create more economic projects. 
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V. Jankovski, J. Atkočiūnas 

OPTIMALIŲ PLIENINIŲ SANTVARŲ TIESIOGINIS 
TIKIMYBINIS PROJEKTAVIMAS MATLAB 
APLINKOJE 

R e z i u m ė  

Straipsnyje nagrinėjamas optimalių plieninių san-
tvarų tiesioginis tikimybinis projektavimas taikant mate-
matinį programavimą. Projektuojant atsižvelgiama į me-
džiagų fizikinių-mechaninių savybių, elementų skerspjūvių 
geometrinių charakteristikų bei išorinių poveikių variaci-
jas, taip pat į elementų stiprumo atsargos ir stabilumo pati-
kimumo reikalavimus. Sudarytas optimalių santvarų pro-
jektavimo netiesinio matematinio programavimo uždavinio 
matematinis modelis. Pasiūlytas santvaros elementų pro-
jektavimo iš sortimentinių profiliuočių, tiesiogiai vertinant 
jų diskretinių charakteristikų sklaidą, algoritmas. Projekta-

vimo algoritmas realizuotas MATLAB aplinkoje, autorių 
sukurtoje JWM SAOSYS Toolbox v0.40 konstrukcijų mo-
deliavimo baigtiniais elementais, analizės ir optimalaus 
projektavimo sistemoje. Pateiktas tiltinės santvaros, vei-
kiamos vienkartės apkrovos, tiesioginio tikimybinio opti-
malaus projektavimo pavyzdys. 
 
 
V. Jankovski, J. Atkočiūnas 

MATLAB IMPLEMENTATION IN DIRECT 
PROBABILITY DESIGN OF OPTIMAL STEEL 
TRUSSES 

S u m m a r y  

Direct probability design (DPD) of optimal steel 
trusses using mathematical programming means is dis-
cussed in this paper. The variations of material physical 
and mechanical properties, elements cross-sections geome-
try characteristics and external actions are considered 
while designing. Strength and stiffness requirements of 
truss elements are estimated. The mathematical model of 
nonlinear mathematical programming problem of optimal 
trusses design is created. Solution algorithm of truss ele-
ments (picked from profile assortments) design, directly 
evaluating dispersion of profiles discrete characteristics, is 
proposed. The finite elements structures analysis and opti-
mization software JWM SAOSYS Toolbox v0.40, which is 
created in MATLAB environment, realizes design algo-
rithm. Numerical example of bridge-truss subjected by the 
static load DPD is solved. 

В. Янковски, Ю. Аткочюнас 

ПРЯМОЕ ВЕРОЯТНОСТНОЕ ПРОЕКТИРОВАНИЕ 
ОПТИМАЛЬНЫХ МЕТАЛЛИЧЕСКИХ ФЕРМ В 
СИСТЕМЕ MATLAB 

Р е з ю м е  

Рассматривается прямое вероятностное проек-
тирование оптимальных металлических ферм. Фермы 
проектируются по условиям прочности и устойчивости 
элементов с заданной надежностью, при этом учиты-
ваются вариации физикомеханических свойств мате-
риалов, геометрических характеристик профилей и 
нагрузок. Построенная математическая модель задачи 
нелинейного программирования с условиями вероят-
ностного оптимального проектирования и разработан-
ный алгоритм решения учитывают и разброс дискрет-
ных характеристик профилей в ассортиментах. Алго-
ритм реализован в комплексной среде технических 
вычислений MATLAB, созданной авторами приклад-
ноинструментальной системой JWM SAOSYS Toolbox 
v0.40 конечноэлементного моделирования, анализа и 
оптимального проектирования строительных конст-
рукций. Приводится численный пример проектирова-
ния мостовой фермы минимального объема. 
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