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1. Introduction 
 

Optimization is an inherent part of all engineering 
practice. In the construction of buildings that means, all 
parts of buildings from foundations to roofs should be de-
signed and built optimally and thrifty as much as the con-
ditions of safety and comfort allow. We note that many 
problems of engineering (and also of physics, technology, 
economics) are reduced to global minimization of multi-
modal functions. Such problems are difficult in the sense 
of the algorithmic complexity theory and global optimiza-
tion algorithms are computationally very intensive. The 
global optimization algorithms are reviewed in Törn and 
Žilinskas [1], Horst et al. [2], Dagys et al. [3], Atkočiūnas 
et al. [4]. In this paper we shall concentrate on the optimal 
design of grillage-type foundations, which are the most 
popular and effective scheme of foundations, especially in 
case of weak grounds. From the mathematical point of 
view these problems are very attractive, because here the 
lower bound of global solution is known in advance. In the 
case when all piles have equal characteristics, the bound is 
obtained simply dividing the total sum of active forces on 
the grillage by the number of piles. It is very important, 
because even with the use of sophisticated global optimiza-
tion algorithms and parallel computers only the small-scale 
problems (usually possessing few tens of design parame-
ters) can be solved to the utmost, i.e., to the global solution. 
Thus, in optimization of grillages always it is possible to 
judge on the rationality of obtained solutions. 

Grillage consists of separate beams. Separate 
beam may be supported by piles, may reside on other 
beams, or a mixed scheme may be the case.  The optimal 
scheme of grillage should possess, depending on the given 
carrying capacities of piles, the minimum possible number 
of piles. Theoretically, reactive forces in all the piles 
should approach the limit magnitudes of reactions for those 
piles (limit pile reactions may differ from beam to beam 
provided different characteristics, i.e., diameters,   lengths, 
profiles of piles are given). This goal can be achieved by 
choosing appropriate pile positions. Designer may arrive at 
the optimal pile placement schema by engineering tests 
algorithms only in case of simple geometries and simple 
loadings. Otherwise mathematical optimization procedures 
are evident necessities.  

Practically, the goal is much more difficult to 
achieve if designer due to some considerations introduces 
into the grillage scheme the so-called ‘immovable sup-
ports’ that have to retain their positions and do not partici-
pate in optimization process. Pursuing the mathematical 
transparency, this case is not considered in the paper. The 
other preclusion for achieving the global solution is the 
required minimum allowed distance between adjacent sup-
ports; this requirement emerges due to the technological 
features of the pile driver. In optimization procedures it is 

treated as the constraint (for local optimization) or penalty 
(global optimization). 

Local optimization. The first works in the grillage 
optimization were based on the local optimization of a sin-
gle beam (Belevičius, [5-8]). All grillage is divided into 
separate beams, the “upper beams” resting on other – the 
“lower beams”. First, all the beams are analyzed and opti-
mized separately. Joints and intersections of the upper and 
lower beams are idealized as an immovable supports for 
upper beams. Reactive forces in these fictitious supports 
are obtained during the analysis stage of the upper beams. 
Joints for the lower beams are idealized as a concentrated 
loads of the same magnitude but of opposite sign to the 
reactive forces in fictitious supports. If more than 2 beams 
meet at the joint, all the beams are considered to be the 
“uppers” except for one the “lower”. Distinguishing be-
tween the upper and lower beams can be done automati-
cally or by the designer’s wish. Since the obtained ficti-
tious reactions/concentrated loads depend on the pile posi-
tions, all calculations are iterated in order to level with 
proper accuracy the forces at joints (or stiffnesses, if de-
sired). The solution for each separate beam requires three 
steps: finite element analysis, sensitivity analysis, and op-
timal redesign with linear programming. 

The main shortcoming of this technique is that the 
search inevitably leads to a local solution which in most 
cases does not satisfy the designer. A halfway solution of 
the problem is to start optimization procedure from near-
optimum initial scheme. However, the special expert sys-
tem which analyses geometry of the beam, loadings and 
carrying capacities of piles and yields the quasi-optimal 
initial pile placement scheme becomes the most sophisti-
cated part of all project and still is not capable to render 
rational initial solutions for a sophisticated grillages. 

Global optimization. First of all two-dimensional 
grillage is “unfolded” to a one-dimensional beam, and the 
supports are allowed to range through this space freely. 
The optimization routine yields the distribution of supports 
in this space. The “black box” finite element program 
transforms the one-dimensional beam back into the real 
grillage with a given positions of supports and returns the 
value of objective function – the maximum of reactive 
forces at supports. In case when two or more supports ap-
proaches each other to a distance less than minimum al-
lowed or the distribution of supports is invalid, i.e. yielding 
the grillage-mechanism, the finite element solution is 
skipped and penalty is given instead of maximum reactive 
force. The black box routine provides also the sensitivity 
results of objective function to capacitate the local search 
around the promising point. 

The Branch-and-Bound (BB) global optimization 
algorithm which allows rejecting the not promising sub-
domains from the whole problem domain was used for the 
optimization. Any BB algorithm consists of two main steps: 
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the branching rule which allows selecting a subdomain and 
dividing it into several smaller parts, and computation of 
lower bounds of objective function for each new subdo-
main. If the bound is larger than the best known approxi-
mation of the value, then this subdomain is rejected from 
the further searches. Since all global optimization algo-
rithms are computationally very demanding, the parallel 
computations were employed using the ‘master – slave’ 
template to parallelize the algorithm (Baravykaitė [8]). 

Using this approach the optimization problems 
possessing until 40 design parameters were solved. The 
main drawback of this solution scheme is connected with a 
lengthy, unacceptable for the engineering practice solution 
time. For example, the problem with 10 design parameters 
on a cluster of 10 dual processors PC of Vilnius Gediminas 
Technical University was solved in 60 min., while the 
problem with 15 design parameters requires 5 hours 
(Čiegis [9]). Later the solution of the problem using GAs 
has clearly shown that the landscape of objective function 
is very complex, with a numerous local minimums. The 
global search algorithm inevitably spends time exploring 
sub-domains around these points. 

The paper is organized as follows. In section 2 we 
formulate the optimization problem. In section 3 the ge-
netic algorithms (GA) and the coding of the problem for 
GA are described. Section 4 provides numerical examples 
and comparison of results obtained using GA and other 
global optimization results. Some final conclusions are 
given in section 5. 
 
2. Problem formulation 
 

The finite element method is used for the evalua-
tion of objective function. The girders of grillage are ideal-
ized as beam elements with given cross-section and mate-
rial characteristics, and the piles – as the supports with 
specified displacements (where zero displacements are the 
most common case), or supports with specified stiffness 
characteristics. Supports of the first type are rather non-
realistic representations and sometimes yield misleading 
analysis results. For example, when multiple supports are 
needed to carry large concentrated load, this kind of sup-
ports will lead to a logjam. If odd number of supports is 
placed under load, the central support will be located just 
beneath the load and will take all the force. In case of even 
number of supports the “saw-teeth” like distribution of 
reactions is observed, and the more supports will be in-
stalled, the larger in absolute value reactions will arise. 

The optimization problem is stated as follows 
(see, eg. Belevičius et al. [5])  

. . 
( )

s t x D
min P x

∈
  (1) 

where P(x) is the objective function, D is the feasible shape 
of structure, which is defined by the type of certain sup-
ports, the given number and layout of different cross-
sections as well as different materials in the structure. 

P is defined by the maximum difference between 
vertical reactive force at a support and allowable reaction 
for this support, thus allowing us to achieve different reac-
tions at supports on different beams, or even at particular 
supports on the same beam 
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here Ns denotes the number of supports, Rallowable is allow-
able reaction, fi are factors to this reaction and Ri are reac-
tive forces in each support. 

Evidently the minimization problem of reactive 
forces in piles can not be represented in closed form alge-
bra, is nonlinear and nonconvex. The value of objective 
function is supplied by an independent finite element pro-
gram which is connected to the optimization algorithm as a 
black box. 

Finite element matrices and sensitivity analysis. 
The problem has to be solved in statics and in linear stage 

[ ]{ } { }K u F=   (3) 

Here [K] is the stiffness matrix of grillage, {u} are the dis-
placements of grillage nodes, and {F} are the loadings. 
The reactive forces at a rigid supports are obtained using 
equation 

i ij ju
j

R K= ∑ , 1,2,..., si N=   (4) 

where a part of nodal displacements (displacements of free 
nodes) are already obtained via Eq. (3), and the displace-
ments of nodes representing the rigid supports are speci-
fied (usually – zero). If the supports have finite stiffnesses 

 ik
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The sensitivity analysis which is required for the 
local search around the certain optimization solution is 
performed using the pseudo-load approach; thus the expen-
sive and not accurate numerical calculation of derivatives 
can be avoided. Denoting the support positions by 

, 1, 2,...,i sx i N=  
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i
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Here the derivative of stiffness matrix is obtained analyti-
cally, while the derivative of displacements supposes solu-
tion of the general sensitivity equation  

, , ,[ ]{ } { } [ ] { }
i i ix x xK u F K= − u   (7) 

The derivatives of load vector are obtained also in a closed 
form, analytically.  

A simple two-node beam element with 6 dof‘s at 
a node (three displacements and three rotations about local 
element axes) is employed in the analysis. The element 
stiffness matrix can be found in many finite element text-
books, for example, in Zienkiewicz [10]. More details 
about finite element matrices are provided in Belevičius 
[7].  

Program. The finite element mesh of frame is 
prepared automatically by the special pre-processor, intro-
ducing nodes at the immovable support places (if any), 
jumps of material and cross-sections properties, etc. The 
number of movable supports is obtained also by program 
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so that the total magnitude of loading could be absorbed by 
the piles of given characteristics. The frame is remeshed 
either in each step of redesign (for local optimization), 
either for each guess of BB algorithm or for each individ-
ual of genetic algorithms (GA) population (for global op-
timization). 
 
3. GAs for optimization of grillages 
 

In the last decades, a lot of attention has been 
given to the application of GA in various optimization 
problems. It can be expected, that the GAs which are sto-
chastic (probabilistic) global optimization methods simu-
lating the evolution laws of the nature (Goldberg [11]) may 
be promising in this type of large scale optimization prob-
lems due to the following reasons:  

1. the convergence behavior of stochastic algorithms 
only depends on the objective function evalua-
tions, i.e. the expensive sensitivity information is 
not needed; 

2. the theoretical analysis of stochastic search meth-
ods indicates that they can be executed in poly-
nomial time, on the average, while deterministic 
methods take exponential number of function 
evaluations; 

3. there is no guarantee that the stochastic algo-
rithms will find the better solution within a prede-
fined time or number of iterations. Also, they are 
likely to yield an approximate solution. However, 
this drawback is not very important for real-world 
applications where the theoretical optimum solu-
tion is usually not required. 
Algorithm. The typical genetic algorithm is sche-

matically shown in Fig. 1. 
 

 
 

Fig. 1 Scheme of genetic algorithm 
 
In the implementation of GA for grillage optimi-

zation, the individual of a population is one particular vari-
ant of the grillage with a set of supports of given character-
istics. The number of supports is obtained in advance by 

the pre-processor of finite element program. This theoreti-
cal number of supports is the same for all individuals of the 
population. The initial population of individuals is gener-
ated randomly: the probability to gain the numerical values 
“1” or “0” for all genes of the chromosome is 0.5 (see sub-
section below). The population size remains constant dur-
ing all optimization process. The elitist selection strategy, 
where several best individuals of the population are always 
chosen to survive during the selection, proved to be more 
effective than the classical GAs for the optimization of 
grillages. These best individuals bypass the crossover stage. 
The remaining candidates for survival are chosen by the 
roulette principle and undergo the crossover. During this 
stage, the one-point crossover operator is applied to the 
two chosen individuals at the random gene (thus, there is a 
small probability to avoid the crossover in case when the 
last gene is elected as the crossover point). In the mutation 
phase of algorithm, the mutation operator is applied to all 
the genes of genotype with an equal (usually small) prob-
ability.  

All the genetic parameters of algorithm (popula-
tion size, number of elite individuals, probabilities of the 
crossover and mutation, number of generations) must be 
thoroughly adjusted to the particular problem; they are 
provided in the next chapter. 

Coding of an individual. Again, the optimization 
routine works with one-dimensional construct of the gril-
lage, therefore the position of a particular pile is implicitly 
described by the only coordinate. First of all, the possible 
positions of piles are obtained dividing the overall length 
of one-dimensional construct by the intended number of 
those positions. It should be noted, that this number of po-
sitions must equal to the 2N, where N is the number of bits 
for coding of pile coordinate. The more bits will be allo-
cated for coding, the more possible positions of piles will 
be at hand, and therefore the solution of problem can be 
closer to the global one. However, at the same time the 
length of one population individual increases. From the 
engineering point of view, the N providing the distance 
between adjacent piles of about 0.5 m is usually sufficient. 
The whole individual is coded connecting coordinates of 
all piles into one string of bits 

1 2 1 2 1 2

_1 _ 2 _

N N N

Node Node Node K

a a a a a a a a a… … … …��	�
��	�
 ��	�

0
1ia
⎧ ⎫

∈⎨ ⎬
⎩ ⎭

,   (9) 

here K is the total number of piles, N is the intended  nu-
mber of bits for coding of coordinate of each pile. 
 For the sake of transparency let us illustrate the 
coding of an individual by the following simple example. 
Let the whole length of grillage is 3.5 m, and the theoreti-
cal number of piles is 4. In case we allocate 3 bits for co-
ding of one pile cooordinate, 8 possible positions of piles 
will be available, and the distance between two adjacent 
piles will be 0.5 m. This one-dimensional construct of gril-
lage with possible pile positions and the corresponding 
strings of bits are shown in Fig. 2. 
 

0 m 0.5 m 1 m 1.5 m 2 m 3 m2.5 m 3.5 m

000 001 010 011 100 101 110 111  
 

Fig. 2 Coding of possible pile positions 
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 For example, the problem solution yields the 
string 000010101110. The pile placement scheme corres-
ponding to this string is rendered in Fig. 3. 
 

 
Fig. 3 Possible pile placement in one-dimensional const-

ruct 

The finite element program with the meshing and 
transformation modules is connected to the genetic optimi-
zation routine as the black box; its only aim is to return the 
maximum reactive force or the penalty, if the constraints of 
problems are violated. The sensitivity information is not 
needed here.  
 
4. Numerical results 
 

To compare possible optimization strategies, two 
support  placement  schemes  for relatively simple grillages   

 
a 

 

 
b 

 

Fig. 4 10-pile grillage: a – geometry, b – load cases and the 
obtained pile placement scheme 

for which the solutions with other algorithms are available, 
were reobtained. The code requires only input on geometry 
of grillage, loading, pile and beam material characteristics 
(i.e. carrying capacity or stiffnesses). Also the allowable 
vertical reaction and minimum allowable distance between 
two adjacent supports should be known. 

Despite of simple geometry of both schemes, 
these grillages expose extreme sensitivity to the positions 
of supports. Small changes of supports’ coordinates may 
raise significant perturbations in reactive forces. Also, sev-
eral very different support distribution schemes may dem-
onstrate close magnitudes of the objective function. 

Example 1. Grillage of rectangular shape loaded 
with two sets of distributed vertical loadings (Fig. 4, a). 
Construction of grillage consists of standard prefab rein-
forced concrete girders. The main determinant data for 
support scheme are the maximum allowable vertical reac-
tion, the minimum allowable distance between two adja-
cent supports, and the vertical stiffness of support: 200, 
0.20, and 1.e15, accordingly. The theoretical number of 
supports is 10. 

The genetic parameters adjusted to this problem 
are the following: the population size – 20 individuals (2 – 
elite individuals), the probabilities of crossover and muta-
tion – 99% and 1%, accordingly; the number of genera-
tions – 200. 10 bits were allotted for coding of support 
position, thus in the one-dimensional construct of grillage 
obtaining 1024 possible different positions for each sup-
port. Since GA is stochastic algorithm, the problem was 
solved 30 times; each random numerical experiment re-
quires approximately 23 minutes. The best obtained objec-
tive function values are shown in Fig. 5.  

Thus, the best solutions were obtained in the 29th, 
14th and 8th experiments:  the  maximum  reactive force is 
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Fig. 5 Example 1: the best obtained objective function val-

ues 
 

Table 1 
Numerical results of optimization experiments (example 1) 

 

Number of 
pile 

Coordinates 
(29th exp.) 

Coordinates (14th 
exp.) 

1 36.7676 62.1094 
2 19.0430 57.7881 
3 15.6006 15.7471 
4 55.8838 24.5361 
5 8.27637 21.7529 
6 22.4121 35.0830 
7 47.0215 70.9717 
8 74.4873 1.02539 
9 25.6348 32.0801 

10 3.80859 52.8809 
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192.4, 192.8, and 195.7, accordingly, while the theoretical 
global solution is 183.8. The positions of supports for the 
two best obtained solutions belong to the very different 
topologies of grillage as illustrated in Table 1. The pile 
placement scheme corresponding to the 29th experiment is 
shown under the given loadings in Fig. 4, b. 

These results of GA are compared to the previous 
results obtained using different algorithms in Table 2; the 
solution time and computer performances are provided also. 
 Example 2. Grillage consists of two rectangular 
frames under distributed loadings (Fig. 6, a). Theoretical 
number of supports for the main limiting factors 150, 0.10, 
1.e10 (as in Example 1) is 15, whereas the theoretical 
global solution is 143.0. The tuned genetic parameters are 
(in sequence of Example 1) 30 (2 elite) individuals, 99.1%, 
0.4%, 300 generations and 11 bits for coding of support 
position (thus having 2048 possible positions for each sup-
port in the grillage). Again, 30 independent numerical ex-
periments were performed. The best obtained objective 
function values are shown in Fig. 7. 

  

Table 2 
Comparison of results obtained using different algorithms 

Example 1: 10 supports 
Theoretical global solution 183.8 
Algorithm Results Platform and solution time 
BB 207.5 Cluster of 10 dual Intel 

processor PC, 60 min [10] 
BB 190.2 Pentium 2.5 GHz PC, 378 min 

[12] 
GA 192.4 Pentium 1.6 GHz PC, 23 min 

(for one experiment) 
Example 2: 15 supports 
Theoretical global solution 143.0 
BB 161.5 Cluster of 10 dual Intel 

processor PC, 300 min [10] 
BB 161.1 Pentium 2.5 GHz PC, 300 min 

[Žilinskas, 2007] 
GA 157.7 Pentium 1.6 GHz PC, 24 min 

(for one experiment) 
 

 
 
 
 
 
 
 

                                                           a                                                                                                    b 
 

Fig. 6 15-pile grillage: a – geometry, b – load cases and the obtained pile placement scheme 
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Fig. 7 Example 2: the best obtained objective function val-
ues 

 For this example the best solutions were obtained 
in the 6th, 5th and 7th experiments: 157.7, 158.6, and 
162.7, respectively. The coordinates of supports in one-
dimensional space for the two best obtained solutions are 
shown in Table 3. The best pile placement scheme is 
shown also graphically in Fig. 6, b. 
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Table 3 
Numerical results of optimization experiments (example 2) 

Number of pile 
 

Coordinates 
(6th  exp.) 

Coordinates 
(5th exp.) 

1 19.7764 44.8164 
2 9.24902 38.8760 
3 27.5967 23.9873 
4 0.977539 26.3184 
5 34.8154 52.1104 
6 67.6758 9.54980 
7 43.8389 28.4990 
8 51.1328 36.2441 
9 72.7139 75.0449 

10 54.0654 42.0342 
11 74.6689 66.5479 
12 25.1904 2.40625 
13 37.2969 60.9834 
14 64.8936 68.3525 
15 21.2803 22.2578 

 
5. Conclusions 
 

Different optimization techniques were compared 
for the global optimization problem of pile placement 
schemes in grillage-type foundations. The global solutions 
were not obtained using any of discussed algorithms; how-
ever, both BB and GA global optimization techniques ren-
der rational solutions. The required computer resources to 
achieve solutions of approximately the same accuracy level 
for BB algorithms are much higher than for GA.  

GA compared with other global optimizers yields 
the reasonable solution in shorter time. The solution results 
depend on the genetic parameters (population size, muta-
tion probability, crossover operator); investigation of rea-
sonable ranges of these parameters always assures a better 
solution. One promising way to enhance the optimization 
process is to use the sensitivity information while mutating 
the genotype of an individual; the mutation process in GAs 
plays similar role as the local search around the BB guess. 

Since the GAs are stochastic algorithms, always a 
number of numerical experiments should be performed. On 
the other hand, it may be very advantageous for the engi-
neering practice, because the designer might choose a 
beneficial solution (i.e. certain topology of pile placement 
scheme) from a number of different topology solutions 
having close magnitudes of objective function. In case the 
advanced computer system is at designer disposal, the par-
allelization of solution process is straightforward, assign-
ing one numerical experiment for one node.   
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R. Belevičius, D. Šešok 

GLOBALUSIS PAMATŲ SIJYNŲ OPTIMIZAVIMAS 
GENETINIAIS ALGORITMAIS 

R e z i u m ė 

Pateikti polių išdėstymo rostverkiniuose pamatuo-
se globaliojo optimizavimo matematiniai modeliai ir skir-
tingi sprendimo algoritmai – lokalioji paieška pradedant 
nuo kvazioptimalaus sprendinio bei globalioji paieška šakų 
ir rėžių algoritmu ir genetiniais algoritmais. Sprendimo 
metu minimizuojama didžiausia absoliutiniu dydžiu verti-
kali reakcija, kylanti bet kuriame iš polių.  Optimizavimo 
uždavinys yra netiesinis ir daugiaekstremis. Tikslo funkci-
jos vertę pateikia „juodosios dėžės“ principu veikianti 
baigtinių elementų programa. Skirtingų optimizavimo te-
chnikų palyginimas aiškiai rodo genetinių algoritmų per-
spektyvumą šio tipo uždaviniams: racionalų sprendinį 
įmanoma rasti per inžinerinei praktikai priimtiną sprendi-
mo laiką. Be to, kelis kartus sprendžiant uždavinį geneti-
niais algoritmais, galima surasti kelias skirtingas sprendi-
nio topologijas su artimomis tikslo funkcijos vertėmis ir iš 
jų pasirinkti tinkamiausią inžinerinei praktikai. 

R. Belevičius, D. Šešok 

GLOBAL OPTIMIZATION OF GRILLAGES USING 
GENETIC ALGORITHMS 

S u m m a r y 

The mathematical models and different solution 
algorithms for global optimization of pile placement 
schemes in grillage-type foundations are presented: the 
local search from a quasioptimal solution and the global 
search by Branch-and-Bound algorithm and genetic algo-
rithms. The maximum in absolute value vertical reactive 
force arising at either support is to be minimized. The op-
timization problem is nonlinear and nonconvex. The value 
of objective function is supplied by a “black box” finite 
element program. Comparison of different optimization 
techniques reveals the potential of genetic algorithms for 

this type of problems: the rational solution may be ob-
tained in an appropriate for engineering practice solution 
time. Moreover, a several different topologies of solution 
with a close objective function values may be obtained in a 
several runs of genetic algorithm, and the most relevant for 
the engineering practice topology may be chosen. 

Р. Белявичюс, Д. Шешок 

ГЛОБАЛЬНАЯ ОПТИМИЗАЦИЯ РОСТВЕРКОВЫХ 
ФУНДАМЕНТОВ ГЕНЕТИЧЕСКИМИ 
АЛГОРИТМАМИ 

Р е з ю м е 

В статье представлены математические моде-
ли и различные алгоритмы решения задачи глобальной 
оптимизации нахождения распределения свай в рост-
верковых фундаментах – локальный поиск, начиная с 
квазиоптимального решения, и глобальный поиск по-
средством генетических алгоритмов и алгоритма вет-
вей и границ. Во время решения минимизируется наи-
большая по абсолютной величине вертикальная реак-
ция, возникающая в любой из свай. Задача оптимиза-
ции является нелинейной и многоэкстремальной. Зна-
чение целевой функции предоставляет программа ко-
нечных элементов, работающая по принципу „черного 
ящика”. Сравнение различных техник оптимизаций 
явно показывает перспективность применения генети-
ческих алгоритмов для задач данного типа: рациональ-
ное решение возможно получить в приемлемое для 
инженерной практики время. В дополнение к этому, 
решая задачу оптимизации генетическими алгоритма-
ми несколько раз, можно получить решения с различ-
ной топологией и с близкими значениями целевой 
функции, что дает возможность впоследствии выбрать 
наиболее подходящее для инженерной практики реше-
ние. 
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