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1. Introduction 

 
Various attempts have been made to produce de-

sign models defining the wall pressure occurring after fill-
ing of the granules into containers. In general, this pressure 
is resulted from the stresses developed within granular 
material, which, in the case of pyramidal container, are 
distributed over three dimensions. The investigation of the 
above stress and resulting pressures are important factor in 
design of industrial operations. A comprehensive review 
on the foundations of granular flow and designed method-
ologies, presented from the engineering point of view, is 
given by Roberts [1]. 

Many advances of granular theory and industrial 
application have been achieved through the continuum-
based models. The method of the differential slices intro-
duced by Janssen [2] and extended by Walker [3] along 
with a set of correction factors is often used for design 
purposes [4, 5]. However, these extensions with a priori 
assumed stress distribution within granular material are 
mainly attributed to the plane strain hoppers and cannot 
directly be applied to 3D wedge-shaped hopper. 

The stress patterns have a major influence on the 
magnitude of wall pressure, and the way of eliminating 
assumptions about the stress distribution within container 
has been usually associated with the application of the 
method of characteristic or FEM for solving the differen-
tial equations of continuum mechanics [6-9]. The evalua-
tion of the state of art in the implementation of the FEM 
technique was made by Holst et. al. [10]. They showed the 
strengths and weaknesses of FEM in modelling silo filling 
processes. 

Various classical (relying on the linear elastic 
Hooke’s law as well as perfectly plastic relations with 
various yield conditions and the associated or non-
associated flow rules) and nonclassical (based on the as-
sumption of density hardening) models and theories were 
elaborated within this category [11, 12]. The analytical 
models for evaluating filling and discharge state of the 
elastic and elastic-plastic material were proposed by Mróz 
and Sielamowicz [13], Drescher [14]. 

However, the continuum-based methods have se-
rious difficulties in capturing the discrete nature of granu-
lar material. Thus, granular material may be represented as 
discontinuous media by using discrete element method 
(DEM) [15], as an alternative. 

Campbell and Brennen [16], Walton [17] and 
Thornton [18] were the first to apply discrete methods to 
silo flow problems. In their approach, a limited number of 
particles was used and, in spite of this fact, some interest-

ing results concerning the flow rate and velocity profiles 
were obtained. These simulations were continued in the 
work by Kafui and Thornton [19]. 

It should be noted, that the data on numerical 
analysis of stresses by applying DEM is rather scarce, see 
Landry et al. [20], Zhu and Yu [21], Balevičius et. al. [22], 
while the any numerical studies of three-dimensional stress 
fields within pyramidal container have not been found. 

The current research addresses three-dimensional 
granular stress analysis in pyramidal container after the 
filling. The particular manifest is to modify and investigate 
the stress distribution factor employed in differential slice 
method for a three-dimensional case. 

 
2. Modelling approach  

 
The experimental investigations of stress, acting 

within the granular material, are complicated, requiring 
noninvasive and scrupulous contact force measurements 
[23, 24]. An alternative is to find the particle contact forces 
basing on contact mechanics relationships and then aver-
age these forces and their contact locations over the par-
ticular volumes. Such numerical analysis links the micro-
scopic variables in the discrete concept to the macroscopic 
variables in the continuum approach 

Thus, the microscopic stresses in granular mate-
rial are characterized by stress tensor. Tensor components 

 are obtained from the microscopic quantities by apply-
ing homogenization over the given volume V of the parti-
cle assembly [

ijσ

25] 
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where cF  and  are vector of the contact forces and the 
contact positions, while  c stands for a set of inter-particle 
contacts. Subscripts i(j) denotes directions of Cartesian 
components of the above vectors and stress tensor, thus, 
i, j = x, y, z.  

cl

In general, the symmetrical stress tensor ijσ  de-
fines the three-dimensional state of stresses which act on 
three mutual perpendicular planes at a given point of 
granular matter.   

Evaluating basic vectors of the contact consider 
the kinematics and contact geometry of two spherical par-
ticles plotted in Fig. 1.  

Two particles in contact, i and j, are defined by 
their positions xi and xj, representing the locations of the 
centres  of  gravity Oi and Oj (Fig. 1). The position of parti- 
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Fig. 1 Outline of the particles’ contact geometry 

cles is time-dependent. The particles are subjected to the 
translational velocities vi and vj, as well as the rotation 
velocities wi and wj.  

Employ the DEM approach to find contact forces 
acting within granular media. In terms of DEM, the parti-
cles are treated as individual objects with their own dy-
namical parameters (position, velocity, etc.). Therefore, the 
dynamics of each particle can be defined by forces and 
torques acting on the particle and described by a system of 
dynamical equations within Newton’s law 

 ∑
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where xi, θi are the vectors of the position of the centre of 
gravity and the orientation of the particle (Fig. 1), mi is the 
mass of the particle i (i = 1, N),  Ii is the inertia moment of 
the particle, g is the vector of gravity acceleration, while t 
is the time considered.  

In general, for three-dimensional grains with arbi-
trary shapes, however, the inertia moment I must be calcu-
lated in every time step according to the new orientation of 
the particle. Therefore, two coordinate systems, namely, 
local coordinate system, and a moving Cartesian coordi-
nate system which is fixed with the particle and whose 
axes are the principal axes of inertia are usually considered 
in modelling of the non-spherical grains. Thus, the diago-
nal inertia tensor Ii = (I1i, I2i, I3i) in a body-fixed, i.e., local 
coordinate system, is used instead of its scalar. For spheri-
cal particles, we get I1i = I2i = I3i = Ii, and local coordinate 
system becomes the same as the global one. Therefore, 
equation for rotational motion of the particle is rewritten in 
a simpler form using (3). 

The contact deformation of the particle i with re-
spect to another particle j is approximated by a representa-
tive overlap area in the vicinity of the contact centre point 
Cij. This allows the implementing of the contact force 
models based on a single particle contact mechanics. 

Generally, the forces, as the right-hand terms in 
Eqs. (2) and (3), depend on the particle geometry and me-
chanical properties as well as on the constitutive model of 
the particle interaction. The presented inter-particle contact 

model considers Hooke’s law of spring interaction, static 
and dynamic frictions as well as nonconservative viscous 
damping forces given explicitly in [26, 28]. 

Referring back to Eqs. (2) and (3) it is necessary 
to explain, that vector  represents the inter-particle or 
particle-wall contact forces acting on the contact centre 
point C

ijF

ij , while  is the vector specifying the position of 
the contact point C

cijd

ij with respect to the centers of the con-
tacting particles.  

Now, it could be shown, that components of the 
vectors  and  used for evaluation of the stresses are 

composed of components of the above vectors  and  
(

cF cl

ijF cijd
Fig. 1). Actually, evaluation of the stresses ijσ  has to be 

presented in a form of time histories ijσ (t) tracked until 
the end of filling period. 

Numerical implementation of formula (1) into 
DEM-based analysis and the obtained results verification 
was given in [29]. Meanwhile, the DEM technique used 
was described in detail in [26], [30]. Its implementation to 
the analysis of the filling processes in hoppers was also 
discussed in [22], [31].  

 
3. Problem description 

 
Granular material is modeled as an assembly of 

noncohesive   spherical   N = 1980  particles.   The  particle  
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Fig. 2 Geometry of the container (a) and particles with 
contact forces obtained at the end of filling of con-
tainer (b) 
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radii Ri varying over the range of 0.03 and 0.035 m were 
generated with an uniform distribution. Total mass M of 
the material was equal to M = 143.7 kg. Elasticity modulus 
of the particle was equal to E = 0.3·106 Pa. Viscous damp-
ing is described by coefficients γn = 60 s-1 and γt= 10 s-1 
which are defined in normal and tangential contact direc-
tions. Inter-particle and particle-wall friction is character-
ized by friction coefficient, μ = 0.3. 

The characteristic dimensions of the outlet are 
traditionally related to the maximal diameter d of the parti-
cle as D = 8.6d and b = 4.3d; while the container’s height 
and width are coupled with acute angles θy = 68°, θx = 62° 
providing for H = 2.88D. The geometry of the converging 
pyramidal container is plotted in Fig. 2, a. Walls (including 
the bottom) are assumed to be rigid and considered as the 
fixed boundaries having friction. The state of granular as-
sembly after the filling is plotted in Fig. 2, b. The color 
scale indicates the magnitude of the particle contact forces 
defined in N. 

 

4. Numerical results 
 
Normal stresses σii (where I = 1, 2, 3) obtained by 

formula (1) and relying on the particles forces data shown 
in Fig. 2, b are plotted in Fig. 3. The stresses are given in 
Pa there. 

As can be seen from these plots, the distribution 
of the normal stresses has a convex shape with peak values 
at the centre and lower values at the wall planes. The de-
crease in stresses going from centre of the hopper to its 
wall occurs due to shear stresses originated from particles 
friction. The obtained convex shape of σ33 is well-
coincident with the asymptotic stress distribution found by 
Drescher [14] by using the method of characteristics. It is 
obvious that horizontal stress variation is the function of 
the coordinates x and y, see Fig. 3. It is known, however, 
that an erroneous assumption about the constant horizontal 
stresses variation was used by Walker [3]. In addition, a 
condition 112233 σσσ >>  is satisfied, suggesting that 
the active stress state occurs within the entire container 
after the filling is completed. 
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Fig. 3 Distribution of normal stresses in two perpendicular mid-planes at the end of filling, (a-c) plane Oyz, (d-f) plane 
Oxz 

 
Finally, it should be noted that discrete particle 

micromechanical properties contribute stress fields that 
would be more precise with increasing the number of par-
ticles in the model. 
 
5. Discussion 
 

The character of the obtained stresses presented in 
the previous section shows that DEM model used with 
relationship (1) is able to represent the stress fields of 
granular continuum within pyramidal container. Thus, on 
the basis of the above results a modification in a frame of 
the method of differential slices [4] can be now considered.  

Generally, the method of differential slices em-

ploys force balance on the horizontal infinitesimal slice 
bounded by the container walls. The existing models are 
characterised by explicit relations among stress compo-
nents tailored for specific geometries. In particular, it takes 
the stress components as related by the various yield condi-
tions. An important issue is how to relate the distribution 
of stresses occurring within granular material with the wall 
pressure. 

In general, any distribution of stresses over the fi-
nite dimension of arbitrary differential slice with coordi-
nate z measured vertically from the apex of the container 
can be postulated in order to find the corresponding aver-
age stresses. Therefore, the average stresses acting on dif-
ferential slice is simply represented as an uniformly dis-
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tributed. Meanwhile, the evaluation of normal stresses de-
creasing towards the walls (due to contribution of shear 
stress) may be expressed adopting the stress distribution 
factor D introduced by Walker [3]. Originally, this factor 
was proposed for the case of plane hopper. In particular,  
by referring to stress  in the section x = 0, the factor 

 expresses the ratio of actual stresses on the walls 
33σ

33D
( z,y, w033 )σ  to mean granular stresses ( )z,y,033σ .  

Based on the determined spatial stress variation 
within granular material we arrived at the following ex-
pression for the distribution factor of normal stress compo-
nents iiσ ( ) for the case of the three-dimensional 
container. In pyramidal container, the hopper geometry 
dependent factor D will be different for two perpendicular 
walls denoted hereafter by subscripts wx and wy, respec-
tively 

321 ,,i =

 

( ) ( )
( )z

z
zD

ii

xii
xii σ

σ  w
 w =      (4) 

 

 ( )
( )
( )z

z
zD

ii

ii
yii σ

σ  wy
 w =  (5) 

where ( ) ( )z,,xz wiiii 0 wx σσ = , ( ) ( )z,y,z wiiii 0 wy σσ =  

and ( ) ( )z,y,xz iiii σσ =  are the mean normal stresses at 
the walls and the average stresses acting in the slice.  

Homogenization of Eqs. (4) and (5) may be per-
formed by integrating over slice area A(z) or lengths of the 
slice Lx(z) and Ly(z) on the corresponding container wall, 
respectively. Finally, taking into account the definitions of 
container geometry (Fig. 2, a) we get the following formu-
lae 

 ( )
( ) ( )

( )

( )
( )

 2 ,

, ,
y

x ii wL z
ii wx

iiA z

zcot x y z dy
D z

x y z dxdy

θ σ

σ
=

∫
∫∫

,
            (6) 
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, ,
x
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ii wy

iiA z

zcot x y z dx
D z

x y z dxdy

θ σ

σ
=

∫
∫∫

,
 (7) 

To illustrate the averaging methodology and the 
influence of three-dimensionality of the distribution, varia-
tion of 33σ  over the slice located at the height of 0.5 m 
from the bottom is plotted in Fig. 4, a. An approximation 
of integrals in Eqs. (6) and (7) was computed numerically 
via the trapezoidal method. 

Here, the convex surface shows actual variation 
of ( z,y,x33 )σ , while the horizontal plane represents the 
average stress value ( )z,y,x33σ . The line above this 

plane stands for the mean stress ( )z,y,033σ  averaged 
only along y axis, for coordinate x = 0, which is considered 
in two-dimensional models by neglecting variation of 
stresses in perpendicular direction. The lower line repre-
sents the mean stresses ( )z,y,x wwy 33σ  on the wall per-
pendicular to plane Oyz. 

The graphs illustrating variation of the distribu-

tion factor of the vertical stresses  over the height 
for the container considered are plotted in 

( )zD  wy33

Fig. 4, b. The 
first curve represents Walker’s distribution factor derived 
for the plane case, while the second curve reflects factor 

( )zD yii w  obtained by the proposed relations (6) and (7). In 
particular, the difference between both factors is signifi-
cant in the upper layers of the material, indicating three-
dimensional stress contribution which would be of major 
importance in the analysis of pyramidal container. In addi-
tion, the convergence tendency of both curves can be ob-
served with the increasing material depth, while their val-
ues ranging between 0.9 and 1.0 are quite typical for the 
active stress state [4]. The third curve presenting the rela-
tionship between ( )z,y,x33σ  and ( )z,y,033σ  evaluates 
a  decrease  of stress  in pyramidal  container caused by the  
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Fig. 4 Illustration of cutaway of the obtained vertical 
stresses |σ33| at the height of 0.5 m (a); stress distri-
bution factors (b) 

out-of-plane stress component. It can be seen that three-
dimensional stress contribution decreases along with de-
crease of cross-section of the container. In addition, the 
peak of stress acting on the walls is located at the centre of 
wall (Fig. 4, a), while near the corners the stress reduces 
due to shear. 

 
6. Concluding remarks 

 
The 3D variation of stress fields occurring in gra-
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nular material after the filling of pyramidal rectangular 
container were investigated by applying the DEM. In par-
ticular, the influence of the three-dimensional variation of 
the stress was examined within the framework of differen-
tial slice method.  

On the basis of the obtained results the following 
conclusions have been drawn: 

1. Generally, neglecting of three-dimensional 
variation of stresses yields overestimated values of the 
mean stress and stress distribution factor. This tendency 
may be of the primary importance for the discharge proc-
ess, where the granular material is undergone passive stress 
regime.  

2. The above illustrated difference should be 
taken into account by considering the equilibrium of dif-
ferential slice in pyramidal container. In addition, perform-
ing the design, the stress acting on pyramidal container 
wall must be calculated at its center, where granular mate-
rial stress has the maximal value, while near the corners 
this stress reduces. 

3. Despite a small number of particles used the 
obtained results are quite representative and qualitatively 
comparable with the continuum-based predictions, while 
the discrete element method could be used in the future for 
revising continuum-based models and three-dimensional 
problems, in particular. The refined 3D DEM models, in-
cluding discharge flow, are under development now. 
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R. Balevičius, R. Kačianauskas, V. Vadluga 

TRIMATIS GRANULIUOTOS MEDŽIAGOS ĮTEMPIŲ, 
ATSIRADUSIŲ PIRAMIDINĖJE TALPYKLOJE PO 
SUPYLIMO, MODELIAVIMAS  

R e z i u m ė 

Straipsnyje pateikiamas trimatis granuliuotos me-
džiagos įtempių, veikiančių piramidinėje talpykloje po 
medžiagos supylimo, modeliavimas. Erdviniai įtempių 
laukai apskaičiuoti nustačius daleles veikiančias kontakto 
jėgas ir jas suvidurkinus užsiduotame medžiagos tūryje. 
Įtempių pasiskirstymo laukai patvirtinti remiantis žinomais 
kontinuumo mechanikos teiginiais. Įtempių pasiskirstymo 
koeficientas, naudojamas diferencialinio pjūvio metodiko-
je, patikslintas atsižvelgiant į nustatytus įtempių erdvinio 
būvio rezultatus. 
 

R. Balevičius, R. Kačianauskas, V. Vadluga 

INVESTIGATION OF THREE-DIMENSIONAL 
GRANULAR STRESSES IN PYRAMIDAL 
CONTAINER AFTER FILLING 

S u m m a r y 

The discrete element simulation was performed to 
evaluate granular  stresses in pyramidal container after the 
filling. The 3D stress fields were obtained on the basis of a 
micromechanical approach by calculating inter-particle 
contact forces and their subsequent homogenization in the 
given volume of material. Stress distributions were con-
firmed the continuum-based indications. According to the 
results obtained, the stress distribution factor was corrected 
relying on the influence of three-dimensionality in the 
frame of the differential slice approach. 

Р. Балявичюс, Р. Качанаускас, В. Вадлуга 

ТРЕХМЕРНЫЙ АНАЛИЗ НАПРЯЖЕНИЙ  
ГРАНУЛИРОВАННОГО МАТЕРИАЛА В 
ПИРАМИДНОМ КОНТЕЙНЕРЕ ПОСЛЕ 
ЗАПОЛНЕНИЯ 

Р е з ю м е 

На основе метода дискретных элементов про-
веден анализ учета напряжений, действующих в грану-
лированном материале после заполнения пирамидного 
контейнера. Трехмерные поля распределения напря-
жений установлены на основе микромеханического 
подхода при учете сил, действующих непосредственно 
на частицы материала с их последующей гомогениза-
цией в заданном объеме материала. Распределение на-
пряжений подтверждено их совместимостью с извест-
ными предпосылками механики сплошной среды. По-
лученные результаты использованы для учета влияния 
трехмерности на коэффициент распределения напря-
жений в методе дифференциального сечения. 
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