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1. Introduction

The aim of this article is to present mathematical
methods and analyze algorithms of module systems like:

- reliability theory based on Barlow’s theory,

- transmission calculation,

- dynamical characteristics calculation.

Further researches leads to solving parametrical optimiza-
tion of active module systems.

In article two cases of module systems are exam-
ined. The first is module system without any regulator
(passive), the second with power regulator (active) [1-6].
An algorithm is illustrated for module system with regula-
tor type PID (Proportional-Integral-Deriative controller),
where the first module is set for electrical transmitter and
the other is modelling signal received by receiver [1, 2,
5, 6]. Particular calculations were made with Maple calcu-
lation system. In the paper the problem of optimization of
dynamical characteristics of the machines vibroisolation
systems is analysed. Active models of the vibroisolation
systems are considered [4, 6-8]. The main conditions for
construction of the dynamical models of the vibroisolation
systems to optimization procedure are folling:

- considering models of the driving subsystems with
only electrical DC motor and with feedback ele-
ment, particularly by the use of PID control ele-
ment,

- impulse or harmonic force is assumed, without ran-
dom processes.

Results of numerical calculations in terms of dis-
place-ments’ courses, the accelerations and vibroisolation
forces are presented.

2. Reliability and structural function of module systems

In Fig. 1 the series module system and its dual
parallel system are shown. There by F, (t) the probability

function for i block is denoted, however the symbol Ry (t)

of the reliability function is expressed. The probability and
the reliability functions of the module system are given in
the following formulas

FO=T101-R ()
R O=FR ROx.xF0, FO=1-RO ()
RO=I-[1 -ROI=LIR;®)

where [I is named as Barlow’s symbol.
We define the damage intensity function
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The probability function of the module system

Ps =P plo(leP2m+P3m_leP2mP3m) (3)
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Fig. 1 Series module system (a) and dual parallel system
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For module system that is shown in Fig. 2 it is
determined the structural function with substituted vari-

ables ¢ (Xj)
P(X) =X X[ @(X) @,(X)+0;(X;)-9,(%) 9,(X,)]
where

(%) = XX, [(xzx3 Xy = XXX, ) (X, X =X, X )+

Xy (X5 + Xg = XsXg ) = Xg (X5 + Xg = XsXg ) (XX + X, —

=X, XX, ) (%) + X = X, X )]

Probability of the modules of the system (Fig. 3)
P = PP+ Py =P, Ps Py Py = Py 4 P = P, Py
Pin = Py (P + Py = PP )

in conclusion for the main system it is obtained
Ps =P Py (lePZm + P3m - lePZmP3m) =
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= p1p10|:(p2p3+ P, = p2p3p4)(p7+ pg_p7p3)+
+p9(p5+pﬁ_pspa)_pg(p5+p6_p5p6)><
x( P,y + Py = P, P3P, ) (P + By — P ) |
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Fig. 2 An example of a nonregulated circuit

10

A

Fig. 3 Modules implied into the main system

Let the probability distribution function be as-
sumed

Pi =
Probability function is defined
Ft)=(1-e") (1+e™)[2-3 (1-e*) +3(1-e ") -
_(1 P )5 :| _ (1 g2 )(1 et )3 (1 e 5e20
_Dp M g4t | g=SH ) _ (1 _g M )(l I P P

10p M g | g 5At ) —1—3e M 4 e2M L5734 _

gt _g St | 30t _ o Ta
Reliability function is defined

R(t)=1-F(t)=3e"" —e?" —5e7" + 5™ + ™" —

_3e—6/“. +e—7){[
Probability density function is defined
f(t)=Ae"(3-2e7 ~15e7" +20e ™ + 5+ -

~18¢ " +7e")

Damage intensity is defined

A(t)=A(3-2e7 —15e7% + 206 + 5e 7 — 18 +
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where is set 4(0) =0, () = A.
For the readiness time as set durability can be
calculated from the equation

% 1 1 55 111
TO—E[T]—?[R(t)dt—1(3—E—§+Z+g—5+7j_
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In the case of the regular distribution of the ele-
ments of the system

on the elements numerated as followsi=1,2,..., 10

=

1

w =Ct(l+ct-c’t*), Fyy, =ct(2-ct), F, =c’t*(2-ct)
- then the original main probability function
F(t)=c't'[ (1+ct-ct*)+1-c (2-ct)(1+ct—ct )
(2—ct)=c't* {1+(1+ct—czt2)[1—czt2 (2—ct)]}(2—ct) -
=t} (4-70 0 + 7t =58 410, t=ct
- the density probability function
f(t)=ct’ (16-42t> + 7" + 56t —45t° +6t” )

for 0<t<1
- the reliability function

R(t)=1-t' (4=7 + +7t* - 5t° +1°)

1
Tor :F[Tr]:j[l_t4(4_7t2+t3+7t4_5t5+t6):|dt:
0
=T{1_i+1_l_l+1_i}:35171
5 8 9 2 11| 3960

3. Mathematical model of active module system with
PID element

General equation of the active vibroisolation sys-
tem in term of the two differential matrix equations is con-
sidered [9, 10]

MX + BX + Cx+ D(x)= F(t)- Ku(t) (4)

U=Gu+ Lu+ Hx

)



where K > 0 is the diagonal matrix for the control coeffi-
cients L, H are the positive determine matrix, which ele-
ments are of the parameters of the control elements.

Eq. (5) expresses the mathematical model of the
control element PID in matrix description. In analysis the
diagonal terms of the control matrix are assumed:
L = diag [Li], H = diag [h;], G = diag [gi ]. Multiplying the
Eq. (1) by inverse matrix B! we obtain the following
system of two equations [9, 10]

K+ bx+ox+d(x)= f(t)-ku(t) (6)

U=Gu+ Lx+ Hx (7
Assuming H =0 and U =0 is obtained the model

with static control system
Gu=Lx—>u=gx,g=G"'L (8)
The Egs. (6) and (7) can be presented in term of
the only one equation with 3-order. By differentiation of

the Eq. (7) regard to the time and putting into the Eq. (6) is
written

X+bx+cex+d(x)=f(t)—ku(t), U=Gu+Lx+HxX
X+bX+cx+ex=f'(t)-kGu(t)

The characteristic equation of the system has fol-
lowing term

det‘Er3+b1r2+clr+e‘=O (10)

According to the Routh-Hurvitz theorem the ac-
tive system would be stabile, when the each roots of the
characteristic Eq. (7) haven’t positive real part [5-7]. Next
is considered the system with harmonic extortion forces

f(t)=f,+ f sinowt and the similar term for control sig-
nals U(t)=u,+Uu, coset, where f << f,u <<u,.There
is assumed the following dependences for elimination of
the forces amplitudes f,
ku, = f, >u, =k™'f, (11)
In such case the amplitudes of the control signals
should be compensation of the amplitudes f; of the dy-
namical harmonic signals
(kG)u, =of, > u =w(kG) " f, (12)
On basis of the Egs. (8) and (9) is formulated the

dependence for determination of the control matrices and
it’s parameters
La=Haw— L=wH

(13)

To prove numerical calculations of the Egs. (9)
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the active system is presented in term of the three equa-
tions with 1-order

z=Tz+D(x)+F(t) (14)
where
0O E O
T=|-c -b -k|, d=[0-d0]
L H G
z=[x,v,u]', F=[0,f,0]".

4. Modelling of the regulated module circuit system

Main system without any power regulator can be
set as in Fig. 2. Where modules are established as combi-
nations shown in Fig. 3. Then for all module objects is set

b b b
T(s)=——, T,(s)=—2—, T,(s) =—>
/(s) s+a, :(5) s+a, () s+a,
T ()= T ()= o Ty (5) =
4 a7 S+a‘8 (15)
b
T,(s) =?’, T,(s)=as T,(s)=K,
b, +K
T — 0 0
() a,8’ +b,S+C,,

Then for main module’s transmissions

T, ()T, (8)+T,(s), Tow (5) =T, (s)+ T (s)
T, ()T, (5)+T,(5)] } (1

Regulated system is shown as in Fig. 4.
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Fig. 4 Simplified figure of the main circuit

For the system from Fig. | main transmittance is
realized

(s)

T (3) Tow

T =T,(s)T, 17
w (&) =T T ) o (e 7

R(s)=K, +%+bs

It is implied equation as follows
b,s D, (s)

T, (s)=2pp2 203 _ g 18
M(s) 12 DM (S) AO D(S) ( )

with setting parameters
A, =a,8° +d,s* +d,s’ +d,s’ +d,s+d, (19)

where variables’ parameters in equation are defined as



d; =aa,c,

d, =a,c, +2a,a,c, + 2akb,b,c,

d, =2a,c, +a’b, +ac, +2aa,b, + 0)
+a,3,a; +2akbb’h,

d, =c, +2a,b, +a,a +ab, +2aa,a,

d, =b, +2a,a, +a,a,

Then for the set main function of amplitude char-
acteristic is calculated

AA, (@) =

_ 0 | 2
\l(d5 -d,0’ —dla)4) +ao’ (d4 -d,0’ +a0a)4)

2 2 2
c, +hyo

> (21)

from Eq. (2) is evaluated
a,y’ +dyVd,y" +d,y" +d,y+d, =2bb; (c,x+x') (22)

For active system with power regulator type PID
(Fig. 5) main transmittance is set in equation

T(S) _ TM (S)

T 14T, (S)R(s) 3)

Particular formula of the transmittance is defined
as

TM (s)=
2bb; (c, +b,s)

= 24
(s+a)(s+a,)(a,8* +b,s+¢,)+2ak bb: (k, +b,s)s @9

with transmittance of the control element PID

a,

K;s+a
R(s) = K, +2 = 2278
S

S

(25)

by simplifying the main record of the set

D,y (5) =c, +b,s

Ay (8)=(s+a)(s+a,) (a,s” +b,s+c,))+
+2a k b (k, +Db,s)s

A =2bb;

(26)

Then the main transmittance of the regulated sys-
tem with element PID can be set in term

D]M (S)
" Dy (s)

T(s)= (27)
14 A P gy
(s)

0
M

what is equal to
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AD,y (8)s

_ _D(s)
~ SDy (5)+ AD (s)(ka+a)

D(s)

T(s) (28)

From Eq. (28) is evaluated the 6 order differential
equation of the regulated system

a,y"dy’ +d,y"dyy" +dyy" +

+d,y' +d,y = Abx" + Ac,x (29)

where variables’ parameters in the equation are defined
with extension for local parameters

a5 = ds + Abkokl + A)azbo (30)

d, =d, + Akk +Aab,

For regulated circuit function of amplitude char-
acteristic and acceleration characteristic is realized

¢, +ble’

D(w) , P(w) = 0" A(w)

Alw)= Ao 1)

Circuit from Fig. 5 can be simplified according to
modules presented in Fig. 1. Main electrical circuit model
of the system with power regulator is presented in Fig. 6.
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I

Fig. 5 Example of main circuit with power regulator
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Fig. 6 Example of simplified main circuit with power regu-
lator

5. Results of numerical calculations of the regulated
active system

The mechatronical model of the system with cur-
rent steady motor is shown in Fig. 7. This system is corre-
spondent to circuit module system in Fig. 5. There the vi-
broisolation subsystem exists in term of the mass m, the



spring ¢ and the resistance b. Calculation for this example
can be lead for set variables

m, =1000kg, ¢, =500kN/m, b, =100kNs/m ,
K, €<0,500 >, a, =1.0, b, =1.0, a, =100,

b =20,a,=a,=a, =a,=50,b, =b, =b, =
=h, =10, a, =100, b, =100, K, =100

Y
S v &
"”J]*T;}A T;”}‘lo_, il
Vi -

VR

T TR TR T

n l

Fig. 7 Mechatronical model of the active regulate system
with PID element

From Eq. (18) after implying all variables into
equation is achieved derives equation of 6 level for func-
tion y(X) what is equal to other one

1000y"+200100y" +1252500y" +371350000y” +
+65025000y + 2500000993y = 4000 (500X + X')

Frequency characteristics of acceleration is pre-
sented in Fig. 8. Courses of the displacement (a) and ac-
celeration (b) in case of the nonregulared system are
shown in Fig. 9. Frequency characteristics of the accelera-
tion for regulated system are shown in Fig. 10. Next the
courses of the displacement (a), the acceleration (b) and
the plane trajectory in case of the regulated system are
given in Fig. 11 for frequency f=3 Hz and a;= 100, K
= 100. Next the courses of displacement (a), the accelera-
tion (b) and the plane trajectory for as = 100, f = 4 Hz are
shown in Fig. 12.

P, m/s?
Kr=100  a=1
0.8+
0.6
m = 1000 kg
0.4+

¢ =800 kN/m

f, Hz

Fig. 8 Frequency characteristics of acceleration
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Fig. 9 Courses of the displacement (a), the acceleration (b) in case of nonregulared system
P, m/s
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Fig. 10 Frequency characteristics of displacement (a) the acceleration (b) for regulated system
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Fig. 11 Frequency characteristics of displacement (a), the acceleration (b) and plane trajectory (c) for regulated system and

frequency f=3 Hz
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Fig. 12 Courses of displacement (a), the acceleration (b), the plane trajectory (c) for regulated system and frequency f =

=4 Hz



6. Conclusions

Module system with build in dynamical signal
regulator behave stabile. Stabilization of the system with
dynamical regulation is shown in figures. Because of in-
built of dynamical signal regulator it is possible to achieve
state in the system where parameters reach asymptotic val-
ues. In further scientific research it is expected to built an
algorithm of genetic optimization. In conclusion the main
algorithm based on derives analysis for module systems,
which enables free regulation of module systems for opti-
mal setting.
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A. Nowak, M. Wozniak

DAUGIAPAKOPE MODULINIU MECHATRONINIU
SISTEMU ANALIZE

Reziumé

Siame straipsnyje apraioma moduliniy mechatro-
niniy sistemy su PID tipo aktyviuoju reguliavimo elementu
daugiapakopé analizé. Analizuojamos aktyviosios mechat-
roninés sistemos modeliavimas su griztamojo rySio valdy-
mo posistemiu. Aprasomas algoritmas taikomas modulinei
sistemai su reguliatoriumi, kuris pirmasis modulis yra jren-
ginys, skirtas elektrai tiekti, o antrasis — modeliuojamas
griztamojo rysio valdymo posistemis. Naudojant MAPLE
programing iranga atlikti modulio dinaminiy charakteristi-
ky tam tikri skai¢iavimai.

A. Nowak, M. Wozniak

MULTIRESOLUTION DERIVES ANALYSIS OF
MODULE MECHATRONICAL SYSTEMS

Summary

This article presents multiresolution derives
analysis for examples of circuit with module structure and
with power regulator type PID. There the study of the
modelling of the active mechatronical systems with control
feedback subsystem is shown. Algorithm is illustrated for
module system with regulator, where first module is set for
electrical transmitter and the other is modelling control
feedback. Particular calculations were made with MAPLE
calculation system for determine of the dynamical charac-
teristics of the module system with vibroisolator.

A. Hosak, M. Bo3nsik

MHOI'OCTYIIEHUYATBIN AHAJIU3 MOJTYJIBHBIX
MEXATPOHHbBIX CUCTEM

Peszome

B pabore ommcaH MHOTOCTYNEHYATHI aHANIN3
MOJYJBHBIX MEXaTPOHHBIX CHCTEM C aKTUBHBIMH 3JIEMEH-
Tamu peryaupoBku tuna [IM/]. B Hell aHanu3upyercst Mo-
JIeTUpOBaHNe aKTHBHOII MEXaTPOHHOI CHCTEMBI C YIIpaB-
nstrorieid oOpaTtHOW cBsi3blo. llpencraBieHblit anropuTm
MIpeIHA3HAuCH AT MOIYJIBHON CHCTEMBI C PETYIISITOPOM,
I7ie IEPBBIM MOJYJIEM SBISIETCSI YCTPOWCTBO UIS MOJAYH
3IEKTPUUECTBA, @ BTOPHIM — IMOJICUCTEMA C MOJECITUPOBaH-
HOW YTIpaBIIAIONICH OOpaTHOM CBs3bIO. Pacuerhl, cBs3aH-
HBIE C ONPE/IEICHNEM ANHAMHUYECKUX XapaKTEPHCTHK MO-
JTyJIsl TIPOU3BOAMIINCH € TIOMOIIbI0 TporpamMmmsl MAPLE.
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