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A new algorithm for helical gear design with addendum modification
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1. Introduction

Gears are used to transmit mechanical power.
Helical gears have the advantage of transmitting power
between axes that make a certain angle. Geometrical di-
mensions of the wheels from the helical gears with adden-
dum modifications are obtained by choosing arbitrary val-
ues for the addendum modifications. This approach gives a
new method of determining the helical gears geometrical
dimensions based on the assumption that the sliding coef-
ficients are equalized, on the meshing line, at the points
where the meshing begins and ends and that there are no
interferences between the teeth. As the sliding between the
teeth flank is influencing lifetime of the gears, the mini-
mum value of the equalized sliding can be obtained by a
genetic algorithm in order to find the geometrical dimen-
sions of the gears that will last longer. Based on the as-
sumption of the sliding coefficients equalization between
the teeth flanks the x; and x, addendum modifications are
obtained together with the together with 8, and S, the helix
angles on the pitch cylinders while a, the distance between
de axes, and 2, the angle between the axes are given. The
algorithm was implemented in MATLAB as this is an ex-
cellent scientifically tool for design [1], modelling [2] or
controlling purposes [3].

2. Sliding coefficients at helical gears

At planar gears different methods for choosing the
addendum modification can be found at [4 - 7]. Each of
these methods focuses on increasing the service life of the
gears while maintaining some given limit of their size.
These methods can also be extended to spatial gears, in this
case, at helical gears too. One of them can be found at [8].
The algorithm from this paper is based on the relations

A2+ B+ C

Fig. 1 The helical gear scheme

from [9], where the sliding coefficients are established.
The kinematical scheme of the helical gear is given in
Fig. 1.

The meshing line is obtained by the intersection
of the P; and P, tangent planes to the base cylinders. On
this line, we have the A point, where the meshing begins,
and the E point where the meshing ends. Based on [9], the
sliding between the teeth flanks can be evaluated with the
help of ¢}, and {,; sliding coefficients. {j, measures the
sliding of flank / in regard to flank 2, while {;; measures
the sliding of flank 2 in regard to flank /. The sliding coef-
ficients are determined at the A and E points which are the
most far meshing points from the C point (pitch point) as
here the sliding coefficients have the highest values.

and
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The x4, y4, z4 and the xg, yg, zg are the coordinates
of the A and E points from Fig. 1 with the following ex-
pressions and uy; =wy/w,=z,/z, the gear ratio.
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3. Determination of the geometrical dimension

The geometrical relations used to compute the

dimensions of the 1st and the 2nd helical wheels are:

- diameters of the pitch circles
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- teeth declination angles on the base cylinders
sin(fy,) = sin(f)cos(a, )} ®)
sin(f,,) = sin( 3, )cos(a,,)

- the number of teeth of the equivalent wheels
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- meshing angle at normal plane
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- teeth declination angles on the rolling cylinders
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- meshing angles at frontal planes
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- specific cutback of the tooth head
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- profile angles of the basic rack at frontal planes
of the 1st and 2nd helical wheels
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- pressure angles in the frontal planes on the ad-
dendum circles
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- diameters of the base circles for the 1% and the
2nd wheel
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- diameters of the rolling circles for the 1** and the
2nd wheel
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- diameters of the head circles for the 1* and the
2nd wheel
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4. Limitations of the addendum modification

The values of the x; and x, addendum modifica-
tions obtained from the equalization condition at the be-
ginning and the end of the meshing must satisfy the inter-
ference conditions, which are the conditions concerning
the cut and the undercut of the teeth.

In order to maintain the thickness of the teeth on
the head circles the following relations must be true:

- at wheel 1
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- at wheel 2
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Z
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In order to eliminate the undercut phenomena the
x; and x, addendum modification must be greater then the
Xpmint and X0 values from the following formulas:

- at wheel 1
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5. Equalization of the sliding coefficients

In order to equalize the sliding coefficients at A
and E meshing points of the helical gear expressions (1)
and (2) will be used. As the equalization criterion must be
obtained for different 2 angles and different a distances
between the wheels, we obtain the following system of
nonlinear equations:

Siaa(X1,%0, 815 B2) = 621 (X1, X5, By, By)
B (x1,%0, B, o) + By (x1,%0, B, ) =X
Fa (X0 X0, B, o) + 1,0 (%0, X0, B, By) = a

(23)
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The second equation from the system is based on
the expressions (11), while the third is based on the expres-
sions (17). If xy, z1, z3, O, h,', ¢, m, X and a values are
given, a set of x,, f; and f, values is obtained while the
sliding coefficients {i,4 and (35 are equal, the sum of £,
and S, is equal to 2, and the distance between the axis is
a. System (23) is solved using MATLAB’s fsolve() func-
tion from MATLAB’s Optimization Toolbox. fsolve() im-
plements an iterative method that needs staring values for
the computations. The data from Table 1 are obtained in
this case for: z;=20, z,=45, 2=90°, a=116 mm (dis-
tance between the helical gears axis), a,=20° (profile an-
gle of the basic rack), &, = 1 (height coefficient from head
of the tooth), ¢'= 0.25 (clearance coefficient from the head
of the tooth), m, = 2.5 mm (module). From Table 1 we can
observe that the system has more solutions. The values for
the x| are given for each row, while the x,, £, and S, values
are obtained by MATLAB. The columns from 5 to 10 are
for checking the results: column 5 is equal to column 6, as
the equalization succeeds; column 7 + column § = column
9, as the angle between the wheels axes is given; column
10 is equal to the distance between the axes. Based on
these results the geometrical dimensions of the helical
gears can be obtained from Egs. (7) - (18). However, when
checking the interferences, the first three lines in Table 1
are not valid as Eq. (20) is not true due to the high values
of x, (the values are marked with *). One of the main prob-
lems is how to choose the values for 2 and a so that
Eq. (23) would have solution. For the case of X' the possi-
ble values are limited from 0° to 90°, but for the case of a
we do not have a method to find a valid domain. A way of
dealing with this problem is to give MATLAB more free-
dom while looking for the solutions. Instead of giving a
fixed value for a, we can impose the condition that a
should be an integer value. The results are given in Ta-
ble 2.

Table 1

Equalization of the sliding coefficients at points A and E for 2'=90°, a = 116 mm, z; = 20 and z, = 45 (start values:
x,=0.15, f;=45°, f, =45°)

X1 X% B1,° B, ° Cioa Oie Bt ° B, ° 2,° a, mm
-0.80 3.385 47.65 38.81 2.09643 2.09643 49.705 40.295 90 116
-0.64 3.065 47.15 39.54 2.11205 2.11205 49.030 40.970 90 116
-0.48 27027 46.63 40.33 2.12802 2.12802 48.322 41.678 90 116
-0.32 2.293 46.12 41.19 2.14416 2.14416 47.583 42.417 90 116
-0.16 1.836 45.61 42.11 2.16013 2.16013 46.819 43.181 90 116
0.0 1.328 45.11 43.09 2.17539 2.17539 46.041 43.959 90 116
0.16 0.774 44.62 44.11 2.18924 2.18924 45.259 44.741 90 116
0.32 0.178 44.16 45.17 2.20078 2.20078 44.489 45.511 90 116
0.48 -0.450 43.72 46.24 2.20904 2.20904 43.743 46.257 90 116
0.64 -1.102 43.32 4731 2.21300 2.21300 43.029 46.971 90 116
0.80 -1.772 42.95 48.37 2.21156 221156 42.351 47.649 90 116

6. Minimization of the equalized sliding coefficients

While solving the nonlinear system (23) several
problems might appear. The transcendent equation at (10)
solved with the fzero() MATLAB function might return a
solution because:

e there are no solutions;

e the numerical method won’t converge to the solu-
tion;

e the solution is a complex value, instead of real
one.

When solving Eq. (23) using fsolve():

e the system might not have solutions;

e depending on the start points, the numerical

method may converge to a nonzero point;

e the obtained values are numerically correct how-

ever we have interferences.

Genetic Algorithms (GAs) are a category of evolu-
tionary algorithms well known to find approximate solu-
tions to the optimization problems of difficult functions.
The gatool function from MATLAB’s Genetic Algorithm
and Direct Search Toolbox is used to find the minimum of



the equalized sliding coefficients. The objective function is
the unpenalized function to which is added a constant posi-
tive penalty for the solutions that violate in some way the
feasibility.

k
Sioamin = G124 T zcié‘i (24)

i=1

In Eq. (24) ¢; is 0 if constraint 7 is 0, otherwise is
1 and C; is a positive constant imposed for the violation.
For a set of xy, x5, B, 5, violations are considered if:
e any of the three equations from (23) are not satis-
fied (no convergence to the solution);
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e the values of x| or x; are creating interferences;
e computations are not possible (no convergence at

(17) or complex values are obtained).

The xi, x,, B1, B, are the parameters used in the
gatool and the codification of the parameters is of real
type. The values are used to minimize the equalized sliding
coefficients as shown in Table 3. The GA will find lower
equalized values of the sliding then by searching for a mi-
nimum by simply covering, with a constant given step, a
certain domain for the parameters. For example, for
a =116 mm, the lowest value from Table 1 for the equal-
ized sliding coefficients is 2.14416, while in Table 3, the
lower value of 2.1329892 is obtained.

Table 2

Equalization of the sliding coefficients at points A and E for 2= 90°, a -integer z; = 20 and z, = 45 (start values: x, = 0.15,
P1=45°, B, =45°)

Xy X2 Bi,° B, ° {ioa Oie B, ° Pz, ° 2,° a, mm
-0.800 0.097 46.81 44.21 2.19392 2.19392 46.276 43.724 90 113
-0.640 0.782 46.50 43.30 2.18825 2.18825 46.607 43.393 90 114
-0.480 0.344 46.09 44.10 2.19794 2.19794 45.991 44.009 90 114
-0.320 -0.117 45.70 4492 2.20575 2.20575 45.384 44,616 90 114
-0.160 0.575 45.36 44.06 2.19584 2.19584 45.657 44.343 90 115
0.000 0.054 44.94 44.99 2.20537 2.20537 44.974 45.026 90 115
0.160 0.774 44.62 44.11 2.18924 2.18924 45.259 44.741 90 116
0.320 0.178 44.16 45.17 2.20078 2.20078 44.489 45.511 90 116
0.480 0.922 43.85 4428 2.17972 2.17972 44,778 45222 90 117
0.640 0.232 43.35 45.49 2.19352 2.19352 43.908 46.092 90 117
0.800 -0.496 42.89 46.71 2.20313 2.20313 43.075 46.925 90 117

Table 3

Minimized equalizations of the sliding coefficients at points A and E for 2= 90°, a - integer, z; = 20 and z, = 45 using
a genetic algorithm

X1 X2 B, ° B2 ° {ioa Gie B, ° P2, ° a, mm
-0.80509 0.109990 46.8234424 44.1902080 2.1936876 2.1936876 | 46.293535760 | 43.706464240 | 113
-0.86796 1.359303 47.1075663 42.1940634 2.1720332 2.1720332 | 47.486842852 | 42.513157148 | 114
-0.37746 1.231696 45.9720099 42.8412214 2.1797129 2.1797129 | 46.598141941 | 43.401858059 | 115
-0.43066 2.581124 46.4759444 40.5908757 2.1329892 2.1329892 | 48.096871731 | 41.903128260 | 116
0.365054 | 1.386262 44.2317716 43.4348752 2.1680380 2.1680380 | 45.415013934 | 44.584986066 | 117

7. Conclusions ing. -Computational Kinematics.-Proceedings of the

Sth International Workshop on Computational Kine-

In the case of opened and closed gears, where matics, Kecskeméthy, Andrés; Miiller, Andreas (Eds.),

load carrying capacity is limited by freezing or wearing, 2009, Springer-Verlag Berlin Heidelber. ISBN: 978-3-

the addendum modifications must equalize the sliding co- 642-01946-3, DOI 10.1007/978-3-642-09147-0, p.385-
efficients at the extreme points of the meshing. If the 392.

equalization is achieved the teeth flank wearing will tend 2. Stan, S.-D., Bilan, R., Mities, V., Rad, C. Kinemat-

to be uniform and lifetime of the gears will be increased.
The algorithm gives the necessary steps, with some addi-
tional verification concerning the interferences, to obtain
the wheels of the gear based on this theory. For a given X
only a limited number of integer values can be chosen for
the a value in order to find solutions (see Table 2) of
Eq. (23). Further, for the validated values of ¢ and 2 a ge-
netic algorithm from MATLAB is used to minimize the
equalized sliding coefficients in order to obtain the best
lifetime for the wheels.
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NAUJAS SRAIGTINIU KRUMPLIARACIU SU
MODIFIKUOTO AUKSCIO KRUMPLIO GALVUTE
PROJEKTAVIMO ALGORITMAS

Reziumé

Straipsnyje pateikiamas naujas sraigtiniy krump-
liara¢iy su modifikuoto auks¢io krumplio galvute projekta-
vimo algoritmas. Siekiant pailginti naudojimo trukmg tai-
koma keletas plokséiyjy krumpliaradiy (varantysis ir va-
romasis krumpliaradiai iSdéstyti vienoje plokStumoje) su
modifikuoto auks¢io krumplio galvute projektavimo meto-
dy. Erdviniy krumpliarac¢iy su modifikuoto aukscio krump-
lio galvute (ju aSys nelygiagrecios ir nesusikerta) projekta-
vimo metodai techningje literatliroje neaprasyti. Mecha-
nizmo nusidévéjimas turi itakos krumpliaraciy ilgaamzis-
kumui. Norint ivertinti krumplio Soniniy pavirsiy tarpusa-
vio slydima, turi buiti nustatyti slydimo koeficientai.
Sprendimo algoritmas paremtas teorija, kuri iSplecia sly-
dimo koeficienty nustatyma, pritaikyta plokstiesiems
krumpliaraciams, iki erdviniy. Slydimo koeficientai lygi-
nami didziausio slydimo taSkuose, siekiant suvienodinti
nusidévéjima Siuose dviejuose taskuose. Mechanizmo ge-
ometriniai matmenys nustatomi suvienodinus slydima.
Spendimui panaudota MATLAB sistema, leidZianti tiesio-
giai iSspresti netiesines lygtis, ju sistemas, atlikti modifika-
vima, naudojant genetini algoritma. Gauti sprendiniai pa-
naudoti geometriniams matmenims apskaiciuoti. Genetinis
algoritmas naudojamas siekiant iki minimumo sumazinti
lyginamas slydimo vertes.

T. A. Antal

A NEW ALGORITHM FOR HELICAL GEAR DESIGN
WITH ADDENDUM MODIFICATION

Summary

The paper presents a new algorithm for designing
helical gears with addendum modification. Several meth-
ods are known for designing planar gears with addendum
modifications in order to achieve better service lifetime. At
spatial gears, with addendum modifications, no such meth-
ods are described in the technical literature. Wearing of the
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wheels are influencing the lifetime of the gears. Sliding
coefficients are used to measure the sliding between the
teeth’s flank. The algorithm is based on a theory that ex-
tends the determination of the sliding coefficients from
planar gears to helical gears. Equalization of the sliding
coefficients is made at the points where the sliding is high-
est in order to make the wearing the same in these two
points. The geometrical dimensions of the wheels are de-
termined while the sliding equalization is maintained. Im-
plementation has been achieved in MATLAB as this tool
supports directly the solving of nonlinear equations,
nonlinear systems of equations, as well as optimization
using genetic algorithms. The nonlinear solvers are used to
compute the geometrical dimensions, while the genetic
algorithm is used to minimize the equalized values of the
sliding.

T. A. Antal

HOBBI AJITOPUTM HPEZ[HA?»I—I‘A‘-IEHHI)IIZ JJIA
HHPOEKTHPOBAHNMS BUHTOBOM HIECTEPHU C
MOJINPUKALIMEN BBICOTBI 'OJIOBKU 3YBA

Pe3womMme

B craTtbe mpencraBieH HOBBIM aJrOPUTM IPOEK-
THUPOBAHMsI BUHTOBOM LIECTEPHU C MOJU(HKAIIEH BHICOTHI
ronoBku 3y0a. C meipi0 MPOIUICHUS BPEMEHH CITYKCHHUS
IIECTEPHH, MCIOIB3YETCs] HECKOJIBKO M3BECTHBIX METO/OB
JUI TIPOEKTHPOBAHMA IUIOCKHX IIECTEpHEH ¢ MoIuQuKa-
IIMel BBICOTHI TOJIOBKHU 3y0a. B cirydae mpocTpaHCTBEHHBIX
IIECTEPEH METOJ| NPOEKTHPOBAHUSA ¢ MOIM(PHKAIMEH BBI-
COTBI TOJIOBKM 3y0a He omnmceiBaeTcs. M3HOC MexaHu3Ma
OKa3bIBaeT BIMSHHE HAa M3HOCOCTOMKOCTH miecTtepHH. Jlis
OLICHKU ITPOCKAJIb3bIBAHUA MCKAY OOKOBBIMH TIOBEPXHO-
CTsIMU 3yOIa, HEoOXOIMMO omnpenenuTbh K03 UIMeHTH!
npockaib3biBanus. [IpenyaraeMelii alropuT™M OCHOBAaH Ha
pacIIMpeHNH W3BECTHOW TEOpUH OLEHKH Kod(duIneHToB
MIPOCKAIB3bIBAHUS JUI1 IUIOCKUX W HPOCTPAHCTBEHHBIX
mectepeH. C IeNbI0 ypaBHUBAHUS W3HOCA 3y0Ia, YpaBHH-
BaHME KO PHUIINEHTOB IPOCKAIB3bIBAHHS IIPONU3BOIUTCS B
JBYX TOYKaX HauOOJBIIEro MpocKanb3biBaHus. I eomerpu-
YECKHUE pa3Mepbl MEXaHW3Ma YCTAaHABIMBAIOTCS IIOCIE
YpaBHUBaHMUs IPOCKaIb3bIBaHUs. [l pelieHus 3ToH 3a-
nmaun ucnoyb3oBanack MATLAB cucrema, 1mo3Bosstonias
NpsSIMBIM 00pa3oM pEIIUTh HEJIMHEHHbIE YPaBHEHHS U HX
CUCTEMBI, IIPOU3BOJUTH MOI[I/l(l)I/lKaIJ,l/IIO, HCIOJIb3Yysd I'CHC-
THYECKUH anropuTM. IlomydeHHbIe pereHHs NCIrob30Ba-
HBI JJIS1 OIIPEAEIICHHs TEOMETPUIECKUX pa3MepoB. [ enern-
YECKUI aJITOPUTM, IIPU 3TOM, HCIIOIb30BaH JUI YMEHBIIIe-
HUSI 10 MUHUMYMa YPaBHEHHBIX 3HAYEHUH MPOCKAIb3bIBa-
HUSL.
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