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Investigation of contact behaviour of elastic layered spheres by FEM
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1. Introduction

Particulates, or granular materials, present a huge
class of materials widely used in chemical, pharmaceutical,
food and other industries. Proper understanding of me-
chanical behaviour of granular materials is of major impor-
tance for many applications.

Among various numerical simulation techniques,
the discrete element method (DEM), introduced by Cun-
dall and Strack [1], has recently became the most useful
tool. It should be noted that the majority of DEM simula-
tions employ homogeneous spherical particles. In using
DEM, the dynamic motion of each particle of granular
media is tracked during the simulation. In this case, a de-
scription of inter-particle contact behaviour is of special
importance. In order to save computational time, the DEM
operates by simplified description of the contact, see Dziu-
gys and Peters [2], Tomas [3], Maknickas et al. [4], Krug-
gel-Emden et al. [5].

The theoretical frame of normal contact of homo-
geneous spheres stems from the classical work of Hertz
(1881), who derived an analytical solution for the fric-
tionless (i.e., perfect slip) contact of two elastic spheres.
The details may be found in the book of Johnson [6]. As
concerns the problem’s description, the elastic contact be-
haviour is explicitly characterized by the force-
displacement relationship containing the reduced, or effec-
tive, radius and elasticity modulus. Generally, even homo-
geneous spheres may be of different radii and of different
materials. The influence of the differences in particle prop-
erties is illustrated in [7].

An extensive review of the literature on spherical
and cylindrical contacts under normal load was made by
Adams and Nosonovsky [8]. As shown by the review and
the above introduction most of the existing works on
spherical contact concern a perfect slip contact condition.
The latest data on elastic solutions are reviewed by Briz-
mer et al. [9].

Mechanical properties of contacting bodies in-
cluding elasticity modulus may be determined by indenta-
tion testing and knowledge from this area may be explored
for spheres contact. Indentation testing was used to obtain
load—displacement data on the contact between a stiff
sphere and on elastic and elastic plastic half space [10-12].

As a rule, DEM operates with homogeneous parti-
cles. However, in fact, many particles of natural and indus-
trially manufactured materials are covered by a layer of
essentially different properties. Brief descriptions of the
contact of two layered bodies had already been given in [6]
and the references herein. However they are restricted, by
investigation of the single-layered half-plane under the

prescribed load distribution. The indentation by a rigid
frictionless cylinder of an elastic layer which is supported
on a rigid plane surface was studied in details. Partaukas et
al. [13] investigated the stress state of two — layer hollow
cylindrical bars.

The contact of the layered surface and the inden-
tation load-displacement behaviour were investigated, and
two different expressions for the elastic modulus of a coat-
ing substrate combination were proposed by Gao et al. [14]
and Doerner and Nix [15]. A comprehensive discussion is
presented by Malzbendera et al. [16] when be considered
hybrid coatings. Spherical indentation of an elastic thin
layer on an elastic—ideally plastic substrate was investi-
gated by Zheng and Sridhar [17].

It can be concluded that an explicit analysis pre-
dicting the contact, including homogeneities, nonlinearities
or friction is either approximate or impossible. Rukuiza et
al. [18] investigated contact between driver and seat pad.
Bazaras et al. [19] investigated effects of intense hardening
near the edges of railway contact wheels. To deel with
these effects, FE technique is extensively explored to clar-
ify the details of contact behaviour [11, 12, 20-24].

The paper presents FE investigation of normal
contact of two identical layered spheres. The main focus is
placed on the description of contact behaviour in terms of
nondimensional force-displacement behaviour and its
characterization by a resultant effective elasticity modulus
used in the DEM applications.

The paper comprises a formulation of the contact
problem, development of the FE model, its validation on
homogeneous spheres, simulation of layered spheres, as
well as the results obtained and discussion.

2. Problem formulation

Normal contact of two identical deformable
spheres i and j having equal radii R; = R; = R is considered
(Fig.1). The location of spheres is characterised by the cen-
tral points O; and O; referring to the cylindrical coordinates
rBz describing the contact. The sphere’s centres are defined
by the coordinates z; and z;, respectively. The contact be-
haviour is defined by normal displacement % = ; — h; of the
particles centers. The shapes deformed particles are de-
noted by dashed lines, while their centers occupy here po-
sitions O; and O} after deformation. The contact center is

denoted by C.

The forces exerted by the particles contact are
F;=F; =F. Due to rotational symmetry, the contact sur-
face of the spheres is a plane, which is a circle with the
radius a. In DEM simulations, local contact geometry is
characterized by the overlap 4, which is equal to the dis-



placement u. Both 4 and a are assumed to be much smaller
than the sphere’s radius R.

Fj
Fig. 1 Geometry of contacting spheres

The geometry of the core domain is defined by
the radius R., while the geometry of the layer defined by
the thickness 7'=R—R,. It is assumed that the layer’s
thickness T is relatively small compared to the radius of
the sphere.

The material of each sphere is assumed to be iso-
tropic and elastic until the first yield is reached. Elasticity
properties of the layer and core material are described by
the elasticity module E; = E and E, and Poisson’s ratios v,
and v, respectively. Each of the spheres consists of a
softer core material and a stiffer skin-layer (E, > E,). For
the sake of simplicity, Poisson’s ratio is constant,
vi = v, = v. For the homogeneous sphere, E| = E, = F.

The perfect stick conditions are assumed on the
contact area between the spheres. Since the spheres are
identical, their contact behaviour within small displace-
ments meets the sliding condition. The layer is bonded to
the core.

The loading is imposed by the motion of the cen-
tral section of the upper sphere and controlled by the dis-
placement u which actually means the overlap of the
spheres.

3. Basic relations
3.1. Homogeneous spheres

The contact of two isotropic elastic spheres may
be described by Hertz theory [6]. Assuming that contact
the spheres is time ¢ dependent phenomenon we may ap-
ply, the nonlinear constitutive relationship during contact
described in terms of the load-displacement curve F(z) —
h(?). In general, it is defined as

F (1) ngeff RTH (1) (1)

Here, the prescribed displacement is equal to the
particle’s overlap u = h. The effective radius of the parti-
cles is defined by the relationship:

e )

while the effective elasticity modulus may be described as
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For two identical homogeneous isotropic elastic
spheres R =R/2 and E¥ =E/2(1—v2). Here, time ¢

plays the role of proportionality factor.
Contact description (1) is reduced to the expres-
sion
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Another important parameter is the radius of con-
tact area a(f)

a(t)=

According to Hertz the radial distribution » < a(?)
of the contact pressure is parabolic

Rh(t) (%)
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where 7 is a radial distance measured from the center of the
contact area C, while p, is the maximum contact pressure
in the center of the contact. It is defined as

3F (1)
(1) =—" (7)
g ( ) 27a’ (t)

By considering (4) and (5) it may be expressed in
terms of displacement as follows

E h(t)

pe(t)= N (A ®)

The above relations (1 - 8) will be used for evalu-
ating the layered spheres.

3.2. Layered spheres

The description of layered spheres is made using
a more suitable nondimensional approach applied to the
traditional indentation problem [12, 17]. In this case, con-
tact geometry is attached to the sphere’s radius R. More-
over, instead of the controlling force, the displacement-
driven approach is employed.

The main point of the description of the layered
sphere is the extended concept of the effective elasticity

modulus E? . For the layered sphere the effective

modulus is defined with respect to the skin layer E as fol-
lows

EY _EE )



where E is a dimensionless effective elasticity modulus.
For the homogeneous sphere E =1.

Taking into account definition (9) and introducing
the dimensionless load we get

F(t): 3(1_V2) F(1)

J2  ER? (19
The displacements
h(t)=h(t)/R (11)

While the contact law (4) may be expressed as
(12)

It could be proved that the expression (12) com-
prises a definition of the dimensionless contact load ap-
plied to indentation of the half-space, see [17].

Other parameters such as radius of the contact
area, maximum pressure, etc., may be expressed in the
same manner.

The radius of the circular contact area (5) regard-
ing the definition (11) may be also presented in the dimen-
sionless form as follows:

(13)

Finally, the maximum pressure (8) is defined in
the dimensionless form as

7.(1)=E10)

(14)

where

B \/E/Z’(l—VQ)

7 (1) —g 7 (1) (15)
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In summary, contact properties are defined by the
dimensionless constant effective elasticity modulus of the
sphere E = E(E,/E,T/R)=E,(E,,T ). Depending
on the relation of the elasticity modulus of the sphere’s
components £, and E, and the relative layer thickness 7T .

4. Computational FE approach and validation of the
model

Computational approach addresses FE analysis of
two contacting spheres. Since the problem is rotationally
symmetric with respect to OZ axis, it is sufficient to con-
sider only a half of the hemisphere’s sections as shown in
Fig. 2. The boundary conditions consist of rigid wall con-
straints in the vertical and radial directions on the bottom
of the lower sphere and in the radial direction on the axis
of symmetry for both spheres. The surface of the sphere is
free elsewhere except for tractions imposed by the contact-
ing region.

Static loading is imposed by the motion of the

central section of the upper sphere and controlled by the
displacement which actually means the overlap of the
spheres 4. Generally, the main assumptions of the Hertz
theory related to linear elasticity and perfect sticking are
invoked in the simulations.

In order to reflect the geometry of the layer, the
segmented subdivision of the solution domain (Fig. 3, a)
was suggested for tackling the above problem and a hierar-
chical parametric model was developed for segmentation.
Because of symmetry only one sphere is shown. The de-
veloped model was implemented into ANSYS [25, 26]
environment while standard utilities were also explored to
ensure the adaptive interface between segments.

Radial segments Z1 (defined between the radii R
and R1), Z2 (defined between the radii R1 and R2) and Z3
(defined when radius is less then R2) match the spherical
arch geometry. In particular R1 = R.. The region of the
highest stress gradients contains denser segmentation.

The structured FE mesh scheme with the con-
trolled mesh density is applied within each of the seg-
ments. Two-dimensional hemisphere domain is described
by the second order triangle elements. The finest mesh is
generated in the contact region Z1.1, where the characteris-

tic element size S, presents a fraction of the thickness T

of the first layer. The hierarchical strategy assumes the
increase of the characteristic element size in the neighbour-
ing segments by a factor of 2. The specified hierarchy of
spheres segments is defined as follows: Z1.1, (Z1.2 and
Z2.1),(Z1.3,22.2 and Z3.1), (Z2.3 and Z3.2 and Z3.3).

Firstly, the homogenous sphere with the radius
R =1 was considered. The radial segmentation was made
by prescribing the radii R1 = 0.998R and R2 = 0.90R.

Three FE models of different mesh density were

Core

"> Skin-Layer

Fig. 3 Discretisation concept: a) segmentation of the
sphere, b) finite element mesh



generated to validate the suitability of FE discretisation.
The third mesh is shown in Fig. 3, b.

The performance of the models considered was
quantitatively investigated. The numerical tests were con-
ducted by assuming Poisson‘s ratio v=0.3. The loading
history u(f) is restricted to the maximum displacement
value # = 0.001R.

Generally speaking, not only the mesh size, but
also several other factors, such as the size of load incre-
ment, definition of initial contact radius or solution algo-
rithm contribute to simulation results. Thorough examina-
tion of the data obtained, has shown that an algorithm with
50 loading steps exhibited sufficient accuracy.

A comparison of the numerical results obtained
for different meshes with the analytical Hertz solution is
given in Table. Here, each mesh is qualitatively character-
ized by a number of nodes and the characteristic relative

clement size S £, while the results are presented by the
relative contact force F , relative contact radius @ and
relative maximal pressure p,.. Relative numerical
errors AF , Aa and Ap, accumulate the entire loading

history, presenting average differences between the nu-
merical results and theoretical solutions (12), (13) and
(14), respectively.

Table
Comparison of meshes

Mesh 1 2 3 Hertz
Nodes 37364 | 102652 | 877416 -
Sg 0.002 0.001 0.0005 -
F 0.9988 | 1.0010 1.0063 1
AF | % 0.12 -0.10 -0.63 0

0.0219

a 7 0.02214 | 0.02231 | 0.0224
Aa % 1.93% | 1.19% 0.41% 0
De 0.9826 | 0.9876 0.9981 1
Ap. % | 174 124 0.19 0

The data obtained show that global parameter,
contact force F is relatively insensible to mesh refinement.
Matching of the numerically obtained local contact pa-
rameters such as contact radius and maximal contact
pressure, is not perfect. The numerical error is much more
dependent on local refinement. It may be influenced by the
discretely changing contact surface.

Comparison of analytically according to (15) ob-
tained contact pressure with numerical results is given in
Fig. 4. Here radial variations of contact pressure profiles
p.(r) under various loading magnitudes defined by dis-
placement /" are given. They illustrate good agreement of
the numerical results.

We may conclude, that the above-developed FE
generation strategy seems to be also suitable for describing
the layered particle. The density of the third mesh with the
characteristic element size Sy =0.002 was expected to be

satisfactory.

1.0 pmea,
0.9
0.8

;g 0.7 @,

E"

;’_;;n.(:

205

= 04 , Bg
& oa Jn =02

0.2
0.1

0.0 Ay
0,000 0005 0010 0015 0020 0025

B =0.1h

Relative contact radius

Fig. 4 Normalized radial profiles of contact pressure under
various loadings

5. FE investigation of the layered sphere’s contact

A series of numerical experiments with a rela-
tively small constant overlap up to #=0.001R were con-
ducted to examine normal contact behaviour of the layered
isotropic elastic spherical particles. Three cases of the core
material having a reduced elasticity modulus defined by
fraction factors E,/E,=0.5, E,/JE,=0.2 and E,/E;=0.1
were considered. The constant Poisson’s ratio v=10.3 is
used in computations.

Following the assumption of small overlap, a rela-
tively thin skin-layer was considered. Based on the above
motivation, the layer with three thicknesses 7 = 0.005R ,
T =0.010R and T =0.020R are investigated numerically.

The comparison of the numerically obtained
force-displacement curves is presented in Fig. 5. New FE
meshes were generated for solving the problem with larger
thickness. All curves are transformed into a dimensionless
form according to (12).

Graphs plotted in Fig. 5, a - ¢ illustrate the influ-
ence of elasticity modulus of core substrate on the contact
behaviour. Each of the figures contains three graphs ob-
tained numerically for the three different thicknesses of the
layer and denoted by NH. In addition, two enveloping
curves obtained explicitly by (12) for homogeneous
spheres with two different elasticity modulii £, and E, and
denoted by HM are depicted for the sake of comparison.

Contact behaviour of the multilayered spheres is
characterized by the dimensionless effective elasticity
modulus £ according to definition (9). By applying simu-
lation results, resultant value of E is obtained from the
dimensionless Hertz model (12).

It reads

E(t)= F() (16)

Calculation results are presented in Fig. 6. Their
location and structure correspond to graphs given in Fig. 5.
It is obvious that E is not constant, decreasing during the
deformation history.
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Fig. 5 Comparison of the force-displacement relationship



A difference in homogeneous and layered sphere
is shown in Fig. 7 where distribution of von Mises stresses
is exhibited. It is obvious that layer undertakes higher
stresses occurring in the small zone in front of moving
contact reducing stresses in the substrate.

Fig. 7 Distribution of the von Mises stress: a) homogene-
ous sphere, b) layered spheres

Simulation results are summarised in Fig. 8. Here,
E is plotted as a function of relative thickness. Numeri-
cally obtained results are indicated by markers. Linear
variation defined by interpolation of boundary values is
assumed for the sake of simplicity. The properties of E
for each of the core substrate are presented by the families
1, 2 and 3 of the lines. Each of the lines corresponds to
particular values of overlap A4(f) as shown in agenda. Dif-
ferent line styles indicate different displacement.

Generally, the behaviour of contacting layered
spheres is similar to indentation of half space [12-16]. For
thin layers when 7 — 0 is approaching zero, the effective

modulus E — E, / E, approaches the value of the core
substrate [16].
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Fig. 8 Variation of the effective elasticity modulus against
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As used in indention theory, the results of elastic-
ity modulus may be attributed to the layer’s thickness. We
restrict ourselves to maximum thickness 7= 0.02R. It is
obvious that the effective elasticity modulus £ depends on
the relative displacement h. The above variations for dif-
ferent layer properties are E,/FE; given in Fig. 9.

0,9 —
084 ~_
w - —
20,74 ~-_
= A e e i
E_ 0.6 —
E ]
£0,5 4 \
— -
2044 ™. \
S i ~.
;E ”'3 m H““‘-‘-"--..
L 1 '."'._‘-"f'.l e e
= 1—EJ/E =02
0,1 — :
=== .l'-."fjf.'l (1
0 ol

4] 00002 00004 00,0006 00002 0,001

Relative displacement

Fig. 9 Variation of effective elasticity modulus against
displacement for different elasticity of layers

In summary, the variations of the effective elastic-
ity modulus for normal contact may be presented as

(E,,T)=E,+4E(h) T

&

(17)

The expression indicates that sphere stiffness is
predefined by the properties of the core substrate stiffened
by a layer. The second term presents the stiffened term of
contact depending on the layer’s thickness. Here, a new
parameter AE appeared. It stands for the layer’s thickness
gradient of the elasticity modulus. The expression (17) for
elasticity modulus is similar to that suggested by Gao et al.
[13] for indentation of layered solids. Generally, it could
be suitable for DEM simulations, but a fixed value of

AE (E ) would be preferable. It can be easily achieved by

assuming a fixed overlap value.

Variation of AE with the relative overlap h was
extracted from the numerical curves shown in Fig. 9. Be-
cause of numerical difficulties at small displacements [12],

curves are fitted in the range of 0.0002< % <0.001. It was
found that AF (}7 ) is of asymptotic exponential character.

The results are practically independent on the stiffness of
substrate, therefore, only the data obtained for different
layer properties are presented in Fig. 10.

Generalised empirical relationship after fitting
was expressed explicitly

AE(}T):C(l—km(ﬁ)) (18)

Actually, the most interesting issue is to eliminate
the influence of the overlap, therefore, fixed values may be
extracted from (18) or numerical calculations.

In Eq. (18) constants C and k are as follows for
E)E,=0.5 gradient values C=-0.074, k=0.115, for
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Fig. 10 Variation of elasticity gradient against the
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Ey/E; =0.2 gradient values C = -0.131, k=0.321 and for
Ey/E, = 0.1 gradient values C =-0.137, k = 0.431 obtained.

Following the recommendations given by Johnson
[6] and valid for layered solids, we are concerned with the
situation in which layer thickness 7 is comparable with or
less than two maximal contact radii.

7. Conclusions

Normal contact of layered spheres was considered
numerically by FEM. The investigation was limited to a
relatively thin layer varying up to 0.02R in the range of a
small overlap up to 0.17 of the layer thickness. Based on
the results obtained, the following conclusions were
drawn:

1. The problem-oriented segmental structured FE
mesh was suggested for simulations, while mesh quality
was checked against the analytical Hertz solution for ho-
mogeneous spheres. It was observed that the global force-
displacement relationship was less sensitive to discretisa-
tion mesh compared to variation of contact pressure.

2. It was found that the resultant effective contact
elasticity modulus was predefined by elasticity modulus of
the core substrate and increased linearly with the increase
of skin-layer thickness.

3. The thickness stiffening parameter exhibits as-
ymptotic approaching the substrate properties with the in-
creased of the overlap size.

4. The obtained results are presented in a non-
dimensional form with respect to particle radius and elas-
ticity modulus of the layer which is suitable for DEM
simulations, but further research is still required for the
extended range of particle’s and inter-action parameters.
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J. Garjonis, R. Kacianauskas, E. Stupak, V. Vadluga

SLUOKSNIUOTU SFERINIU DALELIU TAMPRAUS
KONTAKTO TYRIMAS BAIGTINIU ELEMENTU
METODU

Reziumé

Straipsnyje pateiktas dviejy tampriy nehomogeni-
niy sferiniy daleliy kontakto tyrimas naudojantis baigtiniy
elementy metodu ir istirti skirtingi specifiniai daleliy pa-
rametrai. Dalelés sudarytos i§ palyginti standziai tampraus
pavirSinio sluoksnio ir palyginti minksto branduolio.

Modeliavimas atliktas pateikiant rezultatus analo-
giskai Hertzo kontakto teorijai. Svarbiausia vieta ¢ia uzima
kontakto jégos ir poslinkio priklausomybé, kuri tiesiogiai
taikoma diskreciyjy elementy metodo skaiciavimuose.
Kontakto fizikinés savybés apibidinamos santykiniu efek-
tyviuoju tamprumo moduliu, kuris nustatomas BE skaicia-
vimais ir priklauso nuo branduolio savybiy ir apvalkalo
storio.
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INVESTIGATION OF CONTACT BEHAVIOUR OF
ELASTIC LAYERED SPHERES BY FEM

Summary

Normal contact behaviour of two elastic-plastic
layered spheres was investigated by the Finite Element
Method (FEM) and role of specified distinct particle’s pa-
rameters was examined. The particle consists of a rela-
tively stiff elastic skin-layer and relatively soft core sub-
strate.

Modelling is made in the frame of the Hertz the-
ory applied to homogeneous spheres. Contact force-
displacement relationship as the main target of applications
in DEM is basically studied by the FEM analysis. Contact
behaviour is defined by the dimensionless effective elastic-
ity modulus expressed finally in terms of elasticity
modulus of core substrate and thickness of the layer.

1O. T'apronuc, P. Kaugnayckac, E. Ctynak, B. Bagtyra

NCCIEJOBAHUE KOHTAKTA COEPUYECKUX
CJIONCTBIX HACTULl METOJIOM KOHEYHBIX
OJIEMEHTOB

PesmomMme

HopManbHBII KOHTAaKT IBYX YNPYTHUX CIOHCTBIX
chep paccMaTpMBAETCS METOAOM KOHEYHBIX 3JIEMEHTOB
(MKD) n amanmm3mpyercsi BIUSHHAE OTICIBHBIX HapaMeT-
poB. Kaxkmast u3 cdep COCTOUT U3 OTHOCHUTENBHO JKECTKOU
000J104KH ¥ NOAATIIUBOTO SIIpa.

MozenupoBaHuE BBINOJHEHO aHAJIOTWYHO KOHTAKT-
HoM 3amaue ['eprtma it omHOpomHBIX cdep. OCHOBY HcC-
CJIEZIOBaHUI COCTABJISIET 3aBUCHMOCTH CHIIBI KOHTAaKTa OT
nepemernieHus. VIMEHHO 3Ta XapaKTEepUCTHKA, OMHCHIBAIO-
I1asi KOHTAKT C(epUUECKUX YACTHI], IPUMEHSIETCS B METO-
Jie AUCKpeTHhIX ayemeHToB (MJ1D). CBoiicTBa KOHTaKTa
OTIPEIETISIFOTCS. OTHOCHUTENBHBIM TPUBEICHHBIM MOYJIEM
YIPYTOCTH, 3aBUCSIIIM OT CBOWCTB 1pa U 000IOUKH.
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