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1. Introduction 

 
Particulates, or granular materials, present a huge 

class of materials widely used in chemical, pharmaceutical, 
food and other industries. Proper understanding of me-
chanical behaviour of granular materials is of major impor-
tance for many applications.  

Among various numerical simulation techniques, 
the discrete element method (DEM), introduced by Cun-
dall and Strack [1], has recently became the most useful 
tool. It should be noted that the majority of DEM simula-
tions employ homogeneous spherical particles. In using 
DEM, the dynamic motion of each particle of granular 
media is tracked during the simulation. In this case, a de-
scription of inter-particle contact behaviour is of special 
importance. In order to save computational time, the DEM 
operates by simplified description of the contact, see Džiu-
gys and Peters [2], Tomas [3], Maknickas et al. [4], Krug-
gel-Emden et al. [5].  

The theoretical frame of normal contact of homo-
geneous spheres stems from the classical work of Hertz 
(1881), who derived an analytical solution for the fric-
tionless (i.e., perfect slip) contact of two elastic spheres. 
The details may be found in the book of Johnson [6]. As 
concerns the problem’s description, the elastic contact be-
haviour is explicitly characterized by the force-
displacement relationship containing the reduced, or effec-
tive, radius and elasticity modulus. Generally, even homo-
geneous spheres may be of different radii and of different 
materials. The influence of the differences in particle prop-
erties is illustrated in [7].  

 An extensive review of the literature on spherical 
and cylindrical contacts under normal load was made by 
Adams and Nosonovsky [8]. As shown by the review and 
the above introduction most of the existing works on 
spherical contact concern a perfect slip contact condition. 
The latest data on elastic solutions are reviewed by Briz-
mer et al. [9]. 

Mechanical properties of contacting bodies in-
cluding elasticity modulus may be determined by indenta-
tion testing and knowledge from this area may be explored 
for spheres contact. Indentation testing was used to obtain 
load–displacement data on the contact between a stiff 
sphere and on elastic and elastic plastic half space [10-12].  

As a rule, DEM operates with homogeneous parti-
cles. However, in fact, many particles of natural and indus-
trially manufactured materials are covered by a layer of 
essentially different properties. Brief descriptions of the 
contact of two layered bodies had already been given in [6] 
and the references herein. However they are restricted, by 
investigation of the single-layered half-plane under the 

prescribed load distribution. The indentation by a rigid 
frictionless cylinder of an elastic layer which is supported 
on a rigid plane surface was studied in details. Partaukas et 
al. [13] investigated the stress state of two – layer hollow 
cylindrical bars. 

The contact of the layered surface and the inden-
tation load-displacement behaviour were investigated, and 
two different expressions for the elastic modulus of a coat-
ing substrate combination were proposed by Gao et al. [14] 
and Doerner and Nix [15]. A comprehensive discussion is 
presented by Malzbendera et al. [16] when be considered 
hybrid coatings. Spherical indentation of an elastic thin 
layer on an elastic–ideally plastic substrate was investi-
gated by Zheng and Sridhar [17].  

It can be concluded that an explicit analysis pre-
dicting the contact, including homogeneities, nonlinearities 
or friction is either approximate or impossible. Rukuiža et 
al. [18] investigated contact between driver and seat pad. 
Bazaras et al. [19] investigated effects of intense hardening 
near the edges of railway contact wheels. To deel with 
these effects, FE technique is extensively explored to clar-
ify the details of contact behaviour [11, 12, 20-24]. 

The paper presents FE investigation of normal 
contact of two identical layered spheres. The main focus is 
placed on the description of contact behaviour in terms of 
nondimensional force-displacement behaviour and its 
characterization by a resultant effective elasticity modulus 
used in the DEM applications. 

The paper comprises a formulation of the contact 
problem, development of the FE model, its validation on 
homogeneous spheres, simulation of layered spheres, as 
well as the results obtained and discussion. 

 
2. Problem formulation 

 
Normal contact of two identical deformable 

spheres i and j having equal radii Ri = Rj = R is considered 
(Fig.1). The location of spheres is characterised by the cen-
tral points Oi and Oj referring to the cylindrical coordinates 
rθz describing the contact. The sphere’s centres are defined 
by the coordinates zi and zj, respectively. The contact be-
haviour is defined by normal displacement h = hj – hi of the 
particles centers. The shapes deformed particles are de-
noted by dashed lines, while their centers occupy here po-
sitions iO′ and jO′ after deformation. The contact center is 
denoted by C. 

The forces exerted by the particles contact are 
Fi = Fj = F. Due to rotational symmetry, the contact sur-
face of the spheres is a plane, which is a circle with the 
radius a. In DEM simulations, local contact geometry is 
characterized by the overlap h, which is equal to the dis-
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placement u. Both h and a are assumed to be much smaller 
than the sphere’s radius R.  

 

 
Fig. 1 Geometry of contacting spheres 

 
The geometry of the core domain is defined by 

the radius Rc, while the geometry of the layer defined by 
the thickness T = R – Rc. It is assumed that the layer’s 
thickness T is relatively small compared to the radius of 
the sphere. 

The material of each sphere is assumed to be iso-
tropic and elastic until the first yield is reached. Elasticity 
properties of the layer and core material are described by 
the elasticity module E1 = E and E2 and Poisson’s ratios ν1 
and ν2, respectively. Each of the spheres consists of a 
softer core material and a stiffer skin-layer (E1 > E2). For 
the sake of simplicity, Poisson’s ratio is constant, 
ν1 = ν2 = ν. For the homogeneous sphere, E1 = E2 = E.  

The perfect stick conditions are assumed on the 
contact area between the spheres. Since the spheres are 
identical, their contact behaviour within small displace-
ments meets the sliding condition. The layer is bonded to 
the core.  

The loading is imposed by the motion of the cen-
tral section of the upper sphere and controlled by the dis-
placement u which actually means the overlap of the 
spheres.  

 
3. Basic relations 
 
3.1. Homogeneous spheres 

  
The contact of two isotropic elastic spheres may 

be described by Hertz theory [6]. Assuming that contact 
the spheres is time t dependent phenomenon we may ap-
ply, the nonlinear constitutive relationship during contact 
described in terms of the load-displacement curve F(t) – 
h(t). In general, it is defined as  

( ) ( )34
3

eff effF t E R h t=  (1) 

Here, the prescribed displacement is equal to the 
particle’s overlap u = h. The effective radius of the parti-
cles is defined by the relationship: 

 

ji
eff RRR

111
+=  (2) 

while the effective elasticity modulus may be described as 
 

( ) ( )
j

j

i

i
eff RRE

22 111 ν−
+

ν−
=  (3) 

 
For two identical homogeneous isotropic elastic 

spheres 2RR eff = and ( )22 1effE E ν= − . Here, time t 

plays the role of proportionality factor. 
Contact description (1) is reduced to the expres-

sion 

( ) ( ) ( )tRhEtF 3
213

2
ν−

=  (4) 

Another important parameter is the radius of con-
tact area a(t) 

( ) ( )a t Rh t=  (5) 

According to Hertz the radial distribution r ≤ a(t) 
of the contact pressure is parabolic 

( ) ( )
2

, 1
( )c
rp r t p t

a t

⎛ ⎞⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (6) 

where r is a radial distance measured from the center of the 
contact area C, while pc is the maximum contact pressure 
in the center of the contact. It is defined as 

( ) ( )
( )2

3

2
c

F t
p t

a tπ
=  (7) 

By considering (4) and (5) it may be expressed in 
terms of displacement as follows 

( ) ( )
( )

22 1
c

h tEp t
Rπ ν

=
−

 (8) 

The above relations (1 - 8) will be used for evalu-
ating the layered spheres. 

 
3.2. Layered spheres 

 
The description of layered spheres is made using 

a more suitable nondimensional approach applied to the 
traditional indentation problem [12, 17]. In this case, con-
tact geometry is attached to the sphere’s radius R. More-
over, instead of the controlling force, the displacement-
driven approach is employed.  

The main point of the description of the layered 
sphere is the extended concept of the effective elasticity 
modulus effE . For the layered sphere the effective 

modulus is defined with respect to the skin layer E as fol-
lows 

effE EE=  (9) 
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where E is a dimensionless effective elasticity modulus. 
For the homogeneous sphere 1=E .  

Taking into account definition (9) and introducing 
the dimensionless load we get  

( )
( ) ( )2

2

3 1

2

F t
F t

ER

ν−
=  (10) 

The displacements 

( ) ( )h t h t R=   (11) 

While the contact law (4) may be expressed as  

( ) ( )3F t E h t=  (12) 

It could be proved that the expression (12) com-
prises a definition of the dimensionless contact load ap-
plied to indentation of the half-space, see [17].  

Other parameters such as radius of the contact 
area, maximum pressure, etc., may be expressed in the 
same manner. 

The radius of the circular contact area (5) regard-
ing the definition (11) may be also presented in the dimen-
sionless form as follows:  

( ) ( )a t h t=  (13) 

Finally, the maximum pressure (8) is defined in 
the dimensionless form as 

 

( ) ( )c lp t E h t=  (14) 

where  

( )
( )

( )
22 1

c c
p t p t

E

π ν−
=  (15) 

In summary, contact properties are defined by the 
dimensionless constant effective elasticity modulus of the 
sphere )T ,E(E)R/T ,E/E(EE l 22 == . Depending 
on the relation of the elasticity modulus of the sphere’s 
components E1 and E2 and the relative layer thickness T . 

 
4. Computational FE approach and validation of the 

model  
 
Computational approach addresses FE analysis of 

two contacting spheres. Since the problem is rotationally 
symmetric with respect to OZ axis, it is sufficient to con-
sider only a half of the hemisphere’s sections as shown in 
Fig. 2. The boundary conditions consist of rigid wall con-
straints in the vertical and radial directions on the bottom 
of the lower sphere and in the radial direction on the axis 
of symmetry for both spheres. The surface of the sphere is 
free elsewhere except for tractions imposed by the contact-
ing region.  

Static loading is imposed by the motion of the 

central section of the upper sphere and controlled by the 
displacement which actually means the overlap of the 
spheres h. Generally, the main assumptions of the Hertz 
theory related to linear elasticity and perfect sticking are 
invoked in the simulations.  

In order to reflect the geometry of the layer, the 
segmented subdivision of the solution domain (Fig. 3, a) 
was suggested for tackling the above problem and a hierar-
chical parametric model was developed for segmentation. 
Because of symmetry only one sphere is shown. The de-
veloped model was implemented into ANSYS [25, 26] 
environment while standard utilities were also explored to 
ensure the adaptive interface between segments.  

Radial segments Z1 (defined between the radii R 
and R1), Z2 (defined between the radii R1 and R2) and Z3 
(defined when radius is less then R2) match the spherical 
arch geometry. In particular R1 = Rc. The region of the 
highest stress gradients contains denser segmentation.  

The structured FE mesh scheme with the con-
trolled mesh density is applied within each of the seg-
ments. Two-dimensional hemisphere domain is described 
by the second order triangle elements. The finest mesh is 
generated in the contact region Z1.1, where the characteris-
tic element size ES   presents a fraction of the thickness T 
of the first layer. The hierarchical strategy assumes the 
increase of the characteristic element size in the neighbour-
ing segments by a factor of 2. The specified hierarchy of 
spheres segments is defined as follows: Z1.1, (Z1.2 and 
Z2.1), (Z1.3, Z2.2 and Z3.1), (Z2.3 and Z3.2 and Z3.3).  

Firstly, the homogenous sphere with the radius 
R = 1 was considered. The radial segmentation was made 
by prescribing the radii R1 = 0.998R and R2 = 0.90R. 

Three  FE  models  of different mesh density were 
 

 
 

Fig. 2 A schematic model of numerical analysis 
  

  
 

           a                                    b 
 

Fig. 3 Discretisation concept: a) segmentation of the 
sphere, b) finite element mesh 
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generated to validate the suitability of FE discretisation. 
The third mesh is shown in Fig. 3, b. 

The performance of the models considered was 
quantitatively investigated. The numerical tests were con-
ducted by assuming Poisson‘s ratio ν = 0.3. The loading 
history u(t) is restricted to the maximum displacement 
value u = 0.001R.  

Generally speaking, not only the mesh size, but 
also several other factors, such as the size of load incre-
ment, definition of initial contact radius or solution algo-
rithm contribute to simulation results. Thorough examina-
tion of the data obtained, has shown that an algorithm with 
50 loading steps exhibited sufficient accuracy. 

A comparison of the numerical results obtained 
for different meshes with the analytical Hertz solution is 
given in Table. Here, each mesh is qualitatively character-
ized by a number of nodes and the characteristic relative 
element size ES , while the results are presented by the 
relative contact force F

 
, relative contact radius a  and 

relative maximal pressure cp . Relative numerical 
errors FΔ , aΔ  and cpΔ  accumulate the entire loading 
history, presenting average differences between the nu-
merical results and theoretical solutions (12), (13) and 
(14), respectively.  

 
Table 

Comparison of meshes 
 

Mesh 1 2 3 Hertz 
Nodes 37364 102652 877416 - 

ES  0.002 0.001 0.0005 - 
F  0.9988 1.0010 1.0063 1 

FΔ , % 0.12  -0.10  -0.63  0 

a  
0.0219

7 0.02214 0.02231 0.0224 
aΔ , % 1.93%  1.19%  0.41%  0 
cp   0.9826 0.9876 0.9981 1 

cpΔ , % 1.74 1.24 0.19 0 
 
The data obtained show that global parameter, 

contact force F is relatively insensible to mesh refinement. 
Matching of the numerically obtained local contact pa-
rameters such as contact radius and maximal contact 
pressure, is not perfect. The numerical error is much more 
dependent on local refinement. It may be influenced by the 
discretely changing contact surface.  

Comparison of analytically according to (15) ob-
tained contact pressure with numerical results is given in 
Fig. 4. Here radial variations of contact pressure profiles 

( )cp r  under various loading magnitudes defined by dis-
placement h* are given. They illustrate good agreement of 
the numerical results.  

We may conclude, that the above-developed FE 
generation strategy seems to be also suitable for describing 
the layered particle. The density of the third mesh with the 
characteristic element size ES  = 0.002 was expected to be 
satisfactory.  

 

 
 

Fig. 4 Normalized radial profiles of contact pressure under 
various loadings 

 
5. FE investigation of the layered sphere’s contact  

 
A series of numerical experiments with a rela-

tively small constant overlap up to h = 0.001R were con-
ducted to examine normal contact behaviour of the layered 
isotropic elastic spherical particles. Three cases of the core 
material having a reduced elasticity modulus defined by 
fraction factors E2/E1 = 0.5, E2/E1 = 0.2 and E2/E1 = 0.1 
were considered. The constant Poisson’s ratio ν = 0.3 is 
used in computations. 

Following the assumption of small overlap, a rela-
tively thin skin-layer was considered. Based on the above 
motivation, the layer with three thicknesses RT 0050.= , 

RT 0100.=  and RT 0200.=  are investigated numerically. 
The comparison of the numerically obtained 

force-displacement curves is presented in Fig. 5. New FE 
meshes were generated for solving the problem with larger 
thickness. All curves are transformed into a dimensionless 
form according to (12).  

Graphs plotted in Fig. 5, a - c illustrate the influ-
ence of elasticity modulus of core substrate on the contact 
behaviour. Each of the figures contains three graphs ob-
tained numerically for the three different thicknesses of the 
layer and denoted by NH. In addition, two enveloping 
curves obtained explicitly by (12) for homogeneous 
spheres with two different elasticity modulii E1 and E2 and 
denoted by HM are depicted for the sake of comparison.  

Contact behaviour of the multilayered spheres is 
characterized by the dimensionless effective elasticity 
modulus E

 
according to definition (9). By applying simu-

lation results, resultant value of E
 
is obtained from the 

dimensionless Hertz model (12). 
It reads  

( ) ( )
( )3

F t
E t

h t
=  (16) 

Calculation results are presented in Fig. 6. Their 
location and structure correspond to graphs given in Fig. 5. 
It is obvious that E  is not constant, decreasing during the 
deformation history. 
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a 

 
 

b 

 
c 

 
Fig. 5 Comparison of the force-displacement relationship 

during contact with various elasticity modulus of 
core substrate for multilayered spheres:  
a) E2/E1 = 0.5, b) E2/E1 = 0.2, c) E2/E1 = 0.1  

 
a 

 
 

b 

 
c 

 
Fig. 6 Comparison of the effective elasticity modulus with 

various elasticity modulus of core substrate for mul-
tilayered spheres: a) E2/E1 = 0.5; b) E2/E1 = 0.2;  
c) E2/E1 = 0.1 
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A difference in homogeneous and layered sphere 
is shown in Fig. 7 where distribution of von Mises stresses 
is exhibited. It is obvious that layer undertakes higher 
stresses occurring in the small zone in front of moving 
contact reducing stresses in the substrate.  
 

 
a 

 

 

 
b 

  

Fig. 7 Distribution of the von Mises stress: a) homogene-
ous sphere, b) layered spheres 

 
Simulation results are summarised in Fig. 8. Here, 

E
 
is plotted as a function of relative thickness. Numeri-

cally obtained results are indicated by markers. Linear 
variation defined by interpolation of boundary values is 
assumed for the sake of simplicity. The properties of E

 for each of the core substrate are presented by the families 
1, 2 and 3 of the lines. Each of the lines corresponds to 
particular values of overlap h(t) as shown in agenda. Dif-
ferent line styles indicate different displacement. 

Generally, the behaviour of contacting layered 
spheres is similar to indentation of half space [12-16]. For 
thin layers when 0→T  is approaching zero, the effective 
modulus 2 1/E E E→  approaches the value of the core 
substrate [16]. 

 

 
 

Fig. 8 Variation of the effective elasticity modulus against 
relative thickness for different displacement values: 
  h = 0.0002R;  h = 0.0005R; 
  h = 0.001R 

 

As used in indention theory, the results of elastic-
ity modulus may be attributed to the layer’s thickness. We 
restrict ourselves to maximum thickness T = 0.02R. It is 
obvious that the effective elasticity modulus E depends on 
the relative displacement h. The above variations for dif-
ferent layer properties are E2/E1 given in Fig. 9. 

 
 

Fig. 9 Variation of effective elasticity modulus against 
displacement for different elasticity of layers  

 
In summary, the variations of the effective elastic-

ity modulus for normal contact may be presented as 

( ) ( )2 2,E E T E E h TΔ= +  (17) 

The expression indicates that sphere stiffness is 
predefined by the properties of the core substrate stiffened 
by a layer. The second term presents the stiffened term of 
contact depending on the layer’s thickness. Here, a new 
parameter EΔ

 
appeared. It stands for the layer’s thickness 

gradient of the elasticity modulus. The expression (17) for 
elasticity modulus is similar to that suggested by Gao et al. 
[13] for indentation of layered solids. Generally, it could 
be suitable for DEM simulations, but a fixed value of 

( )E hΔ
 
would be preferable. It can be easily achieved by 

assuming a fixed overlap value.  
Variation of EΔ  with the relative overlap h  was 

extracted from the numerical curves shown in Fig. 9. Be-
cause of numerical difficulties at small displacements [12], 
curves are fitted in the range of 001000020 .h. ≤≤ . It was 
found that ( )E hΔ  is of asymptotic exponential character. 

The results are practically independent on the stiffness of 
substrate, therefore, only the data obtained for different 
layer properties are presented in Fig. 10.  

Generalised empirical relationship after fitting 
was expressed explicitly   

( ) ( )( )1E h C k ln hΔ = −  (18) 

Actually, the most interesting issue is to eliminate 
the influence of the overlap, therefore, fixed values may be 
extracted from (18) or numerical calculations. 

In Eq. (18) constants C and k are as follows for 
E2/E1 = 0.5 gradient values C = -0.074, k = 0.115, for 
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Fig. 10 Variation of elasticity gradient against the 
displacement  

 
E2/E1 = 0.2 gradient values C = -0.131, k = 0.321 and for 
E2/E1 = 0.1 gradient values C = -0.137, k = 0.431 obtained. 

Following the recommendations given by Johnson 
[6] and valid for layered solids, we are concerned with the 
situation in which layer thickness T is comparable with or 
less than two maximal contact radii. 
 
7. Conclusions  

 
Normal contact of layered spheres was considered 

numerically by FEM. The investigation was limited to a 
relatively thin layer varying up to 0.02R in the range of a 
small overlap up to 0.1T of the layer thickness. Based on 
the results obtained, the following conclusions were 
drawn: 

1. The problem-oriented segmental structured FE 
mesh was suggested for simulations, while mesh quality 
was checked against the analytical Hertz solution for ho-
mogeneous spheres. It was observed that the global force-
displacement relationship was less sensitive to discretisa-
tion mesh compared to variation of contact pressure. 

2. It was found that the resultant effective contact 
elasticity modulus was predefined by elasticity modulus of 
the core substrate and increased linearly with the increase 
of skin-layer thickness.  

3. The thickness stiffening parameter exhibits as-
ymptotic approaching the substrate properties with the in-
creased of the overlap size.  

4. The obtained results are presented in a non-
dimensional form with respect to particle radius and elas-
ticity modulus of the layer which is suitable for DEM 
simulations, but further research is still required for the 
extended range of particle’s and inter-action parameters.  
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SLUOKSNIUOTŲ SFERINIŲ DALELIŲ TAMPRAUS 
KONTAKTO TYRIMAS BAIGTINIŲ ELEMENTŲ 
METODU   

R e z i u m ė 

Straipsnyje pateiktas dviejų tamprių nehomogeni-
nių sferinių dalelių kontakto tyrimas naudojantis baigtinių 
elementų metodu ir ištirti skirtingi specifiniai dalelių pa-
rametrai. Dalelės sudarytos iš palyginti standžiai tampraus 
paviršinio sluoksnio ir palyginti minkšto branduolio. 
 Modeliavimas atliktas pateikiant rezultatus analo-
giškai Hertzo kontakto teorijai. Svarbiausią vietą čia užima 
kontakto jėgos ir poslinkio priklausomybė, kuri tiesiogiai 
taikoma diskrečiųjų elementų metodo skaičiavimuose. 
Kontakto fizikinės savybės apibūdinamos santykiniu efek-
tyviuoju tamprumo moduliu, kuris nustatomas BE skaičia-
vimais ir priklauso nuo branduolio savybių ir apvalkalo 
storio. 
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INVESTIGATION OF CONTACT BEHAVIOUR OF 
ELASTIC LAYERED SPHERES BY FEM  

S u m m a r y 

Normal contact behaviour of two elastic-plastic 
layered spheres was investigated by the Finite Element 
Method (FEM) and role of specified distinct particle’s pa-
rameters was examined. The particle consists of a rela-
tively stiff elastic skin-layer and relatively soft core sub-
strate.  

Modelling is made in the frame of the Hertz the-
ory applied to homogeneous spheres. Contact force-
displacement relationship as the main target of applications 
in DEM is basically studied by the FEM analysis. Contact 
behaviour is defined by the dimensionless effective elastic-
ity modulus expressed finally in terms of elasticity 
modulus of core substrate and thickness of the layer. 

Ю. Гарюнис, Р. Качянаускас, Е. Ступак, В. Вадлуга  

ИССЛЕДОВАНИЕ КОНТАКТА СФЕРИЧЕСКИХ 
СЛОИСТЫХ ЧАСТИЦ МЕТОДОМ КОНЕЧНЫХ 
ЭЛЕМЕНТОВ 

Р е з ю м е 

Нормальный контакт двух упругих слоистых 
сфер рассматривается методом конечных элементов 
(МКЭ) и анализируется влияние отдельных парамет-
ров. Каждая из сфер состоит из относительно жесткой 
оболочки и податливого ядра.  

Моделирование выполнено аналогично контакт-
ной задаче Гертца для однородных сфер. Основу ис-
следований составляет зависимость силы контакта от 
перемещения. Именно эта характеристика, описываю-
щая контакт сферических частиц, применяется в мето-
де дискретных элементов (МДЭ). Свойства контакта 
определяются относительным приведенным модулем 
упругости, зависящим от свойств ядра и оболочки. 
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