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1. Introduction

Nonhomogeneous material systems with gradual
variation in properties are collectively referred to as func-
tionally graded materials or FGMs. (FGMs) used initially
as thermal barrier materials for aerospace structural appli-
cations and fusion reactors are now developed for the gen-
eral use as structural components in high temperature envi-
ronments and being strongly considered as a potential
structural material candidate for the design of high speed
aerospace vehicles. Further, these materials are inhomoge-
neous, in the sense that the material properties vary
smoothly and continuously in one or more directions, and
obtained by changing the volume fraction of the constitu-
ent materials [1]. In the past few years, some researchers
began to pay attention to contact problem of functionally
graded materials.

Thick shells of revolution of functionally graded
materials have been of great interest in many engineering
applications. A body of revolution is obtained by rotating a

plane area 360° about an axis in its plane. These bodies
may be either solid or hollow. If they are hollow, they may
be called shells of revolution. Circular cylinders, spheres,
cones, ellipsoids, paraboloids, and hyperboloids are just
some of the shapes which bodies of revolution may take
and are frequently used in various industries because of
their great structural efficiency.

There are a number of publications on field equa-
tions, equations of motion, for thin or moderately thick
shells of revolution. Flugge [2], Timoshenko and
Woinowsky-Krieger [3] have provided an adequate de-
scription of the geometry and the coordinate system for
thin shells of revolution. In these derivations, simple kine-
matic assumptions are made about the variation of the dis-
placements through the thickness, the result being that a
three-dimensional theory is reduced to a two-dimensional
one by the middle surface displacements. The two-
dimensional models which already exist have a number of
shortcomings. This is especially the case when we deal
with thick and very thick shells. In order to analyze static
or dynamic displacements and stresses, and free and forced
vibrations for such shells, there must be a three-
dimensional theory. The equations of equilibrium or mo-
tion derived could be solved by the exact method or the
approximate method. Using tensor analysis, which is ex-
tremely useful especially for three-dimensional problems
in any curvilinear coordinate system, a number of re-
searchers, including Fung [4], Green and Zerna [5] have
developed the general theory of elasticity.

A lot of research has been carried out into general

thick-walled shells [6, 7], thick-walled cylindrical shells
[8-16], thick-walled spherical shells [17, 18], thick-walled
conical shells [19-21], thick-walled elliptical [22], heli-
coidal [23] and toroidal shells [24]. The field equations
derived for thick shells of revolution were considered for
the homogenous condition. A distinguishing feature of the
present paper is that for a thick shell of revolution with
arbitrary curvature and variable thickness made of func-
tionally graded materials, a set of field equations has been
developed by tensor analysis in the curvilinear coordinate
system. However, to the best of the researchers’ knowl-
edge, no extensive study has yet been carried out on three-
dimensional displacement equations for thick shell of revo-
lution with of functionally graded materials.

2. Analysis

A surface of revolution is the result of the rotation
of a plane curve around an axis in its plane. The resulting
curve is technically called a meridian. The meridian of a
thick shell of revolution with an arbitrary curvature and
variable thickness z is explained by Eq. (1), or alterna-
tively by Eq. (2)

R=H(x) (1
R=R(p),x=x(p) 2

According to Fig. 1, R represents the distance of
one of its points from the axis of rotation x —axis, and x
represents the distance of its points from the R —axis. ¢

is the angle between the normal to the meridian curve and
the axis of revolution. R, and R,, shown in Fig. 1 are the

two principal radii of curvature.
If Eq. (1) is used, these can be obtained using the
following equations
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It is also possible to calculate them using Eq. (2),
as follows
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Using Fig. 1, we can define the following equa-

tions
R =R, sing %)
ds=Rdo (6)
dR = dscosp @)
dx = dssing ®)

where ds is the line element of meridian. Based on Egs.
(5) to (8), we have
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Fig. 1 Meridian of the middle surface of a shell of revolu-
tion

In Fig. 2, the cross-section of an arbitrary shell
element of variable thickness z is shown. The coordinate
used is curve linear coordinate system (¢, (2,60), where @

is the meridional coordinate; (2 the normal distance from
the midsurface to an arbitrary point P ; and € the circum-
ferential angle. The two faces on the top and bottom,
shown in Fig. 2, are flat and normal to the midsurface. The
arbitrary point of P within the shell element could be de-
termined by ¢, €2 and 6.
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In Fig. 2, r shows the radial distance of the arbi-
trary point P, which depends on meridional angle and the
normal distance (2, as

r(@p, ) = R(p) + Qsing (10)

By substituting R(¢) defined in Eq. (5) in Eq.
(10), we have

(9, 2) =[R,(p)+ 2] sing (11)

The curvilinear coordinates (¢, (2,68), using ten-
sor analysis, could be transformed to Cartesian coordinate
(xl ’x2’x3)

x' =r(p,Q2)cosd
x* =r(p,02)sinb
X’ = x(@) - Qcose

(12)

In this equation, 2 and € must be within the
following ranges
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Fig. 2 Cross-section of an arbitrary shell of revolution with
variable thickness

3. Field equations of elasticity

In order to develop field equations, base vectors,
metric coefficients and Christoffel symbols are used in the
curvilinear coordinates. If » is the position vector of an
arbitrary point P , then prior to deformation, the covariant
base vectors g, are defined as follows

g =7 (14)

where comma (,) represents partial differentiation with
respectto ¢, 2 ,and 6.

In the Cartesian coordinate systems, the covariant
base vectors g, are given as follows.



g, = R, (cospcosbi + cospsind j + sinpk)

g, = singcosbi + singsind j — cospk (15)
g, =—r(sinbi —cosbj)

where
R, =R(p)+ 2 (16)

For the unstrained body, the contravariant base
vectors g' are defined by

gi 'gj = 51] (17)
where the Kronecker delta 5y is defined as follows
1 i=j
.= 18
v {O i# (18)

and i and j could take any positive integer value.

The contravariant base vectors g', g°> and g’
could be calculated using the following equations

- 1, .
1_7(g2><g3)
- 1, _
: _7(g3 Xgl) (19)
- 1, .
g3=7(glxg2)
where
ngl (gz X§3) (20)

By using the Egs. (15), (19) and (20) we can ob-
tain the contravariant base vectors.
o1 ) o
g = R—(cosgocos@z + cos@sind j + smgok)
0Q

€2y

g’ = singcosi+ singsind j — cospk

g = 1 sinfi —cosb j
-

Dot products of the base vector give a set of
symmetric numbers which are called metric coefficients.
The covariant and contravariant metric coefficients (g;

and g”) are calculated using the following equations

8 = g g,- (22)

g =ge (23)

If the coordinate system is orthogonal, we have

1 )
8 = L=J

g 4)
g, =g"=0 i#j

The nonvanishing covariant and contravariant
metric coefficients, which take the values other than zero,
are given as follows

1
g =T=R.§z
g
1
g22 = gzz =1 (25)
I
g33 = g33 =r

By definition, the Christoffel symbols of the sec-
ond kind, which have symmetric components, 1”; = F/’l‘,

are

VA _*ka;gf

i =8 dq’ (26)

where ¢’ represents spatial curvilinear coordinates in
which j=1,2,3 correspond to ¢, €2, and 6. The non-

vanishing Christoffel symbols of the second kind, are de-
fined by Egs. (15), (21) and (26) as

R, 1 rcosQ
Flll:R_q))Fllz:R_’F}l}:_ R
Q 0Q 0
Flzl = —RQ,F323 =—rSing 27)
R .

All other components of the Christoffel symbols
of the second kind become zero.

Physical components related to stress tensor (0';.)

in general coordinate system are

* ii Vi
0,; =V8 V8 T

where o, =0, are the components of stress tensor. In

(28)

addition

(29)

_ k
0,; =80,

where o} # o, are the mixed components of stress tensor.

Using the Egs. (25), (28) and (29) mixed compo-
nents of stress tensor are obtained as follows

1
1 1
0, =—0,,,0
2 2°>>3
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2 _ 2 _ 2 _
o) = RQo-q)Q’O-Z =000,03 =IO (30)
s _R, 3

1
_ _ 3 _
o, = B 00,07 = rO-_O¢990-3 =0y

Components of displacement u, in the general
coordinate system are

.
U =8l
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where u, are physical components of displacement. There-

fore
u =Ryu,
Uy, =u, (32)
Uy =ru,

Physical components of strain tensor g; in the

general coordinate system are

5;:\/?\/?51/

where ¢, are the components of strain tensor and are de-

(33)

fined from the following equations

1
&y == +u;,)-

J I'u
T2

y m

(34

Given the Egs. (25), (27), (32) and (34), physical
components of strain tensor are

8¢’¢7 _R_(M‘W +MQ)
0
Eon =Ug o
1 .
Egg = —Upy+ o5 u, + alilad u,
r
_ 1 1 1 (35)
8(/7_0 = Equg +£u(m —ﬁu(p
1 cos@ 1
Fo0 = e Ty Mo TR tow
1 1 sing
Eap = 5, tao +5”3,Q T e

The physical stress-strain (0';. —g;) relations in

tensor form for a linearly elastic material are given by
0y = A6y +2us; (36)

where A and g are the Lame constants. The constants are

related to Young’s modulus £ and Poisson’s ratio v for
an isotropic solid by

Ev

P (37)
(1+0)(1-20)
E
050 %)

By using Eq. (36), the stress-strain relations in
terms of the physical components are obtained as follows
O,y =(A+20)E,, + A& oo + A8y,
O =(A+20)e 0, + A8y + A, 3
= (A+21)s, +/15W + A€o0 (39)

Opo = 21,0} Opp = 2UE 9310 0y = 21 oy
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The equations of translational motion could be
written compactly in tensor form

o1, =57, (o)

where the vertical bar (|) represents covariant differentia-

tion. Also, f; are components of the body force vector ]7 s

i

per unit volume; p is the mass density per unit volume;
v, are the covariant components of the acceleration of the
volume in the deformed body.

The covariant derivatives of a tensor of order two
are also tensors and are represented as

A; R:A;,R + FRimA}n - I;nR}A;n (41)

where A;. , are the mixed components of a typical tensor of

order two.

By substituting Egs. (27) and (30) into Eq. (40),
the equations of motion in terms of the physical compo-
nents could be derived as follows

1 1 2 sing
U(/}Q,Q +R—O'¢w’{p+;o'¢g’g+ R_+_/‘ U¢Q+
0Q 0Q
cosQ cosQ .
+ o0 Ogp +f¢ =pu, (42)
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In deriving the Eqs. (42) to (44), was used the fol-
lowing

r, = R,cosp (45)

Combining Egs. (35), (39) and (42) to (44), the
displacement equations of motion are obtained
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where the Lame constant derivatives are related to
Young’s modulus £ and Poisson’s ratio v, as shown be-
low.
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A= 11 2 {1E(1+12 022) U"'wE"}
(+ov)1-20)| (1+0)(1-20v) (49)
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4. Solution for axisymmetric circular cylindrical state

In this section, a special case of thick shell of
revolution, i.e. thick-walled FGM cylinder (6/002 =0/or ,

¢=r/2, R, —> o) with an inner radius 7, and thickness

t , subjected to an internal pressures P, that is axisymmet-
ric, (Fig. 3), will be considered.

Axis of the cylinder Meridian of the cylinder

@=m/2
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Fig. 3 Cross-section of a circular cylindrical shell with
constant thickness

For axisymmetric case, in plane elasticity theory

(PET), we have: u, =0, %:O, u,; =0 and the Egs.

(43) yield the following equation:

1

O-rr,r +_(O-rr - 009) = 0 (50)
r

where o, and o, are the radial and circumferential

stress components, respectively. Equation (50) is equilib-
rium equation in the radial direction, neglecting the body
force components.

By using Egs. (35), the radial strain ¢, and

circumferential strain &,, are related to the radial dis-

placement u, by

C2))

By using Eqgs. (39) and (49), the stress—strain rela-
tions for nonhomogenous and isotropic materials are

t=la 2

where A4 and B are related to Poisson’s ratio v as Plane
strain condition:

O-rr _ grr

(52)

) Eop



= 1_—‘)’ B—__ Y (53)
(1+v)(1-2v) (1+v)(1-2v)
Plane stress condition:
- =2 (54)
1-v*’ 1-0°

Using Egs. (50) to (54), the Navier equation in
terms of the radial displacement is

i[E(Aur ,+B) }rl[E(A —B)[ur . H =0 (59
d ’ r r ’ r

I

The material properties are assumed to be radially
dependent. Given that the radial coordinate » is normal-
ized as ¥ =7/, the module of elasticity through the wall

thickness is assumed to vary as follows.

E=Ej7” (56)

1

here E; is the module of elasticity at the inner surface
r=r, and g is the inhomogeneity constants which are

determined empirically.

Since the analysis was carried out for thick wall
cylindrical pressure vessel of isotropic FGM, and given
that the variation of Poisson’s ratio, v, for engineering
materials is small, the Poisson’s ratio is assumed as con-
stant.

By substituting Eq. (56) into Eq. (55), the Navier
equation would be

rzum +(B+Dru,, + wp- Du, =0 (57)

« B
where v =—
A

Equation (57) is the nonhomogeneous Euler-
Caushy equation whose complete solution is

u, =Cr™ +Cyr™ (58)

where m, and m, are

_ —BHp -4 p+4
2

_ — BB -4 B+4
2

1

(59)

m,

By substituting Eq. (58) into Egs. (51) and (52),
the radial stress is obtained as

o, = EF’ [ C,(Am + B)r"™ +C,(Am, + By | (60)

To determine the constants C, and C,, consider
the boundary conditions for stresses given by

=P

r=r;

o

"

(61)
=0

r=n+t T

(e}

rr

Substituting the boundary conditions (61) into Eq.
(60) and solving for C, and C,, we obtain

Pk™ rl.l’”"
E,(Am, + B)(k™ k™)
~ Pk™
 E.(Am, + B)(K" —k™)

1

(62)

2

where k:1+i.
T

Hence, the radial stress, circumferential stress and
radial displacement are

P my =\ f+m— my =\ ftmy—
0, = K" ) =k EY ] (63)
k 1 _k ’3
P | A+Bmy o g
o, = k™ (r -
” k“—k”{B+A% )
A+B
_ + m2 kml (7)ﬂ+mzfl (64)
B+ Am,
M,. — P’: 1 kmz (F)ml _
E, (k™ —k™ )| Am; +B
S Y )" (65)
Am,+B

The analytical solution obtained in this section
may be checked for one example.

Example. Consider a hollow functionally graded
cylinder of inner radius » =40 mm, and the thickness

i

t =20 mm. The modulus of elasticity at inner radius has
the value of E, =200 GPa. It is also assumed that the

Poisson’s ratio, v, has a constant value of 0.3. The ap-
plied internal pressure is 80MPa . In addition, £ ranges

from -2 to 2. The range —2< <2 to be used in the

present study covers all the values of coordinate exponent
encountered in the references cited earlier.

Displacement and stress distributions depending
on an inhomogeneity constant are compared with the solu-
tions of the finite element method (FEM) and are presented
in the form of graphs.

The radial displacement along the radius for the
conditions of plane strain, and plane stress, is plotted in
Figs. 4 and 5.

There is a decrease in the value of the radial dis-
placement as S increases. Besides, for similar values of

f, the value of radial displacement is the highest for the

plane stress condition and for the plane strain the lowest.
Figs. 6 and 7 show the distribution radial and circumferen-
tial stresses in the radial direction. As £ increases, so does

the magnitude of the radial stress. For £ >1, the circum-

ferential stress increases as the radius increases whereas
for f <1 the circumferential stress along the radius de-

creases. Given that £ =1, the circumferential stress re-
mains nearly constant along the radius.
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Fig. 4 Distribution of radial displacement versus radius for
plane strain
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Fig. 5 Distribution of radial displacement versus radius for
plane stress
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Fig. 6 Distribution of radial stress versus radius
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Fig. 7 Distribution of circumferential stress versus radius

5. Conclusions

Assuming small strains, for thick shells of revolu-

tion, with arbitrary curvature, variable thickness, and of
functionally graded materials, a set of partial differential
equations in terms of displacement components was devel-
oped, which could be useful for analyzing the static and
dynamic behavior. These consist of six stress-strain rela-
tions, six strain-displacement relations, and three equations
of motion in terms of physical components. The equations
are expressed in terms of coordinates tangent and normal
to the shell middle surface. The relationships are combined
to yield equations of motion in terms of orthogonal dis-
placement components taken in the meridional, normal and
circumferential directions. For various thick shells of revo-
lution, approximate solutions could be obtained by using
proper numerical methods. In addition, exact solutions of
displacement equations of motion are possible for some
shell configurations, such as constant thick-walled cylin-
drical and spherical shells. It is apparent that exact solu-
tions are highly significant in simplified versions of real
engineering problems.

Using the field equations derived in the present
study, exact solutions for stresses in a functionally graded
materials pressurized thick-walled hollow circular cylinder
are obtained under generalized plane strain and plane stress
assumptions, respectively. The material properties are as-
sumed to vary nonlinearly in the radial direction, and the
Poisson’s ratio is assumed constant. Depending on an in-
homogeneity constant, the displacements and stress distri-
butions are compared with the solutions of the finite ele-
ment method and good agreement are found. To show the
effect of inhomogeneity on the stress distributions, differ-
ent values of f# were considered. Results show that the

inhomogeneous constant S presented in the current study

is a useful parameter from a design point of view in that it
can be tailored to specific applications to control the stress
distributions. Thus, by selecting a proper value of £, it is

possible for engineers to design FGM pressurized thick
hollow cylinder that can meet some special requirements.
It is also possible to find an optimum value for the power
law index £ such that the variation of stresses along the

radial direction is minimized, yielding optimum use of
material.
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LAUKO LYGCIU TAIKYMAS APRASANT STORUS
SUKINIO FORMOS KEVALUS, PAGAMINTUS IS
FUNKCISKAI PAGERINTU MEDZIAGU KREIVINEJE
KOORDINACIU SISTEMOJE

Reziumé

Naudojantis tenzoriy analizés duomenimis, buvo
sukurtas pilnas ir nuoseklus 3D lauko lygciy komplektas,
skirtas apibtidinti meridiano kryptimi kintanciu didelio
storio ir sutartinio kreivio sukinio formos FGM kevalams.
Analizuojant FGM sudedamuyjy daliy poslinkius, sudaryta
judesio diferencialiniy lyg¢iy sistema. Kreivinéje koordi-
naciy sistemoje sudaryta daliniy iSvestiniy diferencialiniy
lyg€iy sistema, skirta poslinkiams trimis kryptimis jvertin-
ti. ISvestos lygtys gali biti panaudotos nustatant jtempius
bei analizuojant story sukinio pavidalo kevaly virpesius.

Turint omenyje, kad medziagos savybés radialine
kryptimi kinta netiesiSkai, o Puasono koeficientas yra pas-
tovus buvo nustatyti tikslis FGM hermetisko tusciavidurio
apskritiminio cilindro jtempimai bei poslinkiai apibendrin-
toje numanomoje itempimy ir deformacijy plokstumoje.

Nustatytieji nuo nehomogeniskumo konstantos
priklausomi poslinkiai ir jtempiy pasiskirstymas palyginti
su sprendiniais, gautais naudojant baigtiniy elementus me-
toda, pateikiami grafiky pavidalu. Rezultatai, gauti naudo-
jant abu metodus, gerai sutampa.
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SET OF FIELD EQUATION FOR THICK SHELL OF
REVOLUTION MADE OF FUNCTIONALLY GRADED
MATERIALS IN CURVILINEAR COORDINATE
SYSTEM

Summary

A complete and consistent 3-D set of field equa-
tions has been developed by tensor analysis to characterize
the behavior of FGM thick shells of revolution with arbi-
trary curvature and variable thickness along the meridional
direction. A sixth order set of differential equations of mo-
tion in terms of displacement components were also devel-
oped for functionally graded materials. Developed with
respect to the curvilinear coordinate system are a set of
partial differential equations for the three displacement
components. The equations derived could be used to de-
termine stresses and/or to analyze the vibrations in thick
shells of revolution.

Assuming that material properties vary nonline-
arly in the radial direction, and the Poisson’s ratio is con-
stant, exact solutions for stresses and displacement in a
functionally graded (FGM) pressurized thick-walled hol-
low circular cylinder are obtained under generalized plane
strain and plane stress assumptions, respectively.



Displacement and stress distributions depending
on an inhomogeneity constant are compared with the solu-
tions of the finite element method and are presented in the
form of graphs. The exact solutions and the solutions car-
ried out through the finite element method show good
agreement.
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HABOP TTIOJIEBBIX YPABHEHUI B
KPUBOJIMHEMHOM CUCTEME KOOPIUHAT,
[IPEJHA3HAYEHHBIX JIJI51 OIIMCAHUS
[HOBEJIEHIS TOJICTOCTEHHBIX OBOJIOYEK
KPYTOBOM ®OPMbI, U3TOTOBJIEHHbBIX U3
®VHKIMOHAJIBHO YJIVUILIEHHBIX
MATEPHAJIOB

PezwomMme

Hcnonp3ys aHanu3 TEH30poB OBLT pa3zpaboTaH
MOJHBIN W TocnenoBaTenbHbIl 3D Habop MONEBBIX ypaB-
HEeHUH, MpeIHa3HauYeHHBIH JJIsI ONpeNeNieHHs] XapaKTepu-
CTHK TOJICTOCTEHHBIX 000JI04eK KpyroBoil (opmbl, H3ro-
TOBJICHHBIX M3 (YHKIMOHAIBHO yIYYIICHHBIX MaTEpPHAJIOB
C M3MEHAOLIEHcA TONIMUHON M yCIOBHOM KpPUBU3HOU B
HanpasJeHUW MepuanaHa. [Ipu aHami3e mnepeMenieHuH

26

COCTaBHBIX 4acTei (PYHKIMOHAIBHO YIIy4YIIEHHOTO Marte-
puana cocTtaBiieHa cucreMa AuddepeHIIHaTbHBIX YPOBHEH
JBIDKEHUsI. B cucTeMe KpHBOJHMHEHHBIX KOOpAWHAT CO-
cTaBJIeHbl AU PepeHIIaIbHbIe YPAaBHEHUS C YaCTUYHBIMU
MIPOM3BOIHBIMH TIPEAHA3HAYCHHBIE JUIS OLEHKH IepeMe-
IICHUH B TPEX pa3HBIX HAIMIPABJICHUAX.

[MomyuyeHHBIC ypaBHEHUS MOTYT OBITH HMCHOJIB30-
BaHBI TIPW OIPEICIICHUN HANPSHKCHUH W BHOPAIIOHHOM
aHaM3e TOJCTOCTEHHBIX oOomouek. Mmess B BHAy, 9TO
CBOWCTBAa MaTepuaja B paIuajbHOM HAINpaBIICHUH H3Me-
HSIOTCS HETPSIMONIMHEWHo, koa(duuueHt [lyaccona mo-
CTOSIHHBIN, B 00OOIIEHHON MPEIBUACHHON IUIOCKOCTH Ha-
NpsOKCHUH W aedopMalivii TOYHO OMPEISIICHBI HaIpsiKe-
HUSI M TIEPEMELICHUs! ISl TEPMETUYHOTO TOJIoro (IycToTe-
JIOTO) KPYTOBOTO IIMJIHHIPA, W3TOTOBJICHHOTO M3 ()YHK-
IIMOHAJIBHO yJYYEeHHBIX MaTepHaJIOB.

[Tepemerenus, pacrpeneyieHue HaNpsDKCHUH 3a-
BUCSIIMX OT HErOMOT'€HHON KOHCTAHTHI, CPaBHEHHI C pe-
IIEHHEM, TTOJIyYEHHBIM C IIOMOIIBI0 KOHEUHBIX JIEMEHTOB,
W pe3yNbTaThl IpPEACTaBICHH B rpadudeckoM Buzae. Pe-
3yJBTaTHI, TOyYSHHBIE TP UCIIONB30BaHINA 000MX METO-
JTOB, XOPOIIIO COBIAIAOT.
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