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1. Introduction 
 

In the analysis of buckling and postbuckling of 
beams and plates, applied load is commonly considered to 
be a constant in direction and intensity (i.e. dead-load) [1-
3]. In the case of beams, a very small increase in the load 
over the critical value produces extremely large displace-
ment from the primary equilibrium position [1], so the as-
sumption about the unchanged intensity and direction of 
the load may be incorrect. Axial deformation of a beam is 
neglected because of large lateral displacements and 
constant axial force. In practice, the applied axial force, 
which causes buckling, often arises from the compression 
of another elastic part of the system (elastic support, 
adjacent member in truss, etc.), and this force may depend 
on the postbuckling displacement [4]. An assumption that 
treats this load as a dead load is satisfactory for the 
calculation of the critical load, however, the postbuckling 
behavior is significantly different [5, 6] and it is not widely 
researched. In this case, a displacement dependent force 
may cause beam elongation and axial deformation must be 
taken into account. 

This paper deals with the numerical and experi-
mental analysis of the influence of beam elongation on 
postbuckling displacements of a beam under axial force 
produced by the compression with an elastic bar, which is 
initially compressed while the beam is in the straight-line 
position. Axial force produced in this way, is constant in 
direction but its magnitude changes with the lateral dis-
placements of the buckled beam. This setup makes the 
analysis different from common problems in the 
postbuckling analysis of beams [2]. Numerical analysis is 
done using the finite elements method, where the Euler-
Bernoulli beam is considered. Numerical results are 
obtained by the direct solution of equilibrium equation. An 
experimental verification is performed for the considered 
problem. The paper presents experimental setup and ex-
perimental results for a simple (pinned-pinned) Euler 
beam. Numerical results are compared with the obtained 
experimental results. 
 
2. Problem formulation 
 

Let us consider axially loaded beam as shown in 
the Fig. 1. The load is applied by compression of the spring 
of stiffness c0. Axial force is introduced by initial 
shortening of the spring for length Δl0s while the beam was 
restrained in the straight line position. When the beam 
looses stability of straight line position, lateral 
displacement causes shortening of support distance and, 
because of that, elongation of the rod and decreasing of the 

axial force exerted on the beam. Decreasing of the axial 
force also results in increasing of the beam length, what 
causes additional lateral displacements of the buckled 
beam. It is supposed that elastic properties of the system 
remain linear under this displacement. 

Bended shape of the beam and elongation of the 
elastic rod may be uniquely determined by the lateral 
displacement w(s) measured in the natural coordinate 
system [1]. 

 
Fig. 1 Axially loaded simple beam for which the load 

varies during buckling process 
 
3. Numerical analysis 
 

Numerical analysis is performed by using Finite 
Element Method (FEM). For this purpose, the beam in 
Fig.1 is divided into n standard Euler beam elements with 
two nodes and four d.o.f. in the element displacement 
vector  = {we{ } id 1  w1,s  w2  w2,s }T, where w1 and w2 are 
lateral displacements and w1,s and w2,s are derivatives 
(Fig. 2). 
 
3.1. Interpolation of displacement 
 

Using the derivatives w1,s and w2,s as nodal 
displacements (which represent sine of slope angles) 
instead of slope angles θ1 and θ2, allows the usage of the 
same function of interpolation and shape function as in the 
linear finite elements analysis.  

 

 
Fig. 2 Deformed shape of the beam finite element in case 

of large displacements 
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Considering the standard third order polynomial 
interpolation function, the displacement of an arbitrary 
point inside the element ei could be calculated from the 
nodal displacements as 

1 2 3 4( ) [ ]{ } [ ]{ }i ie ew s N d N N N N d= = ie  (1) 

where Nj, j = 1,...,4 are the coefficients of beam element 
shape matrix [N].  

The shape matrix [N] has the same form as in the 
case of linear analysis of bending and stability [7]. The 
difference is only in the coordinate system which is used. 
Expression (1) holds only in the interior of finite element 
ei. 
 
3.2. Potential energy of deformation 

Curvature of the beam elastic line in the natural 
coordinate system be expressed by using the displacement 

as [1] ( )iew s
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where κ is the curvature and ( ),s and ( ),ss are the first and 
second derivatives with respect to s. 

By expanding the expression (2) in the power 
series, and by considering up to the third order terms, the 
curvature may be written as 
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Beam shortening due to lateral displacements 
(equal to the spring elongation) may be calculated on the 
basis of displacement  as, [1], ( )iew s
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where Δlb is beam shortening and l is length of finite 
element ei. 

Expanding to power series and limiting to terms 
of the forth order, the shortening may be written in the 
following form 
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 Deformation energy of the considered system of 
beam and spring is then 
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where B is the beam bending stiffness. 
Using equation (1) for interpolation of displace-

ments in interior of particular finite element, deformation 

energy may be written in terms of the nodal displacements 
as 
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3.3. Influence of beam elongation 
 

Decreasing the axial force by c0Δlb causes the ax-
ial elongation of the compressed beam by 
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where AE is beam axial stiffness and lb is beam length. 
It is known that small axial shortening of the 

buckled beam corresponds to high lateral displacement [1]. 
It is taken into account by defining apparent stiffness of the 
spring using the equation 
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Using this value of axial stiffness additional elongation of 
the spring for Δlb0 is simulated. 
 
3.4. Equilibrium equation 
 

Derivation of the expression for deformation en-
ergy (7) in sense of displacement get equilibrium equation 
in the form 
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where  is the element stiffness 

matrix and  is the element stress 

stiffening matrix, adopted from linear analysis [7]. 
Matrices  and  are nonlinear element stiffness 
and stress stiffening matrices given by the equations 
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Axial load exerted on the beam after buckling is given as 
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where original spring stiffness c0 is used. 
 Summing matrices at the element level over all n 
finite elements, equilibrium equation (10) may be written 
in the simplest form 

(
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where [K], [K1], [Kσ] and [Kσ1] are global matrices of 
linear and nonlinear stiffness and stress stiffening, created 
by standard finite elements procedure from the correspond-
ing element matrices [ ] , ,  and [ , and 
{D} is global displacement vector. 

iek [ ] iekσ 1[ ] iek 1

 
3.5. Direct solution of equilibrium equation 
 

The equilibrium equation (14) is a set of nonlinear 
algebraic equations, and its solution may be obtained by 
direct numerical solution procedures. In this case the 
method of linear iterations is used. For this purpose, 
equation (14) is transformed in the form 
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Setting initial force P0 = c0Δl0s and considering initial solu-
tion {D}(0), solution of Eq. (14) is determined successively 
by applying Eq. (15). After solution in i-th iteration is cal-
culated, the solution of (i +1)-th iteration is then calculated 
as 
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Apparent stiffness and axial force in current iteration are 
calculated as 
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 The calculations are performed until the conver-
gence of displacements is achieved. Solution for the par-
ticular simple beam is presented in Fig. 3. It is shown that 
in case of such kind of axial force moderate displacement 
of order beam thickness appear. 

The convergence of the middle point displace-
ment of a simple beam in sense of required mesh density 
for different values of initial axial force is shown in Fig. 4. 
It can be seen that the value of displacement converges for 
very small number of finite elements. 

The number of required iterations for fixed 
number of finite elements and initial value of axial force is 
presented in Fig. 5. It can be seen that the number of 
iteration is almost independent on the number of finite 
elements, and the result converges after approximately 30 
iterations. 

The influence of beam elongation on postbuckling 
displacement of the middle point of simple beam for 
different axial stiffness of spring is presented in Fig. 6. If 
the beam elongation is not taken into account, error 
increases with increasing of axial stiffness of the spring 
and tends to 30%. 
 

 

P0/Pcr

w/lb 
Fig. 3 Postbuckling displacement of middle point of simple 

beam calculated by linear iteration. Initial solution is 
first buckling eigenvector 

 

 
Fig. 4 Value of vertical displacement of the beam middle 

point for different values of the initial axial force 
and different number of finite elements 

 

 
Fig. 5 Convergence of the calculation of the simple beam 

midpoint displacement. Initial displacement is the 
buckling eigenvector, where the displacement of 
midpoint is scaled to w = 0.000092 [m] 
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Fig. 6 Difference in the displacement of middle-point of a 

simple beam if the beam elongation is and it is not 
taken into account 

 
4. Experimental analysis 
 

An experimental testing using equipment 
illustrated in Fig. 7 is provided. 

 

 
Fig. 7 Schematic view of experimental setup 

 
Beam-like specimen 4 is connected to the testing 

platform 7 with two supports 3 and 5. Axial force over 
axially movable support 3 and measured with strain gage 
dynamometer 2 is applied. The dynamometer is a hollow 
circular steel tube with bonded strain gages LY6/120 
connected in a full Wheatstone bridge. Dynamometer is 
also the main bearer of axially movable part of movable 
support. Displacement is measured with inductive 
displacement transducer WA20, positioned at the middle 
point of the beam and on the axially movable support. The 
beam is restrained in a straight position until the force is 
regulated by adjusting screw 1 to a desired value P0 > Pcr. 
After initial compression beam is allowed to buckle. Force 
and displacement of the characteristic point are measured 
by amplifier SPIDER 8 in transition to the new equilibrium 
position. This testing for different initial values of the axial 
force is repeated. To remove the influence of contact force 
of the displacement transducer, the displacement is 
measured using the movable rod 6, which is driven by a 
screw to make a contact with the buckled beam. Contact 
between them is registered by the indicator closed current 
circuit. 

The experiment is performed for the prismatic 
steel beam with the following characteristics: modulus of 
elasticity E = 207 GPa, length lb = 0.382 m, and cross 
sectional area A = 14.3×2.628 mm, critical force Pcr = 
= 302.9 N. The beam is supported by pinned supports, as 
shown on Fig. 7. 
 
4.1. Identification of axial stiffness 
 

Movable support is a complex system, and axial 
stiffness of axially movable support is determined 
experimentally. The change of axial force and axial 
displacement of the movable support caused by buckling is 
measured. Fig. 8 presents the change of value of axial 
force during initial compression and buckling process. 
During initial compression, force–displacement depend-
ence slightly differs from straight-line because of support 
adjusting. Large displacements of the beam cause beam 
shortening, and this shortening also causes decompression 
of the dynamometer, what is presented by the left part of 
Fig. 8. The beam snaps to a new position and the sudden 
change of the axial force appears, what produce vibrations 
around new buckled configuration. The dependency force-
displacement during buckling is linear and defines axial 
stiffness. Measurement for values of Pcr < P0 ≤ 2Pcr is 
performed. 

3 5 4

Measured value of axial rigidity of elastic parts in 
the system of the movable support is c = 14.48 MN/m. Boundary 

condition 
 

 
Fig. 8 Numerical and experimental displacements of the 

beam middle point 
 
5. Comparison of numerical and experimental results 

 
The results of numerical and experimental 

analysis for the pinned-pinned support condition of a beam 
are shown in the Fig. 9. Numerical results predict stable 
postbuckling state, however, due to the existing 
imperfections in this experiment, the beam tends to buckle 
on the one side. Buckling in the opposite direction by 
additional external influence may be achieved. Also, 
imperfection causes lateral displacements for the value of 
the axial force that is less than the exact value of the 
critical force. 

Experimental analysis shows that numerical 
analysis with introduced beam elongation may be used to 
predict the value of postbuckling displacements. 
Experimental results depart somewhat from the numerical 



 29

analysis, because of the imperfections of real beam-like 
probe and approximations used in the numerical model. 
Discrepancy of the results slightly increases with the 
increase of initial value of the axial force. 
 

 
Fig. 9 Comparison of numerical and experimental results 

for the displacement of middle point of simple beam 
 
6. Conclusion 
 

An influence of beam elongation on equilibrium 
states of a buckled beam compressed by an elastic body is 
analysed both numerically and experimentally. In the 
numerical analysis, the equilibrium equation, containing 
third order nonlinearities, is derived using the finite 
elements method. Using the method of linear iterations for 
different initial axial compression the equilibrium equation 
is solved. The results already converge under a small 
number of finite elements, within only a few iterations. It 
is shown that beam elongation affects the value of lateral 
displacements, and its influence is increasing with 
increasing of axial stiffness of body compressing the beam, 
and may have the value of even 30%. Effect of beam 
elongation is taken into account by defining apparent axial 
stiffness of the compressive body. 

The experimental results show good coincidence 
with numerical results for initial value of axial force 
greater than critical when the beam elongation is taken into 
account. Displacements of the compressed beam exist 
when the force has a less value than critical. Accuracy of 
numerical results decreases for initial axial force close to 
critical, due to the presence of imperfections in a real 
system.  
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V. Doleček, S. Isić, A. Voloder 

STRYPO PAILGĖJIMO ĮTAKOS KLUPDYMO VIRŠ 
KRITINĖS RIBOS POSLINKIAMS PRIKLAUSOMAI 
NUO AŠINĖS JĖGOS POVEIKIO ANALIZĖ 

R e z i u m ė 

Straipsnyje analizuojama strypo, veikiamo ašine 
spaudimo jėga, priklausoma nuo deformacijos dydžio, pa-
ilgėjimo įtaka klupdymo virš kritinės ribos poslinkiams. 
Atlikta skaitinė ir eksperimentinė šio poveikio analizė. 
Skaitinė analizė atlikta baigtinių elementų metodu. Taikant 
iteracijų metodą sudaryta ir išspręsta netiesinė sistemos 
pusiausvyros lygtis. Skaitinės analizės rezultatai patikrinti 
eksperimentiškai. Skaitiniai ir eksperimentiniai tyrimų 
rezultatai rodo, kad strypo pailgėjimas turi didelę įtaką virš 
kritinės ribos klupdomo strypo poslinkiams. 

 
 

V. Doleček, S. Isić, A. Voloder 
 
AN ANALYSIS OF BEAM ELONGATION 
INFLUENCE TO POSTBUCKLING DISPLACEMENTS 
UNDER DISPLACEMENT DEPENDENT AXIAL 
FORCE 

S u m m a r y 

This paper presents an analysis of beam elon-
gation influence on the postbuckling displacements in case 
of axial compression by a force depending on axial 
deformation of the beam. It is performed both numerical 
and experimental analysis of this effect. Numerical 
analysis is done by using finite elements method. Nonlin-
ear equilibrium equation is derived and solved using the 
method of simultaneous iterations. Verification of numeri-
cal results is done by experimental analysis. Both numeri-
cal and experimental results show significant influence of 
the beam elongation on postbuckling displacements.  
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АНАЛИЗ ВЛИЯНИЯ УДЛИНЕНИЯ СТЕРЖНЯ ПРИ 
ЕГО ВОЗДЕЙСТВИИ ОСЕВОЙ СИЛОЙ, 
ЗАВИСЯЩЕЙ ОТ ДЕФОРМАЦИЙ НА ЕГО СДВИГ 
ПРИ СЖАТИИ В ЗОНЕ, ПРЕВЫШАЮЩЕЙ 
КРИТИЧЕСКИЙ ПРЕДЕЛ 

Р е з ю м е 

 
В статье анализируется влияние удлинения 

стержня на его устойчивость при сжатии осевой силой, 
зависящей от величины деформации в зоне, превы-

шающей критический предел. Проведен численный и 
экспериментальный анализ этого эффекта. Численный 
анализ проведен при использовании метода конечных 
элементов. Составлена методом мгновенных итераций 
и решена система нелинейных уравнений равновесия. 
Результаты числовых исследований проверены экспе-
риментально. Числовые и экспериментальные иссле-
дования показывают существенное влияние удлинения 
стержня на его деформации сжатия в зоне, превы-
шающей критический предел. 
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