ISSN 1392 - 1207. MECHANIKA. 2009. Nr.4(78)

Load distribution in the threaded joint subjected to bending
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1. Introduction

High stress concentrations existing at thread roots
often cause fatigue failure of the connectors. Load distribu-
tion along the threads has a direct influence on the stress at
thread roots. Previous analysis of load distribution in
threads was mainly limited to the axial deformation of
studs or bolts and has been reviewed in [1].

In practice, the loading is usually asymmetric or
eccentric and this causes bending moments to be applied to
constructions, rods and to the threaded joints also [2-4].
The experimental study of the effect of bending on the
distribution of stress along the helix of the thread root by
using photoelastic models is presented in [5].

The analytical analysis of load distribution on
turns in the threaded joint subjected to bending without
estimation of turns deflections is given in [6]. However to
construct an analytical model for this case it is necessary to
find relation between deflections of the turns and devia-
tions of the cross-sections of stud/bolt and nut caused by
bending of the threaded joint. In this paper the correspond-
ing equation for compatibility of the displacements of the
elements of threaded joint and analytical solution of this
equation are presented.

2. The loads in threaded joint caused by bending
The external load of the threaded joint can be di-

vided into two main components. It is axial load of tighte-
ning F, and external bending moment M, (Fig. 1).
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Fig. 1 Loads in threaded joint at bending: a — external
loads, b — loads caused by tightening, ¢ — loads
caused by bending; / - stud, 2 - nut

The turns of stud are under the action of a distri-
buted longitudal load - force per unit length

9,()=4,(2)24,(2) . 4,(2)>|g,(2)| M
where ¢,(z) and g, (z) are turn load intensities at coordina-
te z caused by tightening and bending respectively.

In opposite direction the same loads are distribu-

ted along the nut thread: ¢,(z) = ¢,/(2) £ ¢.»(z). By using

designations we have: |g7.(2)| = q4(2) = q(2),
16u(2)| = 4,(2) = 4(2) and [¢,u(2)] = g(2) = 4s(z). Due to the
longitudal load in the thread of stud g,(z) the small axial
force O, can arise in the stud core (Fig. 1, ¢).

Further the exact place of the turn load action on
the helix which correspond to mean thread diameter 2R
shall be expressed by angle « (Fig. 2).

Fig. 2 Load intensity on helix turns of bended stud

This angle shows how much is turned radius R the
end of which draws helix at rotating around z axis. At 27
angle of the rotation the radius R move on distance equal to
the thread pitch P in direction of axis z yet. Initial location
of the radius R coincides with the neutral line on initial
cross-section of the stud (here z=0 and a = 0). Then rela-
tion between z and « is

z
a=—2rx 2
P @

The location of radius R in considered cross-
section z (according Fig. 2 here point g and turn load
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qs(@) = qs(z) are found) can be determined by angle «,
also. The relation between ¢, and ais «, = a — 27k, (then

sin o, =sin ), where k., is the number of full turns,

which contain in length z. Really e, is the angle between
neutral line NL, in cross-section z and radius R (Fig. 2).

Due to the action of the turn load g,(z) local ben-
ding moment m () and the whole internal moment M( )
occur in every cross-section z of the sud also (Fig. 2)

m, (&) = q,, () Rsin &

3)

M (o) = Tm (a)da “4)

The corresponding opposite bending moments act
in the cross-section z of the nut

M, ()| =M () )

m, (@) =m, (),
The small opposite axial internal forces occur in
cross-section z of the stud and nut too

0,(@) = [g,(a)da (6)

where Qb(z) = st(z) = |an(Z)|, st(z) and an(z) are axial

internal forces in cross-section z of the stud and nut respec-
tively. In cross-section z = H (Fig. 1) of the stud the force
Ogy(H) slightly changes the amount of tightening force F,.

3. Equation for compatibility of displacements of
threaded joint elements due to bending

In Fig. 3, b and Fig. 3, d displacements of cross-
sections of the stud and nut and deflections of the turn pa-
irs at turn’s contact points p and g are shown. (Location of
this points is shown in Fig.2 also). For convenience of
representation the cross-sections with points p and g are
superposed in Fig. 3. It would be really in the circular turns
case. Before deformation contact points p and g of the
turns and corresponding cross-sections of the stud and nut
are in the plane ss (Fig. 3, a, ¢). Due to bending the cross-
sections of the stud and nut deviate around neutral line in
opposite directions - into positions s*s* and s**s** respec-
tively (Fig. 3, b, d). These deviations are designated here
as ¢, and @,.

In the compressed side of the stud its’ turn recede
from the nut turn on distance o+, It is the distance
between points p* ir p** (Fig. 3, b). In tight threaded joint
the turns contact does not disappear. Really the deflection
of turns pair in this side of the joint decreases only. In the
opposite side of neutral line the deflection of turns pair due
to the bending increases by amount (5 + &,). It is the dis-
tance between points g* and g** (Fig. 3, ¢). The deflection
of the turns pair — sum of the stud and nut turns deflections
(@) = o(a) + 6,() is proportional to the turn pair load,
therefore it could be expressed in the same order as in the
case of tension of the threaded joint [7]

o(a) = p(a) (7)

where y is pliability of the turns pair.
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Fig. 3 Deformation of threaded joint elements due to ben-
ding: a, ¢ — before deformation; b, d — after defor-
mation / - core of the stud, 2-wall of the nut,
3 - turns of the stud, 4 - turns of the nut

It is seen in Fig. 3 that deflection of the stud (or
nut) turn has simple relation with cross-section deviation
of the stud (or nut)

(®)
©)

o,(a)=Rsinatan ¢, (a)= Rsina ¢ (a)

o0,(a)=Rsina tan ¢, () = Rsina ¢,(a)

By using relation of a rod deviation to bending
moment given in the theory of elasticity (and using Egs.
(3), (4), and analogous equations written for nut also) the
stud and nut cross-section deviations could be expressed in
the next forms

()= [ 1) d%fims{a)dad‘l:

s o EI. o E,

:%II%}(&) sina dada (10)
?,() =TM"(a) da :Tgmn(a)dad“ -

" o E.1, o E.,

:%Ijjqnb(a) sina dada (1)

where E; and E,, I; and I, are the modulus of elasticity and
the moments of inertia of the cross-sectional area for stud
core and nut wall respectively.

Out of regard for Egs. (8), (9) the compatibility of
displacements of bended threaded joint elements can be
expressed by the next equation

[0.(a)+|p, (@)||R sin & = 5(a) - 5(0) (12)



After substituting Egs. (7), (10), (11) into Eq. (12)

and after designating M()=M|a)=|M,(a)] and
m(@) = my( @) = |m,(a)| we obtain
2 1 1 q,(@)
R {HjLE_IJ qub(a)sznadada ysma (13)
By using designations
2
|1 + ! - (14)
7 ESIS E)'llﬂ
(2)
y(a)=2= (15)
sin o
the Eq. (13) get the next expression
qjﬂ@n#amMa=ﬂa) (16)
00

After two differentiations of Eq. (16) we obtain
the differential equation

bTy(a) sinfada = y'(a) 17)
0

by(a) sin*a = y"(a) (18)

A boundary condition will be defined in respect to
internal bending moment. First, by using Egs. (3), (4), (15)
we get

M(a)=Tm(a)da=RTy(a) sin‘a da (19)

Now we observe the same integral in Eq. (19) and
in Eq. (17) also. Therefore

2 M@ =@

(20)
When z=0, =0 and M(0)=0, the Eq.(20)
gives
V(@=0)=0 (1)
In the same order, when z = H, o= (H/P) 27 and
M(ay) = My, from Eq. (20) we get

Viay)= M(an) =—M, (22)

4. Approximate analytical solution of the differential
equation

The numerical solution of the differential
equation (18) presented in the next chapter looks like
exponent. (Really it is periodic — slightly wavy function).
Therefore for approximate solution we provide the next
expression

y(a) = Asinh(na) + B cosh(na) (23)
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By using boundary conditions (21), (22) and the
first derivative of Eq. (23) we obtain two facors

bM
A=0, B= :

Rnsinh(ne,,) 24)

Further it is the need to find factor n. By
equalization of Eq. (20) with the first derivative of Eq. (23)
we find the internal moment

M(a)= gy'(a) = %Bn sinh(na) (25)

The internal moment can be found in the other
way also - by substituting of Eq. (23) into Eq. (19)

M(ax)= Rjy(a) sinfa da = RBIcosh(na) sin‘a do =
0 0

:lRB
2 [nz

2 (nsinza —sin 2a) cosh(nar) +
+

+ _4 sinh(n a)} (26)

(n* +4)n

Let us to suppose that equality of expressions
Eq. (25) and Eq. (26) have validity at
a=kr, 27)

Then, by using Eq. (27) and after equalization of
Eq. (25) with Eq. (26) we get

n*+4n* -2b=0 (28)
The solution of Eq. (28) is
=y-2++4+2b (29)

It is seen in Eq. (29) that factor n does not depend
either on boundary conditions or on joint length and de-
pend only on the deformation indices — on the factor 4. In
the next chapter numerically it is shown that the value of n
defined by using expression (29) is right for all values of
the coordinate a — not only for the cases indicated in
Eq. (27).

Now, by using Egs. (15) and (23), the following
equation for the turn load intensity can be written

bM ,
q,(2) = ;

Rn sinh(na,,;) 30)

cosh(na) sin

In the stud and nut cross-sections the low internal
axial forces Q,(z) act (in opposite directions) yet. The
expression for these forces gives integration of the longitu-
dal turn load intensity due to bending

O,(a)= Tq,,(a)da = ]iy(a) sina da =
= B]{ cosh(na) sina da =

. [nsinh(na) sin o —cosh(n) cos a + 1] 31
n°+



5. Calculation results

First the differential equation (18) was solved
numerically by Runge—Kutta method. It was realized by
using the suite of mathematical programs Maple-9. Then
the calculation for the same joint has been made by using
the approximate analytical method given in the chapter 4.
The object of this calculation was the threaded joint
M16x2 with compressed nut (height of the nut 7 = 10 mm)
— both made from grade 25X1M® steel.

Average indices of mechanical properties of
conections grade 25X1M® steel: yield stress of material
R, =860 MPa, tensile strength R,,= 1010 MPa, percentage
reduction area of tension specimen Z = 60.2 %, module of
elasticity £ =210 GPa. Pliability and yield load intensity
for one turn pair M16x2 made from grade 25X1M® steel
were established experimentally by the technique given in
[7]: y=3.78x10” mm/(kN/mm) and ¢, = 14 kN/mm.
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Fig. 4 Loads distribution in bent threaded joint M16: ana-
lytical solutions: / - y(z), 2 - q4(z), 3 - m(z); x - nu-
merical solutions

The calculations of functions y(z), g,(z), m(z) and
M(z) have been performed at external bending moment
M= 64.5 kNmm applied to the stud of joint (Fig. 4 and 5).
In this case the ratio of nominal maximal normal stresses
in stud the with the yield stresses is Oy s ma/R, = 0.31.

In Fig. 4 by solid lines are shown the variation of
the functions, which have been calculated by using analyti-
cal method: y(z) — by Eq. (23), g,(z) — by Egs. (15 and 23),
m(z) — by Egs. (3 and 23). The corresponding values of the
above mentioned functions obtained by Runge-Kutta me-
thod in Fig. 4 are shown by criss-cross. The values of the
function y(z) (and values of ¢;(z) also) from analytical so-
lution are miserly less than these obtained from Runge-
Kutta method. For the threaded joint M 16 the greatest dif-
ference is 0.8 % only.

In Fig. 5 line / shows the variation of the internal
bending moment M(z), which has been calculated by using
analytical method (Eq. (26)). The values of M(z) shown in
Fig. 5 by criss-cross have been calculated by using Eq.(20)
and derivation of the function y(z) obtained from Runge-
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Kutta method. In this case the greatest difference is very
low also — 0.28%.
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Fig. 5 Bending moment in the threaded joint M16: analyti-
cal solutions: 1 - M(z2), 2 - Oy(z); x - numerical solu-
tions

Line 2 in Fig. 5 (obtained from Eq. (31)) shows
periodical variation of the small axial force Oy(z) and it’s
direction in the stud and nut caused by longitudal turn load
intensity due to the bending.

The loads distribution between turns for the real
case (Fig. 1), when threaded joint (here M16x2 with
H=0.84d=12.8 mm, d = 16 mm) is subjected to axial tigh-
tening force and to bending moment is shown in Fig. 6. In
the presented example the bending is the same as above -
My=64.5 kNmm and ©;,me=0.31R,. The axial (tight)
nominal stresses in the stud is o;,,=0.5R,. The loads
(gs(2)) distribution in the thread due to axial tight force
(curves / and 2 in Fig. 6) has been obtained from the me-
thod presented in [8], where the influence of runouts is
estimated.

q , KN/mm
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Fig. 6 Load distribution in the thread of tight stud at bend-
ing of the threaded joint M16: [ - g4(z), 2 - g.(z) on
plastically deformed part of runout, 3-g¢yz)=
= qvt(z)+ q.rb(Z)

As at the worst the maximal turn load location
found after tightening in the stud is in it’s bending plane
and coincides with the location of the maximal turn load
caused by bending. Then the both maximal turn loads must
be summarized. For this here is assumed also that the joint
is subjected to bending moment in the middle segment
H,=10 mm only (Fig. 6) and practically does not acts on
runouts (on segments H,). Then the calculation results



(gs5(z)) presented in Fig. 4 can be used to determine the
whole curve 3 (Fig. 6) which expresses the total load on
the turns - gy(z) = g.(2z) + gu(z). It is necessary to notice
here that direct summarizing of the maximal turn loads
caused by tension and bending in the segment H, (Fig. 6)
is valid at g,(z) <g,, i.e., if deformation of the turns re-
mains in the elastic state.

The analytical model of the load distribution in
the thread caused by threaded joint bending further can be
used to obtain local stresses in the roots of the stud thread
for using it in a fatigue durability prediction at the engi-
neering design.

6. Conclusions

1. The relation between deflections of the enga-
ged turns and deviations of the stud and nut cross-sections
gives the compatibility and further differential equations
with respect to load distribution in the thread of the threa-
ded joint subjected to bending.

2. The turn load intensity g,(z) and internal ben-
ding moments M(z) in cross-sections of the threaded joint
could be calculated by using the proposed approximate
analytical solution of the differential equation. The values
of ¢gy(z) and M(z) determined by analytical metod and ob-
tained by numerical (Runge-Kutta) method differ very
slight — for threaded joint M16 it is 0.8% and 0.28% res-
pectively.
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A. Krenevicius, Z. Juchneviéius

APKROVOS PASISKIRSTYMAS LENKIAMOS
SRIEGINES JUNGTIES VIJOSE

Reziumé

Sudaryta lenkiamos srieginés jungties elementy
poslinkiy suderinamumo lygtis. Nustatyti jos sprendiniai —
skaitinis ir apytikris analitinis. Jungties M16 skai¢iavimo
pavyzdyje parodyta, kad abiem biidais apskai¢iuotos viju
apkrovy vertés skiriasi ne daugiau kaip 0.8 procento.

A. Krenevidius, Z. Juchneviéius

LOAD DISTRIBUTION IN THE THREADED JOINT
SUBJECTED TO BENDING

Summary

This paper presents the analytical model of load
distribution between turns in the threaded joint subjected to
bending. The equation for the displacements compatibility
of threaded joint elements is constructed. The numerical
and approximate analytical solutions for this equation are
obtained.

A. Kpenssuuroc, XK. FOxusBuutoc

PACITPEAEJIEHME HAI'PY3KH 110 BUTKAM ITPU
N3I'BE PE3bEOBOI'O COEJIMHEHU A

PezomMme

CoCTaBlICHO YpaBHEHHE COBMECTHMOCTH IIEepe-
MEIIEHUH 3JIEMEHTOB U3rH0acMOro pe3b0OBOr0 COCTUHE-
Hust. J{7st aToro nosiyueHo auddepeHInaabHOe ypaBHeHNE
U ero PEIICHHs — YHCICHHOE W MPUOIIDKEHHOS aHATUTH-
geckoe. B mpuMepe pacdera moka3aHO, YTO 3HAYCHUS Ha-
TPY30K Ha BUTKaxX coeauHeHUs M 16, MOJIydeHHBIC HCIIOJb-
3yst 00a crocoba pacdera, OTIMYAIOTCS HE OoJjiee 4eM Ha
0.8 mpouenTa.
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