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1. Introduction 
 

High stress concentrations existing at thread roots 
often cause fatigue failure of the connectors. Load distribu-
tion along the threads has a direct influence on the stress at 
thread roots. Previous analysis of load distribution in 
threads was mainly limited to the axial deformation of 
studs or bolts and has been reviewed in [1]. 

In practice, the loading is usually asymmetric or 
eccentric and this causes bending moments to be applied to 
constructions, rods and to the threaded joints also [2-4]. 
The experimental study of the effect of bending on the 
distribution of stress along the helix of the thread root by 
using photoelastic models is presented in [5]. 

The analytical analysis of load distribution on 
turns in the threaded joint subjected to bending without 
estimation of turns deflections is given in [6]. However to 
construct an analytical model for this case it is necessary to 
find relation between deflections of the turns and devia-
tions of the cross-sections of stud/bolt and nut caused by 
bending of the threaded joint. In this paper the correspond-
ing equation for compatibility of the displacements of the 
elements of threaded joint and analytical solution of this 
equation are presented. 

 
2. The loads in threaded joint caused by bending 
 

The external load of the threaded joint can be di-
vided into two main components. It is axial load of tighte-
ning Ft and external bending moment Mf (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Loads in threaded joint at bending: a – external 

loads, b – loads caused by tightening, c – loads 
caused by bending; 1 - stud, 2 - nut 

 
The turns of stud are under the action of a distri-

buted longitudal load - force per unit length 

)()()( zqzqzq sbsts ±= ,     )()( zqzq sbst >  (1) 

where qst(z) and qsb(z) are turn load intensities at coordina-
te z caused by tightening and bending respectively.  

In opposite direction the same loads are distribu-
ted along the nut thread: qn(z) = qnt(z) ± qnb(z). By using 

designations we have: |qn(z)| = qs(z) = q(z), 
|qnt(z)| = qst(z) = qt(z) and |qnb(z)| = qsb(z) = qb(z). Due to the 
longitudal load in the thread of stud qb(z) the small axial 
force Qb can arise in the stud core (Fig. 1, c). 

Further the exact place of the turn load action on 
the helix which correspond to mean thread diameter 2R 
shall be expressed by angle α (Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Load intensity on helix turns of bended stud 
 

 This angle shows how much is turned radius R the 
end of which draws helix at rotating around z axis. At 2π 
angle of the rotation the radius R move on distance equal to 
the thread pitch P in direction of axis z yet. Initial location 
of the radius R coincides with the neutral line on initial 
cross-section of the stud (here z = 0 and α = 0). Then rela-
tion between z and α  is 

πα 2
P
z

=    (2) 

The location of radius R in considered cross-
section z (according Fig. 2 here point g and turn load 
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qsb(α) = qsb(z) are found) can be determined by angle αz 
also. The relation between αz and α is zz kπαα 2−=  (then 

zsin sinα α= ), where kz is the number of full turns, 
which contain in length z. Really αz is the angle between 
neutral line NLz in cross-section z and radius R (Fig. 2).  

Due to the action of the turn load qsb(z) local ben-
ding moment ms(α) and the whole internal moment Ms(α) 
occur in every cross-section z of the sud also (Fig. 2) 

( ) ( )s sbm q Rsinα α α=    (3) 

ααα
α

dmM ss )()(
0
∫=          (4) 

The corresponding opposite bending moments act 
in the cross-section z of the nut  

,mm sn )()( αα =       )()( αα sn MM =   (5) 

The small opposite axial internal forces occur in 
cross-section z of the stud and nut too 

ααα
α

dqQ bb )()(
0
∫=     (6) 

where Qb(z) = Qsb(z) = |Qnb(z)|, Qsb(z) and Qnb(z) are axial 
internal forces in cross-section z of the stud and nut respec-
tively. In cross-section z = H (Fig. 1) of the stud the force 
Qsb(H) slightly changes the amount of tightening force Ft. 
 
3. Equation for compatibility of displacements of 

threaded joint elements due to bending 
 

In Fig. 3, b and Fig. 3, d displacements of cross-
sections of the stud and nut and deflections of the turn pa-
irs at turn’s contact points p and g are shown. (Location of 
this points is shown in Fig. 2 also). For convenience of 
representation the cross-sections with points p and g are 
superposed in Fig. 3. It would be really in the circular turns 
case. Before deformation contact points p and g of the 
turns and corresponding cross-sections of the stud and nut 
are in the plane ss (Fig. 3, a, c). Due to bending the cross-
sections of the stud and nut deviate around neutral line in 
opposite directions - into positions s*s* and s**s** respec-
tively (Fig. 3, b, d). These deviations are designated here 
as ϕs and ϕn.  

In the compressed side of the stud its’ turn recede 
from the nut turn on distance δs+δn. It is the distance 
between points p* ir p** (Fig. 3, b). In tight threaded joint 
the turns contact does not disappear. Really the deflection 
of turns pair in this side of the joint decreases only. In the 
opposite side of neutral line the deflection of turns pair due 
to the bending increases by amount (δs + δn). It is the dis-
tance between points g* and g** (Fig. 3, c). The deflection 
of the turns pair – sum of the stud and nut turns deflections 
δb(α) = δs(α) + δn(α) is proportional to the turn pair load, 
therefore it could be expressed in the same order as in the 
case of tension of the threaded joint [7]  

)()( αγαδ q=    (7) 

where γ  is pliability of the turns pair. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Deformation of threaded joint elements due to ben-
ding: a, c – before deformation; b, d – after defor-
mation 1 - core of the stud, 2 - wall of the nut,  
3 - turns of the stud, 4 - turns of the nut 

 
It is seen in Fig. 3 that deflection of the stud (or 

nut) turn has simple relation with cross-section deviation 
of the stud (or nut) 

( ) ( ) ( )s sRsin tan Rsin sδ α α ϕ α α ϕ α= ≈  (8) 

( ) ( ) ( )n nRsin tan Rsin nδ α α ϕ α α ϕ α= ≈  (9) 

By using relation of a rod deviation to bending 
moment given in the theory of elasticity (and using Eqs. 
(3), (4), and analogous equations written for nut also) the 
stud and nut cross-section deviations could be expressed in 
the next forms 
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where Es and En, Is and In are the modulus of elasticity and 
the moments of inertia of the cross-sectional area for stud 
core and nut wall respectively.  

Out of regard for Eqs. (8), (9) the compatibility of 
displacements of bended threaded joint elements can be 
expressed by the next equation  
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After substituting Eqs. (7), (10), (11) into Eq. (12) 
and after designating M(α)=Ms(α)=|Mn(α)| and 
m(α) = ms(α) = |mn(α)| we obtain  

2

0 0

( )1 1 ( ) b
b

s s n n

q
R q sin d d

E I E I sin

α α α
α α α α γ

α
⎡ ⎤

+ =⎢ ⎥
⎣ ⎦

∫ ∫   (13) 

By using designations 
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the Eq. (13) get the next expression  

2
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( ) ( )b y sin d d y
α α

α α α α α=∫ ∫   (16) 

After two differentiations of Eq. (16) we obtain 
the differential equation 

2

0

( ) ( )b y sin d y
α

α α α α′=∫    (17) 

2( ) ( )by sin yα α α′′=     (18) 

A boundary condition will be defined in respect to 
internal bending moment. First, by using Eqs. (3), (4), (15) 
we get  

2

0 0

( ) ( ) ( )M m d R y sin d
α α

α α α α α α= =∫ ∫  (19) 

Now we observe the same integral in Eq. (19) and 
in Eq. (17) also. Therefore 

)()( αα yM
R
b ′=            (20) 

When z = 0, α = 0 and M(0) = 0, the Eq. (20) 
gives 

0)0( ==′ αy    (21) 

In the same order, when z = H, αH = (H/P) 2π and 
M(αH) = Mf, from Eq. (20) we get 

fHH M
R
bM

R
by ==′ )()( αα    (22) 

4. Approximate analytical solution of the differential 
equation 

 
The numerical solution of the differential 

equation (18) presented in the next chapter looks like 
exponent. (Really it is periodic – slightly wavy function). 
Therefore for approximate solution we provide the next 
expression 

  (23) 

By using boundary conditions (21), (22) an
first derivative of Eq. (23) we obtain two facors 

d the 
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Fu it is the need to find factor n.
equalization of Eq. (20) with the first derivative of Eq. (23) 
we find 

rther  By 

the internal moment 
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The internal moment can be found in the
way also - by substituting of Eq. (23) into Eq. (19) 
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It is seen in Eq.  that factor n does not d
either on boundary conditions or on joint length an
pend on

(29) epend 
d de-

ly on the deformation indices – on the factor b. In 
the next chapter numerically it is shown that the value of n 
defined by using expression (29) is right for all values of 
the coordinate α – not only for the cases indicated in 
Eq. (27). 

Now, by using Eqs. (15) and (23), the following 
equation for the turn load intensity can be written 
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b

bM
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In the stud and nut cross-sections 
axial forces Qb(z) act (in opposite directions) yet. The 
expressio
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n for these forces gives integration of the longitu-
dal turn load intensity due to bending  
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5. Calculation results 
 

First the differential equation (18) was solved 
numerically by Runge–Kutta method. It was realized by 
using the suite of mathematical programs Maple-9. Then 
the calculation for the same joint has been made by using 
the approximate analytical method given in the cha
The object of this calculation was the threaded joint 

d nut (height of the nut H = 10 mm) 
 both made from grade 25X1MФ steel. 

4 kN/mm. 

pter 4. 

M16×2 with compresse
–

Average indices of mechanical properties of 
conections grade 25Х1МФ steel: yield stress of material 
Ry = 860 MPa, tensile strength Rm = 1010 MPa, percentage 
reduction area of tension specimen Z = 60.2 %, module of 
elasticity E = 210 GPa. Pliability and yield load intensity 
for one turn pair M16x2 made from grade 25Х1МФ steel 
were established experimentally by the technique given in 
[7]: γ = 3.78×10-3 mm/(kN/mm) and qy = 1
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Fig. 4 Loads distribution in bent threaded joint M16: ana-

lytical solutions: 1 - y(z), 2 - qb(z), 3 - m(z); × - nu-
merical solutions    

 
The calculations of functions y(z), qb(z), m(z) and 

M(z) have been performed at external bending moment 
Mf = 64.5 kNmm applied to the stud of joint (Fig. 4 and 5). 
In this case the ratio of nominal maximal normal stresses 

the fun een calculated by using analyti-
al method: y(z) – by Eq. (23), q (z) – by Eqs. (15 and 23), 

m(z) – b

e-
Kutta m

in stud the with the yield stresses is σs,n,max/Ry = 0.31.  
In Fig. 4 by solid lines are shown the variation of 

ctions, which have b
c b

y Eqs. (3 and 23). The corresponding values of the 
above mentioned functions obtained by Runge-Kutta me-
thod in Fig. 4 are shown by criss-cross. The values of the 
function y(z) (and values of qb(z) also) from analytical so-
lution are miserly less than these obtained from Rung

ethod. For the threaded joint M16 the greatest dif-
ference is 0.8 % only. 

In Fig. 5 line 1 shows the variation of the internal 
bending moment M(z), which has been calculated by using 
analytical method (Eq. (26)). The values of M(z) shown in 
Fig. 5 by criss-cross have been calculated by using Eq.(20) 
and derivation of the function y(z) obtained from Runge-

Kutta method. In this case the greatest difference is very 
low also – 0.28%. 
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Fig. 5 Bending moment in the threaded joint M16: analyti-
cal solutions: 1 - M(z), 2 - Qb(z); × - numerical solu-
tions 

 
Line 2 in Fig. 5 (obtained from Eq. (31)) shows 

periodical variation of the small axial force Qb(z) and it’s 
direction in the stud and nut caused by longitudal turn load 
intensity due to the bending.  

case 
H = 0. .8 mm, d = 16 mm) is subjected to axial tigh-

ning force and to bending moment is shown in Fig. 6. In 
the prese

(curves 

The loads distribution between turns for the real 
(Fig. 1), when threaded joint (here M16×2 with 
8d = 12

te
nted example the bending is the same as above - 

Mf = 64.5 kNmm and σs,n,max = 0.31Ry. The axial (tight) 
nominal stresses in the stud is σs,n,t = 0.5Ry. The loads 
(qst(z)) distribution in the thread due to axial tight force 

1 and 2 in Fig. 6) has been obtained from the me-
thod presented in [8], where the influence of runouts is 
estimated. 
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Fig. 6 Load distribution in the thread of tight stud at bend-

ing of the threaded joint M16: 1 - qst(z), 2 - qst(z) on 
plastically deformed part of runout, 3 - qs(z) = 
= qst(z)+ qsb(z) 

 
As at the worst the maximal turn load location 

found after tightening in the stud is in it’s bending plane 
and coincides with the location of the maximal turn load 

be sum
is sub
Hb = 1  6) and practically does not acts on 
runouts egments Hr). Then the calculation results 

caused by bending. Then the both maximal turn loads must 
marized. For this here is assumed also that the joint 

jected to bending moment in the middle segment 
0 mm only (Fig.

(on s
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(q (z)) 

ed to bending. 
2. The turn load intensity qb(z) and internal ben-

(z) in cross-sections of the threaded joint 
ould be calculated by using the proposed approximate 

analytica
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tos vijų 
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This paper presents the analytical model of load 
readed joint subjected to 

ending. The equation for the displacements compatibility 
cal 

for this equation are 
btained. 
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Составлено уравнение совместимости пере-
 резьбового соедине-

ия. Для этого получено дифференциальное уравнение 
и-

 значения на-
рузок на витках соединения М16, полученные исполь-

соба расчета, отличаются не более чем на 
.8 процента.  

sb presented in Fig. 4 can be used to determine the 
whole curve 3 (Fig. 6) which expresses the total load on 
the turns - qs(z) = qst(z) + qsb(z). It is necessary to notice 
here that direct summarizing of the maximal turn loads 
caused by tension and bending in the segment Hb (Fig. 6) 
is valid at qs(z) < qy, i.e., if deformation of the turns re-
mains in the elastic state. 

The analytical model of the load distribution in 
the thread caused by threaded joint bending further can be 
used to obtain local stresses in the roots of the stud thread 
for using it in a fatigue durability prediction at the engi-
neering design. 
 
6. Conclusions 
 

1. The relation between deflections of the enga-
ged turns and deviations of the stud and nut cross-sections 
gives the compatibility and further differential equations 
with respect to load distribution in the thread of the threa-
ded joint subject

ding moments M
c

l solution of the differential equation. The values 
of qb(z) and M(z) determined by analytical metod and ob-
tained by numerical (Runge-Kutta) method differ very 
slight – for threaded joint M16 it is 0.8% and 0.28% res-
pectively. 
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