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On the safety prediction of deteriorating structures

A. Kudzys*, O. LukoSeviciené**

*Kaunas University of Technology, Tunelio 60, 44405 Kaunas, Lithuania, E-mail: asi@asi.lt
**Kaunas University of Technology, Studenty 48, 51367 Kaunas, Lithuania, E-mail: olukoseviciene@gmail.com

1. Introduction

The target design life of deteriorating load-
carrying structures and their components must be defined
in an early design stage of buildings, construction works
and technological equipments. The value of this life must
serve as a basis for the selections of materials and struc-
tures. The target design life is related to destruction modes
of materials and structural components and failure conse-
quences. In any case, higher durability requirements are
applied to members which routine or preventive mainte-
nance and repairs require great efforts.

Failures and collapses in load-carrying structures
can be caused not only by irresponsibility of gross human
errors of designers or erectors but also by some condition-
alities of recommendations and directions presented in
design codes and standards. The Standards EN 1990 [1] in
Europe and ASCE/SEI [2] in the USA require that load-
carrying structures to be designed with appropriate degrees
of reliability. These Standards are based on the limit state
concept and, respectively, on the methods of the partial
factor design and the strength or allowable stress design.
However, the structural design practice shows that it is
impossible to verify the safety and economy parameters of
deteriorating structures by using deterministic methods and
their universal factors for loads and material properties.

The reliability degree of deteriorating structures
may be objectively defined only by fully probability-based
concepts and models. Only probabilistic approaches may
allow us explicitly predict uncertainties of analysis models
of these structures. Besides, the probabilistic analysis of
deteriorating members is indispensible in order to predict
their destructions or failures and to avoid of economic and
psychologic losses. However, the mathematical probabilis-
tic formats used in long-term reliability prediction of struc-
tures are based on rather complicated considerations [3-6].
Thus, the engineering modeling of survival probabilities of
structures subjected to aggressive environmental actions
and extreme live and climate loads are still unsolved.

The main task of this paper is to present new
methodological formats on probability-based safety predic-
tions of deteriorating members exposed to permanent loads
and recurrent single or joint extreme service and climate
actions.

2. Resistances and safety margins of deteriorating
members

Multicriteria failure modes and safety of struc-
tural members (beams, slabs, columns, joints) may be ob-
jectively assessed and predicted only knowing survival
probabilities of particular members (normal or oblique
sections, connections) for which the only possible failure
mode exists. Predicted durability parameters for deteriorat-

ing structures depend on chemical diagnosis and the ac-
ceptable risk of serviceability failure associated with the
damage levels and losses. Besides, the predictions of safety
of deteriorating members and their systems will account
for all extreme action combinations. In any case, it is ex-
pedient to divide the life cycle ¢, (Fig. 1) of deteriorating

structures into the initiation, ¢, , and propagation, ¢

in? pr 2
phases [7]. The length of initiation phase is a random vari-
able depending on a feature of degradation process, an
environment aggressiveness and quality of protective cov-
ers. The unvulnerability of structures may be characterized
by the duration of this phase. When the degradation proc-
ess of the members is caused by intrinsic properties of ma-

terials, the phase ¢#,, = 0. The propagation phase is delayed
for structures protected by coats.
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Fig. 1 Degradation function q)(t)(a) and dynamic model

(b) for time-dependent safety analysis: / - unloaded
members, 2 - loaded columns, 3 - loaded beams

The resistance of particular members in the
propagation phase is treated as a nonstationary random
process

R(t)=g(t)R,, = p(t)R, (1)

where R, is the initial value of member resistance, (p(t)

denotes the degradation function depending on the rate of a
resistance decrease induced by an artificial ageing and deg-
radation of materials. This function for corrosion affected
particular members may be presented in the form

olt)=1-alt-1,) 2)

where b defines nonlinearity of the deterioration function
and a is degradation intensity factor. A shape of the deg-



radation function is close to linear (b ~1) and parabolic
(b ~2) when corresponding degradation mechanisms are
steel corrosion and aggressive environmental attacks [8, 9].
However, marine corrosion of steel structures is not linear
function of time [10].

Action effects of structures are caused by perma-
loadsg, sustained ¢,(f) and extraordinary

q.(t)=q(t)-q,(t) components of live loads s(f) and

nent

wind, surf or seismic actions w(s). The annual extreme
sum of sustained and extraordinary live load effects E, (t)

caused by ¢, (t) and ¢, (t) may be modeled as a rectangu-
lar pulse renewal process described by Type I (Gumbel)
distribution of extreme values with the coefficient of varia-
tion &g =0.58 and mean E,, =0.47E ,, where E  is its
characteristic value [11].

It is proposed to model annual extreme snow and
wind action effects by a Gumbel distribution with the mean
values  equal to E,=E,/ (l + ko3 OF, ) and

E..=E, /(1+k0.985Ew), where E, and E,, are the
characteristic (nominal) values of action effects and ks is

the characteristic fractile factor of these distributions [7,
12]. The coefficients of variation of snow and wind ex-
treme loads depend on the feature of geographical area and
are equalto & =0.3-0.7 and ow=0.2-0.5.

The durations of extreme floor and climate ac-
tions are: d, =1-14 days for merchant and 1-3 days for

other buildings, d, =14—-28 days and d,, =8—-12 hours.
Renewal rates of annual extreme actions are equal to
A =1/ year. Therefore, the recurrence number of two
joint extreme actions during the design working life of
structures, ¢, in years, may be calculated by the formulae

n, =1, (dl +d, )ﬂliz 3)

where A, =4, =1/t,are the renewal rates of extreme

loads. Thus, the recurrence numbers of extreme concurrent
live or snow and wind loads during #, =50 years period

are quite actual to n,, =0.2-2.0 and n,, =2.0-4.0. The

bivariate distribution function of two independent extreme
action effects may be presented as their conventional joint
distribution function with the mean E, =E,, +E,, and

1m
the variance 6°E,, =’ E, + o E, [13].
According to probability-based approaches (de-
sign level III), the time-dependent safety margin of deterio-
rating particular members exposed to extreme action ef-

fects may be defined as their random performance process
and presented as follows

Z(t)=g[X(:).0]=0,R(t)-0,E, -6,E, -
-0,E, (1)-0.E,(1)-06,E,(t)=

ww

= 0R(1)-0,E, (1) 0,E,(1)- 0,E, (1) “)

where X(Z) and @ are the vectors of basic and additional

variables, representing respectively random components
(resistances and action effects) and their model uncertain-

E()=E,(t)+E,(t) and E()=E() or

E,(t)=E,(¢). The mean values and standard deviations of

ties;

additional variables of the safety margin are:
6, =0.99-1.04, 06,=0.05-0.10 and 6,, =1.00,
06, ~0.10[11, 12].

Gaussian and lognormal distribution laws is to be
used for member resistances. The permanent actions can be
described by a normal distribution law [13,14]. Therefore,
for the sake of simplified but quite exact probabilistic
analysis of deteriorating members, it is expedient to pre-
sent Eq. (4) in the form

Z(¢)=R.(t)-E) (%)
where
R.(t)=0,R(:)-0,E, (6)

is the conventional resistance of members the bivariate
probability distribution of which may be modeled by
Gaussian distribution

E(t):'glEl(t)"'ezEz(t) (7

is the conventional bivariate distribution process of two
stochastically independent annual extreme effects [15].

Inspite of analysis simplifications, the use of con-
tinuous stochastic processes of member resistances consid-
erably complicates the durability analysis of deteriorating
structures exposed to intermittent extreme gravity and lat-
eral variable actions along with permanent ones. The dan-
gerous cuts of these processes correspond to extreme load-
ing situations of structures. Therefore, in design practice
the safety margin process Eq. (5) may be modeled as a
random geometric distribution and treated as finite de-
creasing random sequence

Z,=R,—E, k=12..n-1n (8)
where
Rc‘k = gok HRRM - HgEg (9)

is the conventional resistance of deteriorating members at
the cut k& of this sequence (Fig. 1) and n is the recurrence
number of single or coincident extreme action effects, £, ,
given by Eq. (7),1.e. E, =6,E,, +6,E,, .

When extreme action effects are caused by two
stochastically independent variable actions, a failure of
members may occur not only in the case of their coinci-
dence but also when the value of one out of two effects is
extreme. Therefore, three stochastically dependent safety
margins should be considered as follows

Zy =R, —Ey.k=12,..n (10)
Z, =R, —Ey.k=12,..n, (11)

Zy=R,—E, =R, —E,—Ey . k=12,..n, (12)

Cl

where the number of sequence cuts n,,is calculated by
Eq. (3).



3. Transformed conditional probability method

For particular and structural members of deterio-
rating structures subjected to extreme action effects, more
than one limit state situations are considered. The number
of these situations is equal to recurrence numbers n, or n,
and n,, of single and coincident extreme action effects,

respectively.
The statistical dependences among failure prob-
abilities of particular members at any time #, or any cut k

of rank sequence and their survival probabilities at previ-
ous extreme loading situations exist. Therefore, the instan-
taneous failure probability of these members at sequence
cut k, assuming that they were safe at cuts [,k —1], may

be presented in the form:
k—
P(z,<0)=P{R, <E,3kel,n]}= P(FkﬂlS,]

where F, denotes the failure event of members at cut &
and S, denotes the event of their survival at previous cut i

of a sequence. Therefore, the instantaneous failure prob-
abilities of particular members at cuts 1,2,3,...,n of their

safety margin sequences are: P(Z, <0)= P(F,)

P(z,<0)=P(F,S,)=P(EN1-F)=P(F,)-
-P(ENF) (13)

P(z,<0)=P(ENS,S))= P(R)- P(ENF)-
-P(ROE )+ P(ENENF) (14)

P(,<0)=P(F,NS,.NS,N-NSNS))=

n=l
=P(F)-2L PENE)+
i=1
~FP(ENEN-NENE) (15)
The time dependent failure probabilities of dete-

riorating particular and individual members as auto-
systems during times ¢,,¢,,%;,...,t, may be expressed as

P(T <t,)=P(2,<0)=P(F) (16)

P(T <t,)=P(Z,<0)+P(Z,<0)= (OFkJ:

= P(F)+P(F,)-P(RNF) (17)

+P(FsﬂFzﬂFl) (18)

S Y PENE)+YY Y PFE,NENF)-

I>k m>I>k

...iP(ﬁFkJ (19)

k=1

Thus, according to probabilistic approaches, the
prediction of time dependent survival probabilities of load-
carrying particular members may be based on the analysis
of decreasing sequences of random safety margins (Fig. 2),
i.e. can be written as

P(T21,)= (ﬂSJ—l— (HFkJ 20)

When the sequence consists of two dependent
cuts, the probability that either or both of two failure
events of a series system occur is expressed by Eq. (17).
An the evaluation of the probability of a second order in-

tersection of failure events F, and F|, ie. P(anFl),

may be carried out by rather uncomfortable for structural
engineers methods of numerical integrations or Monte
Carlo simulation. It is more expedient to use in design
practice the unsophisticated method of transformed condi-
tional probabilities (TCTM). According to its approaches,
the intersection probability

HER)= Pl

where the conditional failure probability

)P(F|F,) @1)

P(R|F, )= P(R)+ p3:[P(R)/ P(F,)-P(R)]  (22)

The indexed correlation factor of two sequence
cuts, p,?, characterizes an effect of their statistical de-

pendence on the intersection probability P(Fzﬂ ) )

P(z,<0)< P(z, <0)< P(z,<0)

Tz {z +{z

P(z,>0)=P(z, >0)=P(z, >0)
Fig. 2 Safety margin sequences with dependent elements

When
P, =0, the conditional, intersection and failure probabili-
ties of members from Egs. (22), (21) and (17) are defined
. PEE)=PE):  PENR)=PEPE):

PRUR)=P(E,)+ P(F)- P(F,)P(F,).

When sequence cuts are fully correlated, i.e.
p>i =1, these probabilities are: P(FI|F2)=P(Fl)/ P(FZ);
AENE)=PF): PEUR)=HE).

When the factor p;? is between 0 and 1, the in-

sequence cuts are independent, i.e.

tersection and failure probabilities by Egs. (21) and (17) of
two cut sequences become as

P(ENF)=PE)PEN+ o3/ PE)-1]] 23)



PEUR)=P(E)+ P(F)- PR )P(F )~
< {1+ o3/ P(7)-1])

Analogically to Eq. (23), the probability of an in-
tersection of three failure events may be presented as

PENENE)=PF ) (£ )P(F, )

A1+ o3/ P(E) -1 {1+ o1/ P(F) 1]} 25)

24

where the correlation factor p,,, ~0.5(py, + ;). The

correlation factor and its bounded index are considered in
Section 5.

4. Instantaneous survival probability

The instantaneous survival probability of particu-
lar members with respect to their single failure mode at
sequence cut k, if they were safe at cuts 1-k-1 i.e.

P(z,>0)=P(S,)=1- (F ﬂSJ, can be modelled us-

ing multidimensional integral as

P(Z,>0)=1-P(2,<0)= [ fy[X,[6]ax

¢(X¢Je)o

For design convenience, the structural safety analysis of
deteriorating members may be based on the limit state cri-
teria R, -E, >0 or R, - (Eqsk +E,, )> 0 and,
R, —(E, +E,)>0 where R, is defined from Eq. (6).

Therefore, the instantaneous survival probability may be
expressed as

P(S,)=P{R, —E,>03 ke[l,n]} (26)

The conventional resistance R, and single ex-
treme action effect E, may be treated as statistically inde-
pendent variables of random safety margins.

P;_. (x)
fo, () F(x)

Probability

£ @)

: >
E., R o R, ™ P( Rrk}Eﬁ )
Fig. 3 Schematic representation of an instantaneous sur-
vival probability analysis

Therefore, the instantaneous survival probability
of deteriorating members can be expressed by convolution
integral as

P(S,)=P{R, > E, 3kel,n] fka F,, (x)dx (27)

where f (x) is the density function of resistance and
Fy, (x) is the cumulative distribution function of their ac-
tion effect (Fig. 3).

5. Long-term survival probability

Decreasing resistance of particular members must
be treated as a nonstationary process. Therefore, it is rather
complicated to define the failure probability of multicut
sequences in easy perceptible manner. However it is fairly
simple to calculate the survival probability of deteriorating
members by TCPM. According to Eq. (20), the survival
probabilities of these members exposed to two, three and
n extreme loading situations may be expressed as follows

P(T21)=P(5S,)=1-PIRUF)=
= P(s,)P(s, ){1 + [%— 1}} (28)
PT>1) P(QSszl—P(ngJ:
- s s s o g1
foletr]

1 ~ §
x{1+pk,1__,k1{Pslnmnskl 1}}x...

X” 1 —
X {1 + pn,l...n1|:P(Sl ﬂ ﬂ S,H j 1:|} (30)

For the sake of simplified but fairly exact prob-
ability-based analysis of deteriorating structures, the condi-
tional  survival  probability of  higher  order

P(Sk |Slﬂ e SH) for particular members may be defined
as the probability P(Sk|Sk71). Therefore, the component

1
1+ pt -
{ *p“---’fl{pisln..nsk_lj

changed by the factor {1+P;ﬁ...k1{

1}} of Eq. (30) may be
;—1 Then
) |

Pr>)= (ms] [T,

X{Hp;f {ﬁlﬂ

Eq. (30) may be rewritten in the form



st gy
x {1 + piﬁ.._nl{m—l}}

where P(S,)...., P(S,,),..., P(S
survival probabilities of members by Eq. (27). The correla-
tion factor of dependent sequence cuts, p,, ., is formed

€2))

) are the instantaneous

from k th row of quadratic matrix of basic coefficients of
correlation

1
Py 1
Pri Pra Peja 1
pnl 10112 pn,kfl Ion,nfl 1

It may be defined as

Prik1 (pkl t Ppy ot Pria )/(k - 1) (32)

The coefficient of correlation of rank safety margin cuts is
calculated from the equation

Pu = COV(Zk’ZI)/(GZk XGZ!):

o*s
~ /| 1+ k
Wk‘ﬁz ( JZR

k

(33)

where Cov(Z,,Z,)and 6Z,,0Z, are an auto covariance and
standard deviations of safety margin values.

Then long term survival probabilities of members
are calculated by Eq. (31), the bounded index, x,, of cor-

relation factors of random multicut sequences may be ex-
pressed as

Xy = P(Sk )[(4-5 + 4pk,1...k—l)/(l _0'98pk,l...k—l)] Vix

~ P(s, J8.5/(1-0.98p,, , ,)] " (34)

For highly reliable load-carrying members, the
instantaneous survival probability P(Sk)zl and its effect
on bounded indices may be ignored.

The acceptability of this index in design practice
is corroborated by Fig. 4, where the position of points for
decreasing sequences with two, three and four cuts is cal-
culated by Monte Carlo simulation method. These points
belong to the safety margin Z, = ¢, R, — M , where ¢, is
its degradation function with reference values 0.97, 0.92,
0.87 and 0.82; R, is the initial bending resistance and

M is the bending moment. The means and variances of its
independent variables are: R,,, =200 kNm,
o’R,= 1600 (kNm)® and M, =60 kNm, o>M =36, 144,
576, 1296 (KNm)®.
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Fig. 4 The indexed correlation factor p* of series systems

versus its basic value p,

When extreme action effects are caused by two
independent loads and three safety margins (10), (11) and
(12) are considered, the long-term survival probability of
particular members as series stochastic systems may be
expressed as

Pﬁzakezaﬁ+ﬁ{%~Q}

1

1
x| 1+ p3,| —-1
{ 3,21(% J:l

where the ranked survival probabilities B, > P, > P, are
calculated by Eq.(31) and the
P31 = 0-5(p31 + ,032).

The survival probability of members may be also
introduced by the generalized reliability index

(35)

correlation factor

p=0{P(T21,)} (36)

where @ () is the cumulative distribution function of the

standard normal distribution. The target reliability index
Puin of the structural members depends on their reliability
classes by considering the human life, economic, social
and environmental consequences of failure or malfunction
[1, 15]. For persistent design situations, the values of 3,
are equal to 3.3, 3.8 and 4.3 for reliability classes RCI,
RC2 and RC3 of structural members. The value of f,,;, for
particular members should be not less. However, for mem-
bers of hyper static structures, it may be decreased to 1.64
[16].

According to TCPM, the total survival probabili-
ties of structural members (beams, columns, plates,
trusses) as series, parallel and mixed microsystems may be
calculated by the equations

37

1



P, =P(SUS.)=R+A —PIP{Hp;f

e

(39)

B :P(Slﬂszﬂsz):

1
:Parl)S 1+p;321 —-1
! |: P3/par

where P, is the greater value from the probabilities P

3/ par

and P, by Eq. (39).

par
6. Numerical example

Consider the long-term survival probability and
reliability index of deteriorating roof steel beams of a scrap
metal shed exposed to atmosphere corrosion conditions
induced by environmental cold, wet and dry actions
(Fig. 5). The indicative design working life of beams is 25
year. The initiation degradation phase of beams #,, =0 and

the degradation function of their bending resistance
o(t)=1-0.00375¢ .

[ Jan) I
——

|

crane

beam |

|

|

|

|

| |
| |
| |
| |
| |
N N N

Fig. 5 Traversing underslung crane

The bending moments of beams M, M, and
M are caused by permanent load G of steel roof struc-
tures and hanging crane crabs, variable loads Q and S of

scrap metals and snow depth. The means and coefficients
of variation of basic variables of a beam safety margins
are: R, =363.5kNm, OR,=0.08; M, =20.0kNm,

oM, =0.10; M, =49.7kNm, oM, =0.20;

M, =50.3kNm, oM, =0.5. The statistics of additional

variables of beam safety margin are: 6., =6,, =1.0,

0’6, =0.0025, c°6,, =0.

The means and variances of the beam parameters are:
(6xR,), =363.5 kNm, o2(0,R,)=(0.08x363.5) +

+363.57x0.0025=1176.2 (kNm)*;

=

10

(6, M,) =20.0 kNm, o*(9,M,)=(0.10x20.0)" =
=4.0 (kNm)?;

(0, M,) =49.7 kKNm,o>(9,M,)=(0.20x49.7) =
=98.8 (kNm)%;

(6,M,), =50.3kNm,
=632.5 (kNm)~.

These parameters are described by normal ( R and

M, ), lognormal (M, ) and Gumbel (M) probability dis-

tributions. The instantaneous and long-term survival prob-
abilities are calculated by Egs. (26) and (31) and the reli-
ability index is defined by Eq. (36). Their decreases in time
are presented in Fig. 6.

a’(6,M,)=(0.50x50.3) =

P35
1

8

09995 4

0.9990 4

09985 4

0.9980

0 5 10 15 20 25 f
Fig. 6 The decreases of instantaneous (/) and long-term (2)
survival probabilities of beams and their reliability
index (3)

According to code recommendations [1], the
minimum value for reliability index of beams is
B, =3.3. Therefore, their technical service life is equal

to 17 years.
7. Conclusion

The prediction of time-dependent safety of dete-
riorating structures subjected to aggressive environmental
conditions and recurrent extreme service and climate loads
can be formulated and solved within unsophisticated prob-
ability-based approaches. It is expedient to base the analy-
sis of survival probabilities and reliability indices of dete-
riorating particular members (sections, bars, connections)
on the concept of random decreasing multicut sequences.
The position of stochastically dependent cuts of these se-
quences is matched with extreme loading situations of
structures.

The method of transformed conditional probabili-
ties (TCPM) may be successfully introduced into the prob-
ability-based design of deteriorating particular and struc-
tural members in a simple and easy perceptible manner.
This method help us predict the safety parameters of struc-
tural members (beams, columns, plate, trusses) as stochas-
tical series, parallel and mixed microsystems.

A closer definition of technical service lives of
deteriorating structural members allows us avoid un-
founded premature replacements and unexpected damages.

The represented methodological formats on sur-
vival probability and technical service life prediction are in
force for deteriorating structures subjected both to single
and joint extreme loads.
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A. Kudzys, O. Lukoseviciené

SILPNEJANCIU KONSTRUKCIJU SAUGOS
PROGNOZAVIMAS

Reziumé

Nagrin¢jamas agresyvios aplinkos ir pavieniy ar
sutampanciy ekstremaliyjy apkrovy staciakampio atsinau-
jinan¢io pulsinio proceso veikiamy konstrukcijy saugos
prognozavimo inzinerinis modeliavimas. Silpnéjanciy ypa-
¢iyjy elementy saugos ribos modeliuojamos atsitiktinémis
mazéjanciomis sekomis. Ilgalaikés konstrukciju islikties
tikimybés prognozavimas remiasi nesudétingu transfor-
muoty salyginiy tikimybiy metodu. Tikimybinj silpnéjan-
¢io elemento projektavima iliustruoja skaitinis pavyzdys.

A. Kudzys, O. Lukoseviciené

ON THE SAFETY PREDICTION OF DETERIORATING
STRUCTURES

Summary

Engineering modeling of safety prediction of the
structures subjected to aggressive environmental actions
and rectangular renewal pulse processes of single and co-
incident extreme loads is considered. The safety margins of
deteriorating particular members are modeled as a random
decreasing sequences. The prediction of long-term survival
probabilities of structures is based on the unsophisticated
method of transformed conditional probabilities. The prob-
ability-based design of deteriorating members is illustrated
by the numerical example.

A. Kymzuc, O. Jlykormesndene

O IIPOTHO3MPOBAHNH BE3OITACHOCTH
OCJIABJAIOINXCA KOHCTPYKII

PeszowMme

PaccmaTpuBaeTcss HMH)XEHEPHOE MOJEINPOBAHUE
MPOTHO3UPOBaHUs 0E30ITaCHOCTH KOHCTPYKIMH, MOJBEPT-
HYTBIX BO3JCHCTBUIO arpeCCUBHOM Cpeibl U MPSIMOYIOJNb-
HBIX BOCCTaHOBJISIIOIIUXCS ITyJbCUPYIOIUX IPOLECCOB
OIMHOYHBIX M COBMELICHHBIX SKCTPEMAalIbHBIX Harpy3ok.
3amac MPOYHOCTH OCJAOJSIONIMXCS YACTHBIX 3JEMEHTOB
MOJAEIUPYETCSl CIIy4alHOM CHIJKAIOLIEHCS TOCIEeI0Ba-
TENbHOCTHIO. IIpOrHo3upoBaHue BEPOATHOCTHOM [OJIIO-
BEYHOCTH KOHCTPYKINI OCHOBAHO Ha HECIIO)KHOM METOJIE
TpaHC(OPMHUPOBAHHBIX YCIOBHBIX BeposTHOCTel. Beposit-
HOCTHOE TPOCKTUPOBAHUE OCHAOJNSIONIErocs JJIEeMEHTa
WUIKOCTPUPYETCA YUCICHHBIM [IPUMEPOM.
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