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1. Introduction 

 

In the past decades, structural health monitoring 

(SHM) has become a multidisciplinary research focus to the 

scientific communities. It attracted a lot of attention, due to 

the fact that engineering structures are commonly designed 

with more complexity and using more sophisticated newly 

invented material productions. Within daily use, the struc-

tures are usually and generally subjected to higher opera-

tional loads and unexpected loading conditions, and a de-

manding for longer lifecycle periods is required. Hence, nu-

merous mechanical, civil and aerospace engineering re-

searchers extensively developed vast of approaches for an-

alysing the structural states that means to evaluate whether 

the structure is damaged or not, in order to prevent the an-

ticipated damage, which might cause a vast loss in human 

daily lives in an inevitable way. Various categories of SHM 

procedures have been developed for analysing the structural 

states. Vibration-based, strain-based, Electrical Impedance-

based, probability-based and statistical based methods have 

been studied and a quantity of papers, reports and books was 

published. Detailed literature review about the SHM can be 

found in [1-2].  

Along with the development history of SHM, vis-

ual inspection approaches, such as penetrating liquids, is the 

commonest and most traditional and available technique, 

which will only be effective in those structures suitable for 

using liquids. Apart from this, taking advantage of the ad-

vancement of the science and technology, local on-line non-

destructive SHM becomes a main trend. And ultra-sound, 

lamb wave, eddy-current, X and Gamma rays, and laser 

measurement have been widely used in SHM. However, 

these advanced technologies normally require high experi-

ence that will largely decide on the quality of damage as-

sessment.  

Within all SHM technologies, the essential issue is 

to explore the interrelation between structural defects/dete-

riorations and those measured data. For this, conventional 

health monitoring and structural assessments have been 

evolved a large amount of outputs. SHM technologies can 

be divided into two directions, namely physical model based 

technologies and statistical model based methodologies. 

Physical model based technologies makes use of finite ele-

ment analysis (FEA), regular experimental verification and 

further model updating is conducted in order to minimize 

the differences between the FEA and experimental measure-

ments. Statistical model based methodologies concentrates 

on pattern recognition algorithms to discriminate the exper-

imental measurements between the responses under intact 

condition and the responses under damaged condition. For 

a review on statistical model based techniques, the reader 

may refer to [1]. 

In SHM, the commonest way is to employ modal 

testing [3]. From modal testing and analysis, frequency re-

sponse function (FRF) are derived and applied to connect 

the structural excitation and dynamic responses. Therefore, 

FRF can be utilized to detect structural defects and deterio-

rations [4-5]. In reference [4], curvature was applied to the 

FRF measured at each location in the structure, and the 

change of FRF curvature was used to detect structural dam-

ages with adopting a 10-degree-of-freedom lumped-mass 

system and I-40 bridge as verification, which demonstrated 

good manifestation in damage detection, localisation and 

quantification. In reference [5], a series of modal parameters 

based damage detection indicators were compared, i.e. 

mode shape, mode shape slope, mode shape curvature, 

mode shape curvature square and damage index. These five 

methods were extended to FRF based damage detection 

analysis, and a free-free beam was simulated and dynami-

cally tested to validate the damage detection methods. It was 

found that curvature based methods outperformed.  

However, in real engineering applications, the 

measurement of excitation could be a big problem as load-

ings applied to the studied object are generally quite com-

plicated. For instance, for a real bridge, apart from traffic 

loading, environmental uncertainties, such as boundary con-

ditions, wind loading, temperature and humidity, still im-

pose lots of influence on the dynamical behaviour of the 

bridge. In this case, avoiding the measurement of excitation, 

i.e. output based only methodologies would be a desirable 

pursue in SHM. Among all output-based methodologies, 

transmissibility, a concept raised decades ago, has become 

increasingly shared in scientific communities for its own 

merit depending on output only. Moreover, especially from 

the end of the 20th century, booming research on transmissi-

bility has been intensively developed [6-14].  

Transmissibility has been put forward in a lot of 

applications such as force reconstruction, FRF estimation 

and damage identification with referable reviews [6-7]. In 

reference [6], a general overview on transmissibility was 

given, and reviews of the generalization of transmissibility 

concept, virtues and restrictions were provided. In reference 

[7], force identification from transmissibility (in displace-
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ments and force) was given. However, this review concen-

trates on the application of transmissibility in identifying 

forces, i.e. the application of transmissibility. A recent and 

more general review on transmissibility history and applica-

tions was conducted in [2], where transmissibility was re-

viewed from both theoretical development and potential ap-

plications points of view. For a general definition and gen-

eralization for transmissibility, the reader may refer to [8].  

In SHM, transmissibility has been used directly [9], 

or incorporated with other approaches, such as neural net-

works [10], discriminant analysis [11] and so on. For in-

stance, in reference [9], transmissibility’s measured along 

the structure were taken into consideration with the modal 

assurance criterion (MAC) and then damage sensitive indi-

cators were constructed. However, this approach did not 

separate the noise-contaminated frequency domain, i.e. the 

noise was also taken into account in the evaluation process. 

For joint working with other approaches, artificial neural 

networks are used in pattern recognition with using trans-

missibility as feature [10]. Mahalanobis’ distance was used 

to reduce the noise influence in transmissibility estimation 

[11]. In addition, transmissibility has also been employed in 

operational modal analysis [12], force reconstruction [13], 

FRF estimation [14] and so on. 

As cited above, even transmissibility based dam-

age identification has progressed with lots of outputs, the 

early stage damage detection is still an open question. This 

is because problems still exist in real engineering applica-

tions when using SHM. For instance, how to analyse the big 

data captured nowadays in real engineering structures for 

intact and damaged states. Similar questions can be raised 

concerning the adaptability of methodologies in SHM, espe-

cially in industrial applications. 

Normally transmissibility based damage detection 

procedures try to seek damage sensitive indicators that di-

rectly serve as measures to separate the structural patterns 

into damaged and undamaged ones. However, when the dif-

ference is small, it will be necessary to find a methodology 

to amplify the changes before and after damages. Among 

the entire machine learning algorithms, auto-associative 

neural network (AANN), raised decades ago [15-16], is a 

widely spread and effective tool for damage detection [17-

18]. The key idea of AANN is to learn the interrelation be-

tween structural responses and damages, and later to use the 

learning capacity to evaluate the new structural pattern, 

when outlier appears, or even damage occurs.  

During last decades, AANN has been widely used 

in SHM [17-25], and it has also been applied in driver oper-

ation modelling [26], speaker verification [27] and so on 

[28]. For application in SHM [17-18], AANN is incorporated 

with other machine learning algorithms, such as factor anal-

ysis and principal component analysis, for detecting struc-

tural damages under environmental varieties. A three-story 

frame aluminium structure was experimented and used to 

draw out the applicability of the proposed damage detection 

procedure. It has been proved that AANN can successfully 

detect damages. In reference [19], AANN is adopted by com-

paring it with other four different methods: simple projec-

tion, principal component analysis, Sammon mapping, and 

outlier method in detecting local fault in a spur gear. It has 

been shown that AANN could provide much benefit in de-

tecting damages. And this idea was repeated taking an In-

formation Theoretic Criterion (AIC) into account in [20]. 

Later AANN was extended to damage detection for wind tur-

bine blades [24-25]. In few years, AANN was adopted for 

analysing environmental and operational variability on 

SHM [21]. Later, AANN was applied to identify potential 

faults in electric motors with combining wavelet transform 

[22]. Then, in reference [23], AANN are employed together 

with generalization techniques of information criterions and 

Bayesian regularization in order to construct three AANN 

models for detecting environmental-tolerant capacity, 

which was later verified by a cable-stayed bridge. And it has 

been proved that the AANN environmental tolerant capacity 

could be improved by early stopping technique, and AANN 

based SHM uncertainty could be reduced with alarming 

threshold.  

As discussed above, AANN proves to be effective 

in SHM, especially in damage detection. In this study, a new 

transmissibility-based technique using AANN is proposed in 

order to detect damage or novelty change. Considering the 

transmissibility method, vibration response and modal pa-

rameters will change due to the damage severity or novelty 

change. Afterwards, for each damage scenario, the transmis-

sibility function of each node will be calculated and indica-

tors to each node will be constructed, which are treated as 

input for AANN. By setting a proper threshold, the proposed 

procedure can predict the new structural pattern related to 

outlier appearance or damage occurrence with a trained 

AANN, which will function as a classifier in a later damage 

detection process. As for verification, a ten-floor numerical 

simulation is analysed in order to demonstrate the manifes-

tation of the proposed method as well as unveil its applica-

bility.  

 

2. Theoretical derivation 

 

2.1. Transmissibility estimation 

 

In structural dynamics, for a linear multiple-de-

gree-of-freedom (MDOF) system, the dynamic equilibrium 

equation can be written by the well-known second order dif-

ferential equation: 

 

( ) ( ) ( ) ( )Mx t Cx t Kx t f t   , (1) 

 

where M, C and K are the mass, damping, and stiffness ma-

trices of the system, respectively, f(t) is the input force vec-

tor and x(t) contains the responses of each DOF of the sys-

tem. 

Herein, for a harmonic applied force at a given co-

ordinate, the transmissibility between point i and a reference 

point j can be defined as:  
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where Xi and Xj are the complex amplitudes of the system 

responses xi(t) and xj(t), respectively. 

Apart from direct calculating by the definition, 

transmissibility has kinds of ways in computation. For ex-

ample, to use FRF is a general method: 
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where k is the excitation point, and H represents the FRF. 

Apart from this, transmissibility can also be calculated by 

auto- and cross- spectrum of the responses, i.e.:  

 

( , )

i ik

i j

j jk

x G
T

x G
  , (4) 

 

where G means the auto- or cross-spectrum. Note here k can 

equal to i and j. Then when k=i or j, auto-spectrum will ap-

pear. Herein, by choosing different reference points, it can 

be compared with the FRF estimation for avoiding the in-

fluence of noise, and then transmissibility coherence (TC) 

can be derived. Detailed derivation of transmissibility is 

given in [6]. In this study, transmissibility is calculated by 

Equation (4).  

 

2.2. Auto-associative neural networks 

 

AANN is an effective pattern recognition, where 

damaged state or undamaged state could also be treated as a 

pattern. Decades ago, the conception of AANN was firstly 

addressed by Kramer [15-16]. The most important charac-

teristic of AANN is that it could capture the interrelationship 

within a set of variables with embedding the correlation be-

tween those variables.  

Commonly AANN is a five-layer perceptron feed-

forward network. Fig. 1 shows the Network architecture of 

the AANN, where five typical layers, i.e. input layer, map-

ping layer, bottle neck layer, de-mapping layer, and output 

layer, are indicated. Note that the number of inputs and out-

puts is the same (in Figure 1, the input layer and output layer 

both have s dimensions), which, thus, gives a possibility to 

use a low dimension of elements to characterize all the in-

puts, and finally gives an estimation of the structural state 

by using the difference between the inputs and outputs. 

Within AANN more hidden layers might be used to improve 

the performance of AANN in pattern recognition. Mean-

while, AANN could be considered as two independent three-

layer neural networks connected in series, i.e. BP neural net-

works. Herein, the first network compresses and mixes the 

N redundant inputs into a smaller number of characteristic 

variables that should reveal the important and characteristic 

features. The second network performs in the opposite di-

rection and regenerates the original N redundant inputs data 

from the compressed information in the bottleneck layer.  

In SHM, algorithms with AANN have numerous 

formulations, however, to all AANN based algorithms, the 

training data is all measured from the undamaged condition 

or operational condition without any damage or deteriora-

tion. The basic functions of AANN are the same functions as 

classifier for the data pattern from the baseline. The major 

difference between them is merely the input data that is the 

characteristic feature of the structure. Then, the testing data 

will be recognized from the data measured under undam-

aged condition. Herein, it is worth mentioning that one 

needs to bear in mind that the testing should be conducted 

under a normal condition, i.e. the condition should not im-

pose a lot of influences to the structural measured responses 

compared with the measurements under undamaged condi-

tion. 
 

 

Fig. 1 Network architecture of the AANN 

 

In AANN, one can construct a structural character-

istic matrix A that may contain s dimensions as input for 

AANN. Conventional SHM may use modal properties as 

characteristic matrix. Here, A represents a general descrip-

tion of structural characteristic that can mean modal proper-

ties or any other modal parameters. However, in this study, 

it means the transmissibility based damage sensitive fea-

tures. In Fig. 1, A means the components in the input layer.  

Herein, it is necessary to give a basic description 

of the AANN working procedure, namely (1) training the 

AANN and (2) predicting the new structure pattern. For the 

first stage, i.e. training stage, a specific number of damage 

scenarios should be used to train the AANN as to learn the 

capacity of recognizing the damaged scenarios from the un-

damaged scenarios. Then, to the predicting stage, new struc-

tural scenarios will be taken into account to test the trained 

AANN, which will perform as a classifier. Note that the 

trained AANN might not perform well in the beginning after 

training that depends on the engineer experience. And atten-

tion also should be paid to the number of nodes in bottleneck 

layer, which should be well chosen. The number of nodes in 

bottleneck should be at least larger than the independent var-

iables of all the characteristics. Otherwise, it will lose some 

characteristic information and imposes big influence in the 

later original data regeneration.  

For testing matrix, A, the error between input and 

output can be described as:  
 

out
d A A  , (5) 

 

where Aout is the output of the AANN in output layer in Fig. 

1 with input A in input layer in Fig. 1, and d means the error 

or damage indicator in our case. In order to estimate whether 

the structure is damaged or not, one needs to set a threshold 

for d as tolerance, for instance, 1%. Those beyond 1% will 

be considered as damaged. Herein, it is necessary to bear in 

mind that if a different error tolerance is chosen, the pre-

dicted results might show some damages in the structure, 

while under another threshold it is undamaged. And the er-

ror tolerance is chosen depending on engineer experience 

and it may be associated with the environmental uncertain-

ties. 

 

3. Damage detection procedure 

 

3.1. Inputs for AANN 

 

The input parameters for AANN are the most essen-

tial part for the algorithm, which should reveal the structural 

dynamic characteristics. Since transmissibility has been dis-

cussed before in the aforementioned sections, herein, one 

indicator upon using transmissibility is developed in order 

Input layer Mapping layer Bottle neck layer De-mapping layer Output layer 

1 

2 

s 
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to enhance the sensitivity of transmissibility associative to 

the structural deterioration or damages. The indicator takes 

the sum of transmissibility along the specific frequency 

range that can be described as:  

 
max

min
,

f

i i jf
TI T df  , (6) 

 

where fmin and fmax are the low and high boundary for the 

integration area. A clear demonstration for this is shown in 

Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 A description for the frequency band 

 

3.2. Damage detection indicator 

 

Damage detection experienced a lot of advance-

ments during last years, and in order to show the feasibility 

of the proposed damage detection procedure, a comparison 

between its performance and previous research outputs is 

presented in this section. In references [29-32], different 

damage detection methods are illustrated. For instance, in 

[29], building stability monitoring and diagnostic procedure 

is described with taking frequency change to detect dam-

ages; in [30], a norm employing the structural properties and 

excitation are constructed and used for identifying structural 

damages; in [31], time-frequency analysis is discussed to 

draw out the damage detection procedure with using power 

spectrum density (PSD); in [32], continuous wavelet trans-

form (CWT) is utilized to analyze the acceleration and ve-

locity response to detect the damages. In this study, the fre-

quency change is taken into consideration as comparison for 

the proposed damage detection procedure, which is indi-

cated as:  

 
d u

i i i
DF f f  , (7) 

 

where DFi means the ith modal frequency difference be-

tween undamaged state and damaged state. And fi mean ith 

modal frequency, ()d and ()u mean the value under damaged 

state and undamaged state, respectively.  

 

3.3. Damage detection flowchart 

 

As for damage detection procedure, those detailed 

steps can be illustrated as follows: 

Step 1: Transmissibility evaluation. Transmissibil-

ity is estimated from Eq. (4) for all measurements. 

Step 2:  Transmissibility   selection.    This  step is  

complicated. It is challenging to select transmissibility for 

lateral analysis, while one possibility is to do transmissibil-

ity selection with dimension reduction approaches. In this 

study, transmissibility is selected by engineering experi-

ence, which will largely affect the final results. 

Step 3: Feature extraction. Transmissibility based 

damage feature is derived from Eq. (6), which will be finally 

taken as inputs for AANN in training and testing. 

Step 4: AANN training and testing. The derived fea-

tures are divided into two parts, i.e. one part is taken for 

AANN training, and another part is used for testing. 

Step 5: Damage indicator calculation. For compar-

ison reason, frequency change for each damage state is cal-

culated referring to the undamaged state. 

Step 6: Results analysis. To confirm whether the 

predicted results are satisfactory or not using the engineer-

ing experience, if not, to re-select the transmissibility as step 

2 might hold great influence in the predicted results. If the 

results are satisfactory, then the analysis is completed. 

 

4. Numerical verification 

 

4.1. Model description 

 

For checking the feasibility of the proposed dam-

age detection procedure, herein, a simulation of ten-floor 

structure is employed as shown in Fig. 3. The masses and 

stiffness’s are: m1= m2 = … = m10 = 1 kg and k1 = k2 = k3 = 

… = k10=104 N/m.  

 

 

Fig. 3 A schematic diagram of the ten-floor model 

 

Note that damage model in this study is simulated 

as stiffness reduction, which is a common model that can be 

found in SHM analysis. Both single and multiple damages 

are numerically analysed. For single damage, two categories 

are simulated where stiffness reduction is introduced to k3 

and k7, separately. For each of them, a stiffness reduction 

from 0% to 50% with an interval of 0.5% is recorded. Then, 

for each single damage in k3 and k7, 100 scenarios are con-

sidered. Therefore, including undamaged scenario, there 

will be a total of 201 scenarios. And 100 of those damaged 

scenarios together with undamaged scenario (in total 101 

scenarios) are taken for AANN training; and the other 100 

damaged scenarios together with undamaged scenario (in 

total 101 scenarios) are taken for AANN testing and predict-

ing. For multiple damaged scenarios, damage is introduced 

to k3 and k7 at the same time, and a stiffness reduction from 

0% - 50% with interval 0.25% is recorded. Thus, there will 

be again 201 scenarios including undamaged scenario. 

Same as before, 100 damaged scenarios together with un-

damaged scenario (in total 101 scenarios) will be taken for 
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AANN training, and the other 100 damaged scenarios to-

gether with undamaged scenario (in total 101 scenarios) will 

be taken for AANN testing and predicting. In addition, in 

order to account for the environmental variability, 2% ran-

dom noise is taken into consideration for the previous dam-

aged scenarios analysis.   

 

4.2. Results discussion 

 

This section will give a discussion of the calculated 

results of the proposed damage detection procedure. 

 

4.2.1. Noisy free scenarios  

 

Fig. 4 shows the error percentage of training results 

for single damage where in total 101 scenarios are taken into 

account. Note that the first scenario is undamaged, second 

scenario to 51st scenario for damage introduced into the third 

floor, and scenario 52nd to 101st are the scenarios for damage 

introduced to the seventh floor.  

From Fig. 4, one can find that the error is under a 

very limit range, i.e. the maximum is under 0.5%, which 

means that the AANN is well trained and well-constructed.  

 

 
 

Fig. 4 Error of trained AANN for 101 scenarios 

 

Fig. 5 shows the predicted results, the damage in-

dicator, ‘d (%)’, for the single damage in k3 of 50 scenarios, 

as well as, undamaged scenario. Note that first scenario 

means undamaged scenario, second scenario to 51th scenario 

are the 50 damaged scenarios for single damage in k3. From 

Fig. 5, one can find that all the fifty damage scenarios are 

successfully detected, as one can find clear difference be-

tween intact scenario and damaged scenarios. Besides, it can 

be also found that ‘d (%)’ of input 3, 4, and 5 enlarge mon-

otonically as the damage severity increases, which might 

suggest that ‘d (%)’ is able to quantify the damage severity.  

Fig. 6 demonstrates the predicted results of damage indica-

tor for single damage in k7 of 50 scenarios, as well as, un-

damaged scenario. Similar to Fig. 5, in Fig. 6 all the fifty 

damaged scenarios are detected successfully. However, for 

small damage severities, it is necessary to zoom in the figure 

to get a clear observation. Comparing Fig. 6 with Fig. 5, one 

can find that the damage indicator of Fig. 6 changes much 

less than that in Fig. 5. This is caused by the input selection, 

i.e. different inputs will have different interrelation with k3 

and k7, respectively. And this will finally determine the pre-

dicted results.  

Fig. 7  shows   the  predicted  results   for multiple 

damages scenario, i.e. damage in k3 and k7 with 100 damage 

scenarios, as well as, undamaged scenario. The first scenario 

is intact, and second scenario to 101th scenario are damaged 

scenarios. From Fig. 7, it can be seen that all the damaged 

scenarios are separated from the undamaged scenario, while 

the damage indicator of second scenario varies slightly com-

pared to that of other damaged scenarios. Herein, it can be 

concluded that if AANN and inputs are well chosen, the al-

gorithm is capable of detecting damages. 

 

 
 

Fig. 5 Prediction of AANN for the single damage in k3 for 

50 damaged scenarios with intact scenario 

 

 
 

Fig. 6 Prediction of AANN for the single damage in k7 for 

50 damaged scenarios with intact scenario 

 

 
 

Fig. 7 Prediction of AANN for the multiple damages in k3 

and k7 for 100 damaged scenarios with intact scenario 

 

Figs. 8 and 9 show the results of DF1 for the single 

damage scenarios and multiple damage scenarios. And from 

Figs. 8 and 9, one can find that all the damaged scenarios 

are successfully identified from the undamaged scenario 

(Scenario 1). And comparing these two figures with Figs. 5, 

6, and 7, both methods show feasibility in detecting dam-

ages.  
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Fig. 8 DF1 for single damage in K3 and K7 

 

 
 

Fig. 9 DF1 for multiple damages in K3 and K7 

 

4.2.2. Noisy scenarios  

 

Figs. 10 and 11 show the damage indicator for sin-

gle damage in k3 and k7 with 2% random noise for 50 dam-

aged scenarios, as well as, undamaged scenario, respec-

tively. From Figs. 10 and 11, it can be seen that all damage 

scenarios can be successfully detected, while for small dam-

age severities, the damage indicator varies slightly, which 

requires amplification for better illustration of the differ-

ences. Same as noise free scenarios, the damage indicator in 

Fig. 10 varies much more than that in Fig. 11. The reason 

behind this is the same as described before, i.e. different in-

put selection will affect the final performance as they have 

different interrelation with k3 and k7, respectively. Herein, 

comparing Figs. 10 and 11, with Figs. 5 and 6, one can find 

that random noise imposes influences to the final results, 

and the small damage severities become challenging to de-

tect.  

Fig. 12 demonstrates the predicted results for mul-

tiple damages in k3 and k7 with 2% random noise for 100 

damaged scenarios with intact scenario. From Fig. 12, it can 

be seen that most of the damaged scenarios can be detected 

while for small damage scenario, it will be challenging to 

detect. Only the damage indicator of input 5 gives a clear 

difference compared with that of undamaged scenario. 

Comparing Fig. 12 with Fig. 7, it can be found that noise did 

not impose as much influence to the single damage as to 

multiple damages. This means that damage severity plays 

more essential role than random noise in the final results 

contribution.  

Figs. 13 and 14 show the results of DF1 for the sin-

gle damage scenarios and multiple damage scenarios with 

2% noise. And from Figs. 13 and 14, all the damaged sce-

narios  are  successfully  identified   from   the   undamaged 

 

Fig. 10 Prediction of AANN for the single damage in K3 for 

50 damaged scenarios with intact scenario with 2% 

random noise 

 

 

Fig. 11 Prediction of AANN for the single damage in K7 for 

50 damaged scenarios with intact scenario with 2% 

random noise 

 

 
Fig. 12 AANN predicted for the multiple damages in K3 

and K7 for 100 damaged scenarios with intact sce-

nario with 2% random noise 

 

 

Fig. 13 DF1 for single damage in K3 and K7 with 2% noise 

 

scenario (Scenario 1). And comparing these two figures 

with Figs. 10, 11, and 12, both methods show feasibility in 

detecting damages.  
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Fig. 14 DF1 for multiple damages in K3 and K7 with 2% 

noise 

 

5. Conclusions  

 

This study illustrated a damage detection proce-

dure using transmissibility together with AANN. Unlike con-

ventional SHM techniques, this damage detection procedure 

only relies on the structural dynamic responses, and the use 

of AANN makes it possible to detect damages once the base-

line is defined. The advantage of this study is that it newly 

introduced the implementation of AANN into transmissibil-

ity based damage detection procedure. This procedure is 

validated using a ten-floor simulated structure taking into 

account random noise. The results showed promising poten-

tial extension in further application of the proposed tech-

nique. Note that AANN and inputs for AANN should be well 

chosen. This can largely determine the capacity of damage 

detection, and further investigation should also be con-

ducted for robustness enhancement. 
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Yun-Lai Zhou, Magd Abdel Wahab 

DAMAGE DETECTION USING VIBRATION DATA 

AND DYNAMIC TRANSMISSIBILITY ENSEMBLE 

WITH AUTO-ASSOCIATIVE NEURAL NETWORK 

S u m m a r y 

In this paper, a transmissibility based damage de-

tection methodology using artificial intelligence is pro-

posed. Structural health monitoring requires accurate dam-

age detection in real engineering while the environmental 

uncertainties make this a challenge. In order to reduce this 

effect, artificial intelligence, such as artificial neural net-

works might be a possible strategy for achieving a better in-

terpretation of the monitored data during operational condi-

tion. In this study, transmissibility is taken into account as 

damage sensitive feature because it accounts for the re-

sponse data only. Then, auto-associative neural network is 

employed for detecting the structural damage and predicting 

its severity. In order to validate our proposed technique, a 

ten-floor structure is simulated and studied. The results 

show good performance in detecting damages. 

Keywords: transmissibility; damage detection; auto-associ-

ative neural network. 
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