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1. Introduction 
 

Generally, shells are curved structures which ex-
hibit significant stiffness against forces and moments. Sci-
entists have paid an enormous amount of attention to 
shells, resulting in numerous theories about their behavior. 
Of different kinds of shells, due to their extensive use in 
rocket and shuttle cones, conical shells have been of espe-
cially importance. Given the limitations of the classic theo-
ries of thick wall shells, very little attention has been paid 
to the analytical solution of these shells. 

Naghdi and Cooper [1], assuming the cross shear 
effect, formulated the theory of shear deformation. Mirsky 
and Hermann [2], derived the solution of thick cylindrical 
shells of homogenous and isotropic materials, using the 
first shear deformation theory. Greenspon [3], opted to 
make a comparison between the findings regarding the 
different solutions obtained for cylindrical shells. Making 
use of Mirsky-Hermann theory and the finite difference 
method (FDM), Ziv and Perl [4], obtained the vibration 
response for semilong cylindrical shells. Using the shear 
deformation theory and Frobenius series, Suzuki et. al. [5], 
obtained the solution of free vibration of cylindrical shells 
with variable thickness, and Takashaki et. al. [6], obtained 
the same solution for conical shells. Applying a three-
dimensional (3D) method of analysis, the free vibration 
frequencies and mode shapes of spherical shell segments 
with variable thickness are determined [7]. A paper was 
also published by Kang and Leissa [8] where equations of 
motion and energy functionals were derived for 3D coor-
dinate system. The field equations are utilized to express 
them in terms of displacement components . Assuming 
that the material has a graded modulus of elasticity, while 
the Poisson’s ratio is a constant, Tutuncu and Ozturk [9] 
investigated the stress distribution in the axisymmetric 
structures. They obtained the closed-form solutions for 
stresses and displacements in functionally graded cylindri-
cal and spherical vessels under internal pressure. However, 
it needs to be pointed out that in deriving and, thus, plot-
ting circumferential stress, Tutuncu & Ozturk made a mis-
take, which was pointed out by Shi et. al. [10] and Ghan-
nad et. al. [11]. Assuming that a heterogeneous system is 
composed of the elements with different properties, in the 
paper [12] the reactions of pipeline systems to shock im-
pact load and the possibilities of the simulation and evalua-
tion of dynamic processes are investigated. Another gen-
eral analysis of one-dimensional steady-state thermal 
stresses in a hollow thick cylinder made of functionally 
graded material (FGM) was obtained [13]. Eipakchi et. al. 

[14], obtained the solution of the homogenous and iso-
tropic thick-walled cylindrical shells with variable thick-
ness, using the first-order shear deformation theory 
(FSDT) and the perturbation theory. The stress state of 
two-layer hollow bars in which they are exposed to axial 
load is analyzed [15]. The layers are made of isotropic, 
homogeneous, linearly elastic material, and they are con-
sidered as concentric cylinders. Assuming that the material 
properties vary nonlinearly in the radial direction and the 
Poisson’s ratio is constant, Zamani Nejad and Rahimi [16], 
obtained closed form solutions for one-dimensional steady-
state thermal stresses in a rotating functionally graded 
pressurized thick-walled hollow circular cylinder. A com-
plete and consistent 3D set of field equations has been de-
veloped by tensor analysis to characterize the behavior of 
FGM thick shells of revolution with arbitrary curvature 
and variable thickness along the meridional direction [17]. 
Zamani Nejad and Rahimi [18], obtained stresses in iso-
tropic rotating thick-walled cylindrical pressure vessels 
made of functionally graded material as a function of radial 
direction by using the theory of elasticity. 

In the present study, the general solution of the 
thick truncated conical shells will be presented, making use 
of the FSDT. The governing equations, which are a system 
of ordinary differential equations with variable coeffi-
cients, have been solved analytically using the matched 
asymptotic method (MAM) of the perturbation theory. 

  
2. Analysis 
 

In the classical theory of shells, the assumption is 
that the sections that are straight and perpendicular to the 
mid-plane remain in the same position even after deforma-
tion. In the first-order shear deformation theory, the sec-
tions that are straight and perpendicular to the mid-plane 
remain straight but not necessarily perpendicular after de-
formation and loading. In this case, shear strain and shear 
stress are taken into consideration.  

In Fig. 1, the location of a typical point m, , 
within the shell element may be determined by R and z, as    

( )r

( )r R x z  (1) = +

Rwhere  represents the distance of middle surface from 
the axial direction, and z is the distance of typical point 
from the middle surface. 

In Eq. (1), x  and z must be within the following 
ranges 
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where  and  are the thickness and the length of the 
cone.  

h L

( )R x  and inner and outer radii  of the cone 
are as follows (Fig. 1) 
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( )( )
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The general axisymmetric displacement field 

( , )x zU U , in the first-order Mirsky-Hermann's theory could 
be expressed on the basis of axial displacement and radial 
displacement, as follows 

( ) ( )
( ) ( )

x

z

U u x x z
U w x x z

φ
ψ

= + ⎫
⎬= + ⎭

 (4)  

where  and  are the displacement components of 
the middle surface. Also, 

( )u x ( )w x
( )xφ  and ( )xψ  are the functions 

used to determine the displacement field. 
 

 
 

Fig. 1 Geometry of the cone 

The strain-displacement relations in the cylindri-
cal coordinates system are 
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In addition, the stresses on the basis of constitu-
tive equations for homogenous and isotropic materials are 
as follows 
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  (6) 

where iσ  and iε  are the stresses and strains in the axial 

( )x , circumferential ( )θ , and radial ( )z  directions. υ  and 
 are Poisson’s ratio and modulus of elasticity, respec-

tively. 
E

The normal forces ( ), ,x zN N Nθ , shear force 

( )xQ , bending moments ( ),xM Mθ , and the torsional 

moment ( )xzM  in terms of stress resultants are 
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On the basis of the principle of virtual work, the 
variations of strain energy are equal to the variations of the 
external work as follows 

U Wδ δ=  (11) 

where U  is the total strain energy of the elastic body and 
 is the total external work due to internal pressure. The 

strain energy is 
W

( )

 ,  ( )

1
2 x x z z xz xz

U U dV dV rdrd dx R z dzd dx
V

U θ θ

θ θ

σ ε σ ε σ ε τ γ+ + +

∗ ⎫= = = +∫∫∫
⎪⎪
⎬

∗ ⎪=
⎪⎭

  (12) 

and the external work is 

( ) ,  
2i

S

x x z z

hW dS dS r d dx R d dxf u

f u P U PU

θ θ
⎫⎛ ⎞= = = −∫∫ ⎪⎜ ⎟

⎝ ⎠ ⎬
⎪= + ⎭

  (13) 
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where xP  and zP  are components of internal pressure P  
along axial and radial directions, respectively. 

The variation of the strain energy is 

( )
2 /2

0 0 /2
1

L h

h

U zU R x dzd
R

π

δ xdδ θ
−

∗ ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ∫ ∫     (14) 

The resulting Eq. (14) will be 

( ) (
/2

0 /22

L h

x x
h

U R x θ θ
δ σ δε σ δε
π −

= +∫ ∫ +    

) 1z z xz xz
z dzdx
R

σ δε τ δγ ⎛ ⎞+ + +⎜ ⎟
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  (15) 

and the variation of the external work is 

( )
2

0 0 2

L

x x z z
hW P U P U R dx

π

dδ δ δ ⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∫ ∫ θ   (16) 

The resulting Eq. (16) will be 

( )
02 2

L

x x z z
W hP U P U R dxδ δ δ
π

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∫    (17) 

Substituting Eqs. (5) and (6) into Eqs. (15) and 
(17), and drawing upon calculus of variation and the vir-
tual work principle, we will have  

( )

( )

( )

( )

2

2 2

2

2 2

x x

x x x

x z
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d hRN P R
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θ
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⎬
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⎪
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And the boundary conditions are 

( )
0

0
L

x x x xzR N u M Q w Mδ δφ δ δψ⎡ ⎤ =+ + +⎣ ⎦   (19) 

Eq. (19) states the boundary conditions which 
must exist at the two ends of the cone. 

In order to solve the set of differential Eqs. (18), 
forces and moments need to be expressed in terms of the 
components of displacement field, using Eqs. (5) to (10). 

In Eqs. (18), it is apparent that  does not exist, 
but 

u
du dx  does. In the set of Eqs. (5), du dx  is needed to 

calculate displacements. Taking du dx  as , and integrat-
ing the first equations in the set of Eqs. (18) 

v

02x x
hRN P dx CR⎛ ⎞= − +−⎜ ⎟

⎝ ⎠∫         (20) 

Thus, set of differential Eqs. (18) could be de-
rived as follows 

[ ] { } [ ]{ }( )

[ ] { } [ ]{ } { }

{ } ( ) ( ) ( ) ( ){ }
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 (21) 

The set of Eqs. (21) is a set of linear non-
homogenous equations with variable coefficients. The gen-
eral method for solving these equations is the Frobenius 
method, which requires approximating displacements in 
terms of power series which are functions of x , substitut-
ing in the respective equations and applying boundary 
conditions in order to calculate the constants. 

It is usually the case that the convergence of these 
series involves numerous terms. For instance, in paper [5], 
50 terms and in paper [6], 100 terms are considered. In the 
present paper, MAM of the perturbation theory has been 
used to solve these equations.  

 
3. Analytical solution for homogeneous truncated  

conical shell 
 

We assume that Young’s modulus and the Pois-
son’s ratio are constant. 

In order to calculate the matrices 
4 4iA
×

⎡ ⎤⎣ ⎦  in the set 
of Eq. (21), the stress resultants, obtained in terms of dis-
placement field, are substituted in Eqs. (7) to (10), and 
integrated. 

Thus, forces and moments are obtained as follows 
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where K  is the shear correction factor that is embedded in 
the shear stress term. It is assumed that in the static state, 
for conical shells 5 6K =  [19]. The parameters μ  and α  
are as follows 

( )1 2 2
2

2

hR
K , ln

hR

υ
μ α

⎛ ⎞+⎜ ⎟−
= = ⎜ ⎟

⎜ ⎟−⎜ ⎟
⎝ ⎠

  (26) 

The coefficients matrices [ ]4 4iA
×

, and force vec-

tor { }F  are obtained by substituting Eqs. (22) to (25) into 
Eqs. (18) 
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Given that the set of differential equations (21) do 
not have exact solutions, for the purpose of solving, MAM 
of the perturbation theory has been used, in which the con-
vergence of solution is fast.  

Solving the equations with variable coefficients 
gives rise to solving a system of algebraic equations and 
two systems of differential equations with constant coeffi-
cients. These systems of equations have the closed forms 
solutions. To accomplish this, making use of the character-
istic scales, the governing equations are made dimen-
sionless  

1

x zx   ,          z
L h
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Substituting dimensionless parameters the set of 
Eqs. (21) is 
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where 

du duv
dx dx

ε
∗

∗= =   (34) 

Hence, 

1u vdx C
ε
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The coefficients matrices , and force vec-

tor 

*

4 4iA
×
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∫

⎪
⎬
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where the parameters are as follows 

* 0
0 2
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2

1
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1
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C
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h
hR R

ln ln
hR R

υμ

α
∗

∗
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⎪
⎪⎛ ⎞ ⎛ ⎬+ +⎜ ⎟ ⎜ ⎪= =⎜ ⎟ ⎜ ⎪⎜ ⎟ ⎜− −⎜ ⎟ ⎜ ⎪⎝ ⎠ ⎝ ⎭

⎞
⎟
⎟
⎟⎟
⎠

  (41) 

The set of Eqs. (33) is singular. Therefore, its so-
lution must be considered in the area of boundary layer 
problems. For the purpose of solving, MAM of the pertur-
bation theory has been used. As boundary conditions are 
clamped-clamped, one lies in  and the other in 

. So, the solution of the problem contains an outer 
solution away from the boundaries and two inner solutions 
near the two boundaries  and  [20]. 

* 0x =
* 1x =

* 0x = * 1x =
 

4. Results and discussion 
 

The analytical solution described in the preceding 
section for a homogeneous and isotropic truncated conical 
shell with  mm,  mm,  mm and 

 mm will be considered. The Young's Modulus 
and Poisson’s ratio, respectively, have values of 

 GPa and 

40a = 30b = 20h =
400L =

200E = 0.3υ = . The applied internal pressure is 
 MPa. The truncated cone has clamped-clamped bound-

ary conditions. 
80

Fig. 2 shows the distribution of axial displace-
ment at different layers. At points away from the bounda-

ries, axial displacement does not show significant differ-
ences in different layers, while at points near the bounda-
ries, the reverse holds true. The distribution of radial dis-
placement at different layers is plotted in Fig. 3. The radial 
displacement at points away from the boundaries depends 
on radius and length. According to Figs. 2 and 3, the 
change in axial and radial displacements in the lower 
boundary is greater than that of the upper boundary and the 
greatest axial and radial displacement occurs in the internal 
surface (z h 2)= − . Distribution of circumferential stress 
in different layers is shown in Fig. 4. The circumferential 
stress at all points depends on radius and length. The 
circumferential stress at layers close to the external surface 
is negative, and at other layers positive. The greatest 
circumferential stress occurs in the internal sur-
face ( 2z h )= − . 

 

 
 

Fig. 2 Axial displacement distribution in different layers 

 
 

Fig. 3 Radial displacement distribution in different layers 

 
 

Fig. 4 Circumferential stress distribution in different layers 

Fig. 5 shows the distribution of shear stress at dif-
ferent layers. The shear stress at points away from the 
boundaries at different layers is the same and trivial. How-
ever, at points near the boundaries, the stress is significant, 
especially in the internal surface, which is the greatest. 

In Figs. 6-9, the effects of the changes in tapering 
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angles with different values of a  on axial displacement, 
radial displacement, circumferential stress, and shear stress 
will be considered. 

 

 
 

Fig. 5 Shear stress distribution in different layers 

The distribution of axial displacement in the inner 
surface of the cone is shown in Fig. 6. The greater the ta-
pering angle, the greater the displacement, which is sig-
nificant. In cones with small tapering angles, the greatest 
axial displacement occurs in the lower boundary. The lar-
ger the tapering angles, the greater the axial displacement 
in the lower boundary and in the middle surface of the 
cone. The changes in the middle surface are the greatest. 

 

 
 

Fig. 6 Axial displacement distribution along inner surface 
with different tapering angles  

 
 

Fig. 7 Radial displacement distribution along inner surface 
with different tapering angles 

The distribution of radial displacement in the in-
ner surface of the cone is shown in Fig. 7. The greater the 
tapering angle, the greater the radial displacement. The 
greatest radial displacement occurs in the lower boundary.  
In cones with small tapering angles, the greatest axial dis-
placement occurs in the lower boundary. The larger the 
tapering angles, the greater the axial displacement in the 
lower boundary and in the middle surface of the cone. The 

changes in the middle surface are the greatest. In a like 
manner, the distribution of the circumferential stress in the 
inner surface is illustrated in Fig. 8. As this figure suggests, 
the greater the tapering angle, the greater the circumferen-
tial stress. The distribution of shear stress is shown in 
Fig. 9. According to this figure, the shear stress at points 
away from the boundaries is insignificant, and at boundary 
layers the changes in tapering angles do not have a signifi-
cant bearing on the shear stress. 

 

 
 

Fig. 8 Circumferential stress distribution along inner sur-
face with different tapering angles 

 
 

Fig. 9 Shear stress distribution along inner surface with 
different tapering angles 

5. Conclusions  
 
In this study, the analytical solution of a thick 

homogenous and isotropic conical shell is presented, mak-
ing use of the FSDT. In line with the energy principle and 
the FSDT, the equilibrium equations have been derived. 
Using the MAM of the perturbation theory, the system of 
differential equations which are ordinary and have variable 
coefficients has been solved analytically. The axial dis-
placement in thick conical shells at points away from the 
boundaries depends more on the length rather than the ra-
dius, whereas at boundaries, this depends on both length 
and radius. The radial displacement at all points in a coni-
cal shell depends on the radius and the length. The circum-
ferential stress at different layers depends on the radius and 
the length. These changes are relatively great. The greatest 
values of stress and displacement belong to the inner sur-
face. The shear stress at points away from the boundaries is 
insignificant, and at boundary layers it is the opposite. The 
axial displacement, radial displacement, and circumferen-
tial stress are heavily dependent on tapering angles and any 
change in the tapering angle brings about a change in them. 
However, the shear stress does not undergo similar 
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changes with changes in tapering angles. 
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M. Ghannad, M. Zamani Nejad, G. H. Rahimi 

TAMPRIŲ STORŲ ASIMETRINIŲ NUPJAUTOS 
KŪGINĖS FORMOS KEVALINIŲ STRUKTŪRŲ 
ANALIZĖ TAIKANT PIRMOS EILĖS ŠLYTIES 
DEFORMACIJOS TEORIJĄ 

R e z i u m ė  

Šiame straipsnyje, remiantis pirmos eilės šlyties 
deformacijos teorija (FSDT) bei virtualaus darbo principu, 
sudarytos diferencialinės lygtys, išreiškiančios asimetrinius 
nupjautus kūginės formos storus kevalus. Matematinis 
modelis išreiškiamas įprasta diferencialinių lygčių su kin-
tamaisiais koeficientais sistema. Taikant sužadinimo (per-
turbacijos) teorijos suderintąjį asimptočių metodą (MAM), 
šios lygtys gali būti transformuojamos į algebrinių lygčių 
sistemą ir dvi diferencialinių lygčių sistemas su pastoviais 
koeficientais. Sudaryta nauja lygčių sistema turi glaustos 
formos sprendinį. Ji tinkama esant skirtingam kevalo kū-
giškumui, poslinkiams ir įtempiams spinduline ir išilgine 
kryptimi. 

M. Ghannad, M. Zamani Nejad, G. H. Rahimi 

ELASTIC SOLUTION OF AXISYMMETRIC THICK 
TRUNCATED CONICAL SHELLS BASED ON FIRST-
ORDER SHEAR DEFORMATION THEORY 

S u m m a r y 

In this paper, based on first-order shear deforma-
tion theory (FSDT), and the virtual work principle, the 
differential equations governing axisymmetric thick trun-
cated conical shells have been derived. The governing 
equations are a system of ordinary differential equations 
with variable coefficients. Using the matched asymptotic 
method (MAM) of the perturbation theory, these equations 
could be converted into a system of algebraic equations 
and two systems of differential equations with constant 
coefficients. The derived systems of equations have closed 
form solutions. For different conical angles, displacements 
and stresses along the radius and length have been plotted. 
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M. Ганнад, M. Замани Неяд, Г. H. Рагими 

УПРУГОЕ РЕШЕНИЕ АСИММЕТРИЧНЫХ 
УСЕЧЕННЫХ ТОЛСТЫХ ОБОЛОЧЕК 
КОНИЧЕСКОЙ ФОРМЫ ПРИМЕНЯЯ ТЕОРИЮ 
СДВИГА ПЕРВОГО ПОРЯДКА 

Р е з ю м е 

В статье, основываясь на теорию сдвига пер-
вого порядка (FSDT) и принцип виртуальной работы 
составлены дифференциальные уравнения, описы-
вающие асимметричные усеченные толстые оболочки 
конической формы. Математическая модель составле-

на при помощи системы дифференциальных уравне-
ний с переменными коэффициентами. Используя со-
гласованный асимптотический метод (МАМ) из теории 
возбуждения (пертурбации), система уравнений 
трансформирована в систему алгебраических и диффе-
ренциальных уравнений с переменными коэффициен-
тами. Новая система уравнений сжатой формы подхо-
дит для оболочек разной конусности, для определения 
сдвигов, перемещений и напряжений, возникающих в 
радиальном и осевом направлениях. 
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