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1. Introduction

Solid mechanics, which includes the theories of
elasticity and plasticity, is a broad discipline, with experi-
mental, theoretical, and computational aspects [1]. The
theory of yield plasticity does not fully satisfy experimen-
tal results. Zilinskaité and Ziliukas in [2] presented a the-
ory of general relation between stresses and deformation in
elastic-plastic bodies and indicated the importance of inner
material processes. A mathematical model for two-layer
axially loaded cylindrical bars is presented by Partaukas,
Bereisis [3]. The dynamic overloading and influence of
kinetics on steel fracture and yield is discussed by Chau-
sov, Pylypenko [4]. Dependence of column deformations
on bending and axial forces is nonlinear if yielding stresses
are attained in some cross-sections of the column. The ap-
proximate plastic-hinge approach for steel frames is pre-
sented by Powell, Chen [5], Gong [6, 7]. A method for
elasto plastic large-deflection analysis with plastic hinges
at midspan and two ends is proposed by Chen and Chan
[8]. The empirical approximation dependences are depicted
by Xu et al [9]. All these graphs are similar one to another
and display only principle characteristics of real depend-
ence.

In this paper the dependence of a column rotation
and axial displacement on axial force N and bending
moment M is investigated. The rotation and transverse
lateral deflection, perpendicular to the column, is examined
in [10]. The strain in the column is deduced in a similar
way as the curvature and then longitudinal displacement is
calculated by integrating with respect to longitudinal coor-
dinate z.

An elastic-perfectly plastic stress o dependence
on strain ¢ is assumed (continues lines Fig. 1). Displace-
ments of the column, deduced from this assumption, will
approximately present the reality for the first loading of N
and M . These calculations have to be corrected for an
unloading or reloading of the column: a residual-stress
distribution ([1], p. 236) and some other factors should be
taken into account. The linear hardening of the mild steel
(the dotted o—¢ line for o >0, in Fig. 1) more ade-
quately depicts the real stress-strain relation, but in this
case analytic approximation of the elastic and the inelastic
(o >0,) stress domains in every cross-section of the col-
umn is a complicated problem. The concepts of the ulti-

mate stress distribution and the plastic hinge lose their
meaning also.

2. Curvature and axial strain

Stresses in cross-section of a column can attain
yielding value in both sides or only one side of the cross-
section when the column is compressed and bended
(Fig. 1). The cross-section is assumed to have two symme-
try axis x, y, while width &, of the flange with respect to

width at the web 24 is neglected [11]. The influence of
shear and buckling are neglected also.
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Fig. 1 Column cross-section, stresses and deflections
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where A, is domain where stresses o=0,<0,, 4, is
yield domain of the cross-section.

After integration of o from Eq. (1) over the
whole cross-section the resultant force N is determined,
after the integration of product o-x over the whole cross-

section moment M is deduced. If equality q):Z_u is ap-
x
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plied, the curvature

— and strain &, can be presented in
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two equations, and then
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where S, is statical moment of the area 4,, [, is mo-

ment of inertia of the same area with respect to y axis. The
modified area A,,, = 4,, — 4, , modified statical moment

Sy =Sy, =S, where 4, , S,,
sion yield area, 4, , S, the tension yield area. When
then

s correspond the compres-
cross-section is in single-sided yield region
A4, =38, =0 and equations can be simplified [10].

If the web area A4 =0,b and the whole area of
cross-section A4 =24, +26h , then the shape coefficient is

g=2A4/A. 1If dimensionless parameters o =—"—,
Oy
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K, = AYZ are applied, then solution of the equations (2)

can be presented
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When the area of plasticity 4, >0 then

Sy =0 and S, — 0, therefore Eq. (2) approaches the
classical equations
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The dimensionless parameters for elastic defor-
mations K, =1, K, =K, =K; =0, but K, =(1+2q)/3,
E d Eh d’
consequently Eq.(3) are ——W:a, —hd l; = 35 L If
o, dz o, dz= 142q
moment in any cross-section of the column
M, =M,(1-&), where the maximal moment M, = FH ,
then f=p,(1-¢), E=z/H, f,=M,/Ahoc, , where H

is height of the column.
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dimensionless coordinate &. The interval [0,4,]
corresponds to the double-sided yield region,
[£,,& ] —to the single sided yield region. Parameters

g=05,a=02, B,=0.7

Displacements of the highest point w(H ), u(H)

can be worked out integrating Eq. (2) or Eq.(3). In Fig. 2.

the dependence of &, _dw on dimensionless coordinate
zZ

E=z/H is depicted. In elastic deformation region the

strain &, =const, but when yield stresses are reached

some polynomial approximations are determined and inte-

grated with respect to & (Fig. 2).

The axial w(z) and lateral u(z) displacements
of a column with the plastic deformations can be compared
with displacements w, (z) and u,(z) of the same column
and the same forces N, F applied, but yield stresses as-
sumed o, — . The displacement ratios for the highest
point w(H)/w,(H) show influence of plasticity and are
equal identically to unity in the elastic state regions (Fig.3.)

If  plastic  deformations are  realized
w(H)>w,(H), u(H)>u,(H) both axial and lateral
displacements depend on forces N and F .

If displacements of the highest column point
w(H), u(H) are compared with the same constant length
value, independent on N and F (it can be 4 for exam-
ple), dependences in elastic and plastic regions are differ-
ent. Integration of the classical equations (4) gives the de-
pendence of axial displacement on dimensionless axial
force o and dependence of lateral displacement on di-
mensionless bending moment /

Eh W(H)
o,H h -

En’ u(H) p,
“o,H h 1+2g

In the plastic region w(H) depends on N and
F,and u(H) also depends on N and F (Fig. 4).
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Fig. 3 Dependence of displacement ratio

a- w(H)/w,(H),b- u(H)/u,(H) on axial force
a=N/N, and bending moment S=M/Nh
when the shape factor ¢ =0.3

In Figs. 2 - 4 lines f, present the border of elastic
state region, B, is plastic hinge, f, separates the single-

sided and double-sided yield regions.
The lines of equal deformation

w(H )= const are parallel in elastic stress region (Fig. 4,

axial

a), but distances between these lines are decreasing in the
plastic region when dimensionless moment f = const .

Dependence of w(H) on moment £ when a = const

also can be observed in the plastic region. Decreasing of
distances between the lines w(H )= const is the evidence

of increasing of the deflections when axial force N on
bending force F or both forces increase. The same con-
clusions can be made about the dependence of lateral de-
flection u(H) in plastic region (Fig. 4, b). Naturally the

lines in elastic region are parallel to the horizontal « axis,
but in the plastic region the dependence on F and N also
can be observed. The parameter of shape ¢ influences on

the distances between the lines w(H)=const,
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on axial force a=N/N, and bending moment
B =M/N,h when the shape factor ¢ =0.3

u(H )= const , but has no fundamental influence on pat-

tern of the dependences.

3. Complex dependence of axial and transverse
displacements

When plastic deformations take place axial and
transverse displacements of the highest point of the column
depend not only on axial force N and transverse force F

correspondingly, but axial displacement w(H ) also de-

pends on transverse force F and transverse displacement
u(H) depends on axial force N . Dependence of the plas-

tic curvature ¢, on bending moment M is modeled by the

equation [12]

g, ¢ (M-Mm, )
aM M, —M,\ M, -M

The plastic strain ¢, is defined by the equation



dgl’ _ p (N_NY ]"”
dN  N,-N,\N,-N
Some dependences of curvature on both moment

and axial force are presented by Gong [5, 6], Xu et all [8].
In all these equation N,, M, are initial yield force and

moment, N,, M, are full yield force and moment. These

values correspond to the dimensionless parameters f,, [,
(Fig. 3).
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Fig. 5 Dependence curves of a- (w-w,)/w, and
b- (u—u,)/u, on (N—NY)/(NP—NY) when

M = const

Generally the dependence of axial deflection w
on axial force N and the dependence of transverse deflec-
tion ¥ on moment M = FH are considerably more ex-
pressed than the dependence of w on moment M or of u
on axial force N . The dependences of w on N and u on
M in the plastic region are in some sense an extension of
the linear dependences Eq. (4) and can be referred to as
direct, while the dependence of N on u,or M on w as
complementary.

All lines of the direct dependence display larger
deflections for larger parameter S (dependence of N on
w) or parameter  (dependence of M on u). The com-
plementary dependence lines in Fig. 5 present inverse de-
pendence for parameter £ while the dependences of mo-

ment M on w are more complicated (Fig. 6).

When ¢=0.5 and « >0.5 the direct dependence
lines do not depend on « , but the lines depend highly on
a if 0<a<0.5 (Fig. 6).

When ¢=0.5 and 0< 4<0.5 the complemen-
tary dependence lines do not depend on S, but the lines

depend highly on g if £>0.5 (Fig. 5).
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The axial internal force N of a column is a con-
stant along the length of the column, but bending moment
M is not constant. These dependences and system of Eq.
(3) suggest that complex dependences N =N (w,u),

M =M (w,u) develop.

4. Conclusions

1. Both transverse u and axial w displacements
of a column increase infinitely when the values of axial
force N and bending moment M approach the limit line
f; , that is, the plastic hinge.

2. Dependence of the axial deflection w on axial
force N and transverse deflection u on transverse force
F is linear in the elastic deformation state and remains
dominant, but not linear, in the elasto-plastic region. These
dependences can be referred to as direct.

3. The complementary dependences of w on F
and u on N are in general agreement with the direct de-



pendences, but complementary dependence lines have
many differences from the direct dependence lines when
variety of the dominant force ( N = const or F =const) is
examined.
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V. Kargaudas, N. Adamukaitis
LENKIAMU IR GNIUZDOMU KOLONU JEGU IR
POSLINKIU PRIKLAUSOMYBE ESANT
PLASTISKOMS DEFORMACIJOMS
Reziumé

Nustatyta kolonos kreivio ir asinés deformacijos

priklausomybé nuo asinés jégos ir lenkimo momento, kada
kai kuriuose skerspjiiviuose yra plastiniy deformacijy.

Skaiciuojami iSilginiai kolonos tasky poslinkiai. Dél plas-
tiniy deformacijy iSilginiai poslinkiai priklauso ne tik nuo
aSinés jégos, bet ir nuo lenkimo momento. ISilginés defor-
macijos priklausomybé nuo asinés jégos ir skersinés defor-
macijos priklausomybé nuo lenkimo jégos yra dominanti-
nés elastinéje-plastingje srityje, bet atsirandanti papildoma
iSilginés deformacijos priklausomybé nuo lenkimo jégos ir
skersinés deformacijos priklausomybé nuo asinés jégos
taip pat tiriama $iame straipsnyje. Sios priklausomybiy
linijjos kinta keiciantis kolonos skerspjiivio formos para-
metrui.

V. Kargaudas, N. Adamukaitis

POST-ELASTIC FORCE-DISPLACEMENT
DEPENDENCE OF BENT AND COMPRESSED
COLUMN

Summary

Dependences of a column rotation and axial strain
on axial force and bending moment are deduced when
plastic strain are in some cross-sections. When post-elastic
deformation are in the column the axial displacements de-
pend not only on the axial force but also on the bending
moment. Dependences of axial deformation on axial force
and transverse deformation on bending force are dominant
in the elasto-plastic region, but the complementary de-
pendence of the axial deformation on the bending force
and the dependence of the transverse deformations on the
axial make themselves evident and are investigated in this
paper also. These lines of dependences vary with the cross-
section shape factor.

B. Kapraynac, H. Anamyxaiituc

3ABUCHUMOCTb MEX]TY CUJION Y CMEIEHUEM
JJ UBTUBAEMBIX 1 CCKUMAEMBIX KOJIOHH
IMPU TNTACTUYECKUX AEOOPMALIUAX

PeszowMme

OmnpeneneHa 3aBUCUMOCTh KPUBU3HBI M ITPOAOIIb-
HOM OTHOCHTENBHON nedopmamuu KOJIOHHBI OT IMPOJOJIb-
HOW CHIJIBI M M3TMOAIONIET0 MOMEHTA, KOT/Ia B HEKOTOPBIX
CEUCHHUAX KOJIOHHBI BO3HUKAIOT IIacTHYeCKue jaedopma-
ouu. Brraucnsarores MMPOJOJBHBIC CMEIICHUA TOYEK KOJIO-
HHBIL. M3-3a uiacTruueckux aedopmMaliiil mpooabHbIC CMe-
HICHUA 3aBUCAT HE TOJIKbBO OT C)I(HMaIOH_ICfI CHUJIBI, HO U OT
W3rHOaroNero MOMEHTA. 3aBUCHMOCTH MPOJOJIBLHOU Jie-
(dopMar OT MPOJOIBHOM CHIIBI U TMOMEpPEeYHOH aedop-
MaIiH OT U3THOArOIIeH CHITBI SIBISETCS Mpeodanaromnieii B
YOPYro-IUIaCTUYECKOW 30HE€, HO BO3ZHUKAIOILKE IOIMOJIHU-
TEJNBHBIC 3aBICUMOCTH TIPOIOIBHON JAe(opMaIiu OT U3rH-
Oaroreil CMIIbl W TOMEePevYHOr eopMaIui OT MPOJ0IIb-
HOM CHUJIBI TAKXKE UCCIENYIOTCS B 9TOU cTaThe. JIMHUM 3THX
3aBUCUMOCTEH M3MEHSIOTCS NpU U3MEHEHUM Mapamerpa
(hOpMBI TIOTIEPEYHOTO CCUCHUSI.
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