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1. Introduction

At present engineers are often faced with the task
of designing thin-walled branched structures working un-
der conditions of intensive heat interchange with the envi-
ronment. In the junction zone of the plates of such struc-
tures, great temperature oscillations take place, which has
an influence on the analysis of the stress—strain state of the
structure [1]. In solving this problem, first of all we have to
evaluate accurately the values of the temperature in the
plate junction zone.

Transient heat conduction in an anisotropic mate-
rial is described by the differential equation
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here k,,k,,k, are anisotropic thermal conductivity coeffi-

cients; p is the mass density of the material; c is the spe-
cific heat capacity; Q(x, Y, z) is the heat generated within
the body; T (x,y,z) is the temperature; t is the time.

To solve the Eq. (1), initial and boundary condi-
tions are introduced
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where n_,n

,»N,,n, are the direction cosines, q(x,y,z) is the
heat flux, o is the convection coefficient over the surface,
T, is the fluid temperature.

Because the analysed structure is of a complex
geometrical shape, it is convenient to solve the problem of
the temperature field by the finite element method. All
mathematical dependences of the method are easily for-
malised and generated by computer technologies.

An Eq. (1) with initial conditions (2) and with
boundary conditions (3) in accordance with [2] is written
as the system of differential equations
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where [K], [C] and {F} are respectively thermal conduc-

tivity matrix, heat capacity matrix and vector of thermal
load.

The finite element model of the examined struc-
ture is composed of finite elements of several types: plane

(triangular or quadrangular) and connective quadrangular
prismatic finite elements. That is why the problem of mod-
elling plate junction zones with finite elements appears. It
is analysed in research works [3-5]. Plane finite elements
are joined with triangular or quadrangular prismatic con-
nective finite elements.

Practical calculations have shown that in those
cases when connective finite elements join other finite
elements in the nodes that are in the middle-surface of the
plates, it is necessary to use the middle nodes of the prism
base instead of corner nodes of the prism. To calculate
temperature values in such nodes special transformation
matrices are necessary.

In this work, transformation formulas of coordi-
nates that translate the middle side nodes of the bases of a
quadrangular prism to the corner nodes of the prism, and
formulas that translate the temperature values of the corner
nodes into the temperature values of the middle side nodes
of the bases of the finite element are found. The problem is
solved for the connective triangular prismatic finite ele-
ment [3].

The aim of the present article is to assess the tran-
sient temperature field of the plate junction zone of a thin-
walled branched structure of an anisotropic material, when
the boundary conditions on the lateral surfaces of the plate
can be expressed in three different forms: convection, heat
source, and heat flow. The junction zone of the plates is
going to be modelled by a connective quadrangular pris-
matic finite element, the main mathematical expressions of
which for the isotropic material are described in [4].

2. Matrices of the connective quadrangular prismatic
finite element

To make a discrete model of the junction zone of
the plates, a connective quadrangular finite element of an
equal cross-section is going to be used; with a quadrangle
as the base (Fig. 1). The element has 8 degrees of freedom.
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Fig. 1 The geometry of the connective finite element



The temperature inside the finite element e
changes linearly

®)

where [N] is the matrix of the shape functions of the ele-
ment, {T°} is temperature values in the nodes of the ele-
ment.

The shape functions, satisfying properties in the
nodes of the element
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While calculating matrices of the finite element,
let us assume that

o

The finite element thermal conductivity matrix
[K] (8) has two parts:
— the first integral describes the thermal conductivity of
the finite element, determined by the thermal conduc-
tivity coefficients of the material,
the second integral describes the thermal conductivity
of the finite element, determined by the convection heat
exchange with environment via the lateral surfaces and

dz dy dx (13)
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where S is the cross-sectional area of the connective finite
element, h is the height of the element. The values of a and
b are calculated by using the formulae to calculate the dis-
tance between two points.

The contribution of the connective finite element

to the matrices[K], [C] and vector {F} of the Eq. (4) is
expressed by the following formulae
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here V is the volume of the finite element, S is the lateral
area of the element, [B] is a matrix of the derivatives of the
shape functions of the element in the directions x, y and z,
[D] is a matrix of the thermal conductivities in the direc-
tions x, y and z.

The matrix [D] in the discussed case is entered as
follows
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By differentiating matrix [N] (7) with respect to X,
y and z, we form matrix [B], the inverse matrix of which is
entered as follows

< <

— ' — N N N N

-x)(h-z) —(b-x)(a-y
+x)(h-2) —(b+x)(a-y
+x)(h-2) —(b+x

(

(12)

—(b-x) b-x)(a-y
—(b+x)z b+x(a-y)
(b+x)z  (b+x)(a+y
(b—x)z b-x)(a+y

the ends of the finite element.

The thermal conductivity matrix of the element
always has the first component, while the second has to be
evaluated only when the lateral surfaces and the ends of
the finite element are open, i.e. when they have a contact
with the environment.

While calculating the first integral of the thermal
conductivity matrix of the element (8), the values of matri-
ces [B], [B]" and [D] are inserted in its expression. It can
be seen that post-integral expressions are rather complex.
That is why it is difficult to calculate them manually; be-
sides, it is easy to make mistakes. That is why mathemati-
cal transformations are made by using computer algebra
systems MAPLE and MATHEMATICA.



Having integrated the first integral of the thermal
conductivity matrix of the connective finite element, we
get
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The value of the second component
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of the thermal conductivity matrix of the connective finite
element (8) depends on the surface of the element (lateral
or end) where the heat transfer with convection takes
place. The value of this integral does not depend on the
thermal conductivity coefficients, that is why by employ-
ing the outcomes of [4], we can calculate the value of inte-

gral (15) for the surface, e.g. S;:x=b,ye[-aa],
Ze[O,h]
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The values of integral (15) are written accordingly
for surfaces S,, S, S4, Ss, Ss, S7, Sg, Where the values of the
elements of matrix [S;] depend on the numbers of the
nodes belonging to lateral or end surfaces.

The matrix of the thermal capacity of the connec-
tive finite element (9) according to [3] has the following
form
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Because the integrals of the thermal load vector
(10) do not depend on the thermal conductivity coeffi-
cients, on the basis of [4], the value of the first integral is
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The values of the other two integrals of the ther-
mal load vector (10) depend on the numbers of the nodes
of the lateral or end surfaces of the finite element. For in-
stance, for surface S;
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3. The transformation formulae of the coordinate nodes
of the connective finite element

We shall now analyse the base (quadrangle) of the
connective finite element (Fig.2) with nodal points at
middle side points, numbered counter-clockwise from the
first freely chosen node. We shall transfer the middle side
nodes of the base

1% Y12 )s 2(%0 Y2022 )s 3(%a Yai Z3)s 4% Ve 24)
to the corner nodes
A(XYaZa) B(Xe: V128 ) . C(Xe Ve Ze ) »
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i.e. we shall express the coordinates of nodes A, B, C, D by
the coordinates of nodal points 1, 2, 3, 4. To solve this

D(X, Yo,



problem, the equations of lines going via given points,
known from analytical geometry, are going to be used.

D 3 C
4 2
A 1 B

Fig. 2 Numbering of the nodes of the base of the element

Because the branched structure of a complex
shape is analysed, the connective finite element can be in
various positions in its finite elements scheme. That is why
it is necessary to analyse a few cases of the positions of the
nodes of the connective finite elements in space.

1. z=c=const, X +X, =X, +X, ¥, +Y;s =Y, + VY,

In this case, the coordinates of the corner points
are entered as follows
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2. z=c=const, X, =X, Y, =Y,

In this case, the coordinates of the corner nodes
are as follows

A(X4, ¥1,€), B(X,, ¥1,€), C(X,, YaC),

3. 4=12,2,#1,
The coordinates of the corner nodes are calculated
as follows
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4. The transformation formulae of the temperature
values of the connective finite element

In the case when the scheme of the finite elements
of the structure is composed only from connective quad-
rangular finite elements, it is not necessary to translate the
temperature values of the corner nodes to the middle side
nodes of bases. Otherwise, when connective finite ele-
ments in the structure join plane finite elements, it is nec-
essary to translate the temperature values of the corner
nodes to the middle side nodes of bases. Having evaluated
previously formulated conditions (7), we get the following
transformation matrix of temperature values

o+ O
B O O

Thus the thermal conductivity matrix and thermal
capacity matrix of the connective finite element to calcu-
late temperature values in the middle side nodes of the
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base of the finite element are found as follows

5. Numerical results

We shall analyse the temperature field in a struc-
ture of an anisotropic material in the case of a transient
heat transfer process. The algorithm was written by
FORTRAN.

A cooled branched structure is given [4]. The air
moving across the upper surface has a temperature of 20°C,
convection coefficient is 8.1 W/(m? °C). The lower surface
is cooled by a liquid of the temperature of —196°C, convec-
tion coefficient is 3529 W/(m? °C). The solution schema of
the finite elements of the structure with a quadrangular
connective finite element is shown in Fig. 3.

Fig. 3 The grid of the finite elements of the structure

To analyse the temperature convergence, two fi-
nite element schemes were adapted: with and without a
connective quadrangular finite element. The convergence
of the results is illustrated by observing the change of tem-
perature of a certain point of the calculated scheme in time,
e.g. 31 (Fig. 3).

The view of the temperature convergence of node
31 of the two calculated schemes is presented in Fig. 4.

—&— \Without a connective element

—*— Aquadrangular connective
element

—— Control values

50
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Fig. 4 The temperature in time of node 31 of the two calcu-
lated schemes

The correctness of the formulae of the transfor-



mation of node coordinates and temperatures values of the
connective finite element is established by calculating
temperature values in the connective nodes 11, 16, 21 and
26 (Fig. 3). The results of the calculation are presented in
the table below.

The comparison of the temperature values

Numbers Obtained Control
of the nodes temperature temperature
(Fig. 3) values T, °C values [4] T, °C
11 -73.2 -73.5
16 -59.2 -59.8
21 -73.2 -73.5
26 -80.2 -80.6

6. Conclusions

1. The numerical solution of the problem of a
transient temperature field converges.

2. In cases of the first and second sampling of the
junction zone, the curves of the temperature values of node
31 differ. According to the calculated scheme with a con-
nective finite element, the calculated temperature values
(at node 31) are closer to the control values than the values
obtained according to the scheme without a connective
finite element.

3. The obtained transformation formulae of the
node coordinates and temperature values allow making a
finite element scheme of the analysed structure both with
corner and middle side nodes of a base of a connective
finite element. This allows a more efficient modelling of
joining a few plates with different normals to a horizontal
surface.
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PLONASIENIU ISSISAKOJANCIU KONSTRUKCIJU
BAIGTINIU ELEMENTU MODELIAI SILUMOS
PERNESIMO UZDAVINIUOSE

Reziumé

Straipsnyje nagrinéjamas plonasienés issisakojan-
¢ios konstrukcijos, pagamintos i§ anizotropinés medziagos
ploksteliy sandiiros zonos nestacionaraus temperatiiros
lauko analizés uzdavinys. Tokiy konstrukcijy ploksteliy
sandliros zonoje vyksta dideli temperatiiry svyravimai,
kurie turi jtakos konstrukcijos jtempto ir deformuoto ba-
vio analizei. Sandiros zonai diskretizuoti naudojamas jun-
giamasis erdvinis baigtinis elementas, kurio pagrindas yra
keturkampis. Gauta jungiamojo baigtinio elemento $ilumos
laidumo matrica, kai medZiaga yra anizotropiné.

ISvestos koordinaciy transformacijos ir temperatii-
ros verciy transformacijos formulés, kurios jgalina sudaryti
nagrinéjamo objekto baigtiniy elementy tinklelj tiek su
jungiamojo elemento pagrindo kampiniais, tiek su pagrin-
do krastiniy viduriy mazgais. Tai leidZia efektyviau mode-
livoti, kai jungiamos kelios plokstelés, turin¢ios skirtingas
horizontalaus pavir§iaus normales. I§vestos formulés patik-
rintos sprendziant $aldomos plokstelés temperatiiros lauko
uzdavinj.

S. Turskiené

THE FINITE ELEMENT MODELS OF THIN-WALLED
BRANCHED STRUCTURES IN HEAT TRANSFER
PROBLEMS

Summary

The paper deals with the problem of analysis of
the transient temperature field in the plate junction zone of
a thin-walled branched structure of an anisotropic material.
In the junction zone of the plates of such structures, great
temperature oscillations take place, which have an influ-
ence on the analysis of the stress-strain state of the struc-
ture. The junction zone of the plates was modelled by a
connective finite element with a quadrangular base. The
thermal conductivity matrix of the connective finite ele-
ment was obtained in the case of an anisotropic material.
The coordinate transformation and temperature value
transformation formulae were derived, which allowed
composing a grid of the finite elements of the examined
object both with the corner and middle side nodes of the
connective finite element. This allows a more efficient
modelling of joining a few plates with different normals to
a horizontal surface. The derived formulae were checked
by the solution of a problem of the temperature field of a
cooled plate.

Keywords: thin-walled branched structure, connective
finite element, heat transfer.
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