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1. Introduction 

 

The stress concentration factors are widely used 

in strength and durability evaluation of structures and ma-

chine elements. A large number of research works have 

been performed in this field and recommendations for the 

engineers developed [1, 2]. However, the diversity of the 

loading cases, geometry and material characteristics to-

gether with the new solution methods motivates to conti-

nue the research, as it is proved by a large number of notch 

problem related publications that appeared during the last 

decade. The review of these and earlier publications allow 

to conclude that the specific group of the structural mem-

bers, the curved beams, need a more extensive investiga-

tion since a very few articles in this field have been pub-

lished yet (perhaps, there is the one and the only publica-

tion directly related to the stress concentration factors in 

curved beams due to the additional discontinuity of the 

geometry, the circular holes, under bending load [3]). 

The present article continues the research work 

[4] on the modeling of the wear damage and its influence 

to the stress concentration for the lifting hooks of trapezoi-

dal cross-section. The article provides a set of cases of the 

lifting hooks of trapezoidal gross cross-section with shal-

low notches, where the circumferential stress () concen-

tration factors (Kt) were calculated employing finite ele-

ment analysis (FEA). The FEA results were grouped and 

fitted to find the equations suitable for the fast engineering 

evaluation of the notch effect on the stress concentration. 

Some preliminary investigation of the stress triax-

iality factors is also presented. The design rules of the lift-

ing hooks require to use ductile materials to avoid brittle 

failure, however, the stress triaxiality reduces the ductility 

and the danger of brittle failure increases. In this respect, 

the strain based criteria for the failure prediction, account-

ing the stress triaxiality, appear to be more relevant. 

 

2. Relevant load case and geometry 

 

The design rules require to check stresses at two 

critical cross-sections of the curved part of the lifting 

hooks where the equivalent maximal stress should not ex-

ceed the allowed one [5]. These cross-sections are: 1st – on 

the horizontal plane and 2nd – on the vertical plane (de-

picted in Fig. 1). Only the second cross-section is consid-

ered here, because this cross-section most likely is subject-

ed to the wear damage and a formation of the shallow 

notches. The loading scheme of the considered cross-

section of the hook (Fig. 1, a) was applied assuming that 

the hook is loaded by two radial forces Fr. The assumed 

angle between these forces was:  2 = 90.  The relation of  

 

Fig. 1 Applied loading scheme and geometry of a notched 

lifting hook 

 

Fr to the lifting force P is: Fr = 0.5P/cos, the normal force 

acting on the cross-section and contributing to  is: 

N = Fx = Fr sin= = 0.5Ptg. The bending moment 

Mc = N rc = Fx rc. Here rc is a distance from the center of 

curvature to the geometrical center of the cross-section. 
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The geometry of the trapezoidal cross-section 

with fillets was defined by the design standard for the in-

dustrial lifting hooks GOST 6627 -74 [6]. Two size cases 

of the hooks were considered: the case with cross-section 

height H = 100 mm and the case where H = 82 mm. The 

values of curvature (rc/H) of the hooks for the section of 

interest was 0.975, when H = 100 mm, and 0.950, when 

H = 82 mm. 

The notch was modeled as a groove of a circular 

profile that cuts the member along a perimeter of an upper 

part of the cross-section (Fig. 1) This groove forms a net 

cross-section under the notch. The range of t
 
/ of the in-

vestigated cases was from 0.05 to 0.8; where t is a notch 

depth and  is a notch root radius. The notch geometry was 

modeled taking in to account the model of the possible 

wear of the lifting hooks [4]. 

 

3. Calculation of the circumferential stress  

concentration factors 
 

The circumferential stress concentration factors 

were defined as ratios of maximal circumferential stresses 

and nominal circumferential stresses: Kt = max /nom. 

Evaluation of the maximal stresses at the notch 

root have been a significant problem to express analytical-

ly even under the elastic stress state. Experimental methods 

such as photoelastic or brittle coating and others were used 

for many years. At the present time the experimental tech-

niques are partially replaced by the numerical methods 

since the computational hardware and software allows the 

precise modeling and very fine discretization of the 

notched geometry, sufficient for the correct determination 

of the maximal stresses. However, the experimental results 

and analytical expressions are still very important since 

they are necessary to validate the numerical models. 

In the presented work the max was calculated at 

the notch root on the vertical symmetry line of the notched 

cross-section (point C1 in Fig. 1, b) using the FEA. The 

illustration of the generic finite element model, used in the 

analysis, is presented in Fig. 2. The models, consisting of 

the half of the geometry presented in Fig. 1, had the sym-

metry plane constraint and the fixed plane of the upper 

semicircular end. The three dimensional tetrahedral second 

order finite elements (e.g., element type SOLID187 in 

ANSYS™ software) were used to "mesh" the models with 

the appropriate refinement at the notch root. The elastic 

solution was performed using the mechanical properties of 

the low carbon steel 20 according to Russian standard 

GOST 1050-88 (equivalent to European steel C22E num-

ber: 1.1151, standard: EN 10083-2:2006) appointed for the 

production of the lifting hooks by standard GOST 2105-75 

[7]. The Yong's modulus of this steel E = 210000 MPa and 

Poison's ratio  = 0.29. 

The nominal stresses usually are calculated em-

ploying common formulas of mechanics of materials for 

the structural members of uniform cross-section. For the 

curved beams, such as the lifting hooks, the most popular 

is the Winkler's equation [8]. Accorging to this equation 

the nom can be expressed as follows 

Aer

yM

A

N c
nom   (1) 

 

Fig. 2 Illustration of a generic 3D finite element model of a 

notched lifting hook 

 

here A is the area of the cross-section; r is a radial coordi-

nate of the point of interest having the origin at the center 

of member's curvature y = rn - r and e = rc - rn. The rn is a 

distance from the center of curvature to the neutral axis of 

the cross-section in case of pure bending and is expressed 

by equation 





A r

dA

A
e  (2) 

The area integral in Eq. (2) has a closed form so-

lutions for regular shapes of the cross-section, e.g. circular, 

rectangular, trapezoidal etc. To calculate e for the non reg-

ular shapes, such as the presented notched cross-section, 

the numerical integration software was developed.  

The Eq. (1) gives the results of an acceptable ac-

curacy for many engineering cases. However, it usually 

underestimates the  at the points of cross-section that 

are close to the inner radius of curvature ri, i.e. at the most 

significant location for the Kt calculation. The error de-

pends on geometry of a curved beam and the ratio of N to 

Mc. 

In order to obtain more accurate results at the 

points close to ri, Cook suggested a correction of Winkler's 

equation [9]. According to this correction 
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nom   (3) 

The other way to calculate nom is to use a close 
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form solution of the theory of elasticity. However, the de-

velopment of a practical solution is problematic. The 

known equations of Golovin (1881), for the contemporary 

engineers mostly known from the Timoshenko and Gudier 

textbook of elasticity [10], were derived assuming that the 

curved beam is of rectangular cross-section with the unit 

thickness. These equations are not suitable for the arbitrary 

shape of the cross-section. The derived equations suitable 

for the any shape of the cross-section of a curved beam 

[11] demonstrated a significant overestimation of the  at 

the points close to ri comparing to the FEA results for the 

cross-section of the lifting hook [11]. 

Therefore, the FEA was applied to calculate the 

nom in the presented study. The nominal circumferential 

stresses were calculated at the same point as the maximal 

ones, but in a curved beam of the uniform cross-section, 

i.e. the cross-sections of the notched members at the notch 

root and the cross-sections of the members without a notch 

were identical. In this way the stress concentration effect 

caused by the notch was separated from the stress concen-

tration caused by the curvature of the member. 

The distribution of the  along the vertical sym-

metry line (C1 C2) of the net cross-section of the smooth 

curved member is shown in Fig. 3 to illustrate the differ-

ence of the  results using different approaches: straight 

beam equation, Eqs. (1) and (2), and the FEA. The coordi-

nate r of the graphs was normalized by the outside radius 

of curvature ro and the  was normalized by the uniform 

normal stress n = N/Anet. The nominal cross-section was 

constructed reducing the H = 82 mm by the notch depth 

t = 4. This figure also includes the results for the notched 

lifting hook with the notch root radius  = 10 mm, calcu-

lated by the FEA, to see the general notch effect on the . 
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Fig. 3 Circumferential stress distribution along the sym-

metry line of the net cross-section of the smooth and 

notched lifting hook in the normalized coordinates 

 

4. FEA results of the circumferential stress  

concentration factors and fitting curves 

 

The results of Kt based on FEA of various sizes 

of lifting hooks and notches are presented in Figs. 4 and 5. 

These results were organized to form the separate sets re-

garding a different notch depth t and a cross-section height 

H. The values of Kt are presented as dependent on  = t/, 

and were fitted by equation 

 Kt = ab
+c (4) 

The fitting Eq. (4) represents a general form of 

Neuber's expression of Kt for the shallow notches [12] 

 Kt = 20.5
+1 (5) 

The fitting results of Eq. (4) are shown by solid 

lines in Figs. 4 and 5, and the values of the fitted coeffi-

cients a, b and c are presented in Table. The analysis of the 

fitted coefficients allowed to conclude that for the small 

values of t/H, the fitted curves of Kt of the Eq. (3) are 

close to the offset curves of Eq. (5) and for the large t/H 

the additional factor regulating the curve slope is required. 

Therefore, it is possible to simplify the Eq. (4) by using the 

following assumed expressions 

 Kt = 20.5
+cf (6) 

if fitted cf satisfies the condition 0.5  cf  1.0 and for the 

other cases 

 Kt = (20.5
+0.5) df (7) 

here cf and df are the fitting coefficients; df may have val-

ues from 0 to 1. 

The fitting results of Eq. (6) are graphically pre-

sented by the dashed curves and the results of Eq. (7) – by 

the dash-dot curves (Figs. 4, 5). The dotted curve repre-

sents the Neuber's Eq. (5). The values of the fitted coeffi-

cients cf and df can also be found in Table. 

The simplification of the Eq. (4) allows to find the 

expression of cf and df for the fast engineering evaluation 

of the Kt. It was assumed that values of the coefficients cf 

and df depend on the geometrical parameters of the notched 

hook. Analysis of the results showed that cf and df can be 

related to the ratio  = t/H by certain functions cf = fc() 

and df = fd
 
().The functions fc and fd were expressed in a 

form of second order polynomial and fitted to cf and df data 

(Fig. 6) giving the following expressions 

 cf  = 80.72
 – 16.72 + 0.983 (8) 

 df = 48.32
 – 10.23 + 1.303 (9) 

The Eqs. (8) and (9) together with (6) and (7) al-

low to calculate the Kt for the notched lifting hook of any 

size and notch depth. 

 

5. Stress triaxiality factors 

 

There is a requirement for the production of the 

lifting hooks to use ductile materials such as the low car-

bon steel 20 after the thermal normalization, to avoid brit-

tle failures. In addition, the welding procedures on the 

hook blanks are not allowed with the same purpose, to 

avoid the material embrittlement [7]. The violation of these 

rules can cause the dangerous failures [13]. 

However, the materials ductility, expressed as an 

equivalent plastic strain at failure, can be also reduced by 

the stress state triaxiality. In this respect the notch effect on 

the stress state triaxiality should be evaluated. 

The Fig. 7 shows radial (r) and axial (z) stresses 
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Fig. 4 Stress concentration factors Kt for the lifting hook 

of H = 82 mm with shallow notches 
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Fig. 5 Stress concentration factors Kt for the lifting hook 

of H = 100 mm with shallow notches 

 

Table 

Fitting data 
 

Geometry Fitted coefficients Goodness of fit * 

H t a b c R
2
 R

2
adjusted SSE  RMSE 

equation (3) 

100 1 2.08 0.469 0.746 1.0000 1.0000 1.140E-5 0.001688 

2 2.13 0.432 0.524 0.9999 0.9998 9.504E-5 0.004360 

4 1.923 0.471 0.468 1.0000 1.0000 8.560E-6 0.001463 

6 1.760 0.4731 0.340 1.0000 1.0000 2.811E-6 0.0008382 

8 1.581 0.489 0.400 1.0000 1.0000 3.444E-6 0.001071 

82 1 2.13 0.416 0.607 1.0000 0.9999 9.437E-6 0.001774 

2 2.13 0.424 0.451 0.9999 0.9999 3.801E-5 0.003083 

4 1.895 0.449 0.359 1.0000 1.0000 1.751E-6 0.000764 

6 1.612 0.489 0.391 1.0000 1.0000 5.378E-8 0.0001339 

equations (5) and (6) 

H t cf df R
2
 R

2
adjusted SSE  RMSE 

100 1 0.824 – 0.9992 0.9992 5.632E-4 9.689E-3 

2 0.681 – 0.9985 0.9985 1.155E-3 1.285E-2 

4 – 0.972 0.9981 0.9981 1.510E-3 1.586E-2 

6 – 0.872 0.9995 0.9995 2.501E-4 6.456E-3 

8 – 0.798 0.9994 0.9994 1.807E-4 6.011E-3 

82 1 0.792 – 0.9968 0.9968 8.535E-4 1.307E-2 

2 0.624 – 0.9993 0.9993 4.618E-4 8.773E-3 

4 – 0.914 0.9997 0.9997 1.208E-4 4.916E-3 

6 – 0.804 0.9999 0.9999 3.827E-5 2.767E-3 

*R
2
 – the coefficient of multiple determination; R

2
adjusted – the degrees of freedom adjusted R

2
; SSE – the sum of squares 

due to error; RMSE – the root mean squared error 
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along the symmetry line of the equal size net cross-sections 

of the smooth and notched lifting hook in the coordinates 

normalized to the outside radius of curvature ro and uni-

form normal stress n = N/Anet; the gross height of the hook 

cross-section H = 82 mm, notch depth t = 4 mm, notch root 

radius  = 10 mm. 

The stress triaxiality factor (TF), initially pro-

posed by Davis and Connely [14], is used to account the 

ductility reduction in many engineering cases [15]. It is 

defined as a ratio of the three times the hydrostatic pres-

sure and the von Mises equivalent stress 

 

     231

2

32

2

21

3212








TF  (10) 

here 1, 2, 3 are the principal stresses. 

The Fig. 8 shows the TF distribution along the 

symmetry symmetry line of the net cross-section of the 

smooth and notched hook for the case of H = 82 mm, 
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Fig. 7 FEA results of r and z distribution along the 

symmetry line of the net cross-section of the smooth 

and notched hook in the normalized coordinates 

(H = 82 mm, t = 4 mm,  = 10 mm) 
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Fig. 8 Stress triaxiality factor along the symmetry line of 

the net cross-section of the smooth and notched 

hook (H = 82 mm, t = 4 mm,  = 10 mm) 

 

t = 4 mm and  = 10 mm under the elastic stress state. As it 

is seen from the Fig. 8, the notch makes the stress triaxiali-

ty factor not only increases, but the maximum point is 

shifted toward the center of the members curvature, i.e. 

toward the point of the maximal normal and equivalent 

stresses and creates an additional negative effect on safety 

of the curved member. 

 

6. Conclusions  

 

Formulas for the fast engineering evaluation of 

the stress concentration factors at the shallow notches of 

the lifting hooks of trapezoidal cross-section (GOST 6627 

-74) were established by fitting the selected generic equa-

tions to the FEA results. The difference of the results of the 

fitted equations comparing to the FEA results were in a 

range of 3% for the investigated cases. 

The stress triaxiality factor contributing to the 

ductility reduction exceeds the unity (uniaxial stress state), 

for both smooth and notched hooks. However, for the 

smooth hook it is in a range between 1 and 2, while for the 

notched hook the top values are in a range from 2 to 3, that 

demonstrates the significant reduction of ductility at the 

inner surface of the curved part of the hook. 
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TRAPECINIO SKERSPJŪVIO KĖLIMO KABLIŲ 

APSKRITIMINIŲ ĮTEMPIŲ KONCENTRACIJOS TIES 

ASIMETRINIAIS PAVIRŠINIAIS GRIOVELIAIS 

KOEFICIENTAI 

 

R e z i u m ė 

 

Straipsnyje pateikiamos formulės apskritiminių 

įtempių koncentracijos koeficientams apskaičiuoti. Jos 

sudarytos aproksimuojant įtempių kabliuose su negiliu 

paviršiniu grioveliu analizės rezultatus, gautus baigtinių 

elementų metodu. Aproksimacijai panaudota apibendrinta 

Neuberio formulė įtempių koncentracijos ties negilia įpjo-

va cilindrinėse ir plokščiose detalėse koeficientams skai-

čiuoti. Pateiktas ir supaprastintas formulės variantas, suda-

rytas naudojant tik vieną aproksimacijos koeficientą. Gau-

tos išraiškos leidžia greitai nustatyti apskritiminių įtempių 

koncentraciją nenaudojant baigtinių elementų modelio. 

Straipsnyje taip pat pateikiamas preliminarus įtempių bū-

vio erdviškumo tyrimas; įvertintas jo sukeltas kablių me-

džiagos plastiškumo sumažėjimas ties paviršiniu grioveliu. 

 

 

E. Narvydas, N. Puodžiūnienė 

 

CIRCUMFERENTIAL STRESS CONCENTRATION 

FACTORS AT THE ASYMMETRIC SHALLOW 

NOTCHES OF THE LIFTING HOOKS OF 

TRAPEZOIDAL CROSS-SECTION 

 

S u m m a r y 

 

The paper presents the equations for the calcula-

tion of the circumferential stress conentration factors. The 

equations were obtained by fitting to the finite element 

analysis results of the lifting hooks with the shallow notch-

es. The Neubers expression of the stress concentration fac-

tors at the shallow notches for the cylindrical beams and 

plates have been used as a generic fitting equation. The 

constructed simplified version of this equation, having just 

one fitting coefficient, is also presented. These equations 

allow to perform the fast evaluation of the circumferential 

stress concentration without the usage of the finite element 

models. The article also presents the preliminar investiga-

tion of the stress state triaxiality and the consequent reduc-

tion of the materials ductility at the shallow notches of the 

lifting hooks. 

 

Keywords: lifting hook, curved beam stress analysis, 

stress concentration factors, FEA. 
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