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1. Introduction 
 

Nowadays optimization under uncertainty (OUO) 

in engineering design, which is also known to be stochastic 

design optimization, has gained an ever increasing im-

portance.  OUO can be grouped into three classes: reliabil-

ity-based design optimization (RBDO), robust design opti-

mization (RDO) and reliability-based robust design optimi-

zation (RBRDO). RBDO focuses on deducing a failure 

probability of a system consisting of random design varia-

bles or parameters with known probability distributions. 

Numerous research on RBDO has been conducted. For ex-

ample, Yang et al. [1] proposes a methodology for RBDO 

to handle uncertainties in the offshore wind turbines design 

process. For that purpose, they constructed a finite element 

(FE) model and generated some design points from the 

model. Using a surrogate or an approximate model built 

based on the design points, they implemented the reliability 

analysis in a reasonable computational cost. Similarly, there 

are a lot of research in the literature [2-4]. Nevertheless, the 

variation in the objective function is often not minimized in 

RBDO; instead, it investigates the probabilities at the tails 

of the distribution function [5]. RDO concentrates to mini-

mize the variability in a system without eliminating the 

source of the variability; thus to make the system insensitive 

to effects of the fluctuations [6, 7]. The earliest approach on 

RDO is known to be Six Sigma Quality [8] and Taguchi 

method [9, 10]. These methods aims to reduce the output 

variation in the input-output system and accordingly to im-

prove the product quality. Most of recent researches on 

RDO have been concentrating on multi-objective optimiza-

tion using surrogate models and various algorithms such ge-

netic algorithm and Particle Swarm Optimization (PSO) al-

gorithm [11-14]. However, Forouzandeh Shahraki and 

Noorossana [15] express that the merits of RDO and RBDO 

should be combined to ensure both reliability and robustness 

of the designs, which is the main aim of RBRDO method. 

Although the concept of RBRDO is not new, the RDRDO 

method is gaining an ever increasing importance when seen 

in the recent literature [15-17]. In this work, the RBRDO 

method is taken as a base optimization procedure.  

Applying all of these optimization methods in de-

sign problems, by its nature, requires more computational-

intensive efforts compared to the deterministic case [18]. To 

mitigate this issue, surrogate models built based on design 

inputs and outputs have been widely used in recent years 

[19]. The use of surrogate models instead of real models 

drastically reduces the computational cost of the design op-

timization methods [20]. Accordingly, the frequently used 

surrogate models are Kriging model, Artificial Neural Net-

work (ANN) model and Polynomial models. However, there 

are still several challenges to be overcome. First, the exist-

ing formulations and implementations of RBRDO are com-

plex to apply them to design problems [21]. Second, despite 

the significant improvements in the computational cost of 

building an approximate model, a computationally efficient 

method of optimum search is needed to enhance the 

RBRDO process. To address these issues, in this work, an 

efficient simulation-based search method for RBRDO prob-

lems is proposed. The proposal to the first issue is a simple 

RBRDO definition by implementing it through Monte-

Carlo Simulation (MCS), which is one of the simplest and 

the most powerful methods [19]. MCS grounds on randomly 

generating samples based on stochastic characteristics of 

random variables and evaluating the sample set generated 

against given criteria. Also, as a surrogate model, ANN is 

used to build an approximate model representing relation-

ships between design variables and responses. Therefore, 

the combination of MCS and ANN is considered to make 

the optimization process more efficient and effective. The 

proposal to the second issue is that a search vector based on 

correlation coefficients between design variables and re-

sponses is considered with the aim of accurately selecting 

searching direction and step lengths towards the robust de-

sign point in a short time.  

The reminder of this paper is organized as follows: 

In Section 2, the definition of design optimization under un-

certainty is described. In Section 3, the proposed simulation-

based search method is explained in detail. In Section 4, a 

numerical example is illustrated on the design of a car win-

dow handle to show the effectiveness and efficacy of this 

method. In Section 5, a conclusion and future work are 

stated. 
 

2. Definition of design optimization under uncertainty 
 

Design optimization can be classified as two cate-

gories: deterministic design optimization and stochastic de-

sign optimization. The definitions of two categories vary de-

pending on where to use them. A deterministic design prob-

lem can be generally formulated in the literature as [18]: 

 

( )

: ( ) 0, 1, ..., ,
(1)

( ) 0, 1, ..., ,

,

j ineq

k eq

L U

Min f x

subject to h x j n

g x k n

x x x


  
 

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where f is stands for the objective function. 

1 2
{ , ,..., }

Nd
x x x x  denotes the vector of deterministic de-

sign variables. Nd  is the number of deterministic design 

variables. h and g represent constraint functions. 
ineq

n is the 

number of inequality constraints. 
eq

n  is the number of 

http://dx.doi.org/10.5755/j01.mech.23.5.15745


 697 

equality constraints. U
x and L

x  are the upper and lower lim-

its of the design variables respectively.  

The stochastic design optimization deals with opti-

mizing designs under uncertainty; therefore, this kind of op-

timization can be considered as reliability-based design op-

timization (RBDO), robust design optimization (RDO) and 

reliability-based robust design optimization (RBRDO). The 

definition of a generic RBDO process is given by  
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where f stands for the objective function. 1 2
{ , , ..., }

Nr
   

is the vector of random design variables or parameters. Nr

is the number of random design variables.  represents the 

mean value of a random design variable. m
L () stands for 

limit-state functions indicating margins of failures of prob-

ability of a design. ls
n is the number of limit-state functions. 

m
R is the level of target reliability, which is a percentile 

value.  

RDO focuses on the variation of the objective 

function. A generic definition of RDO is as follow [22]:  
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where ( )   and ( )  are the mean and standard deviation 

values of the objective function, f, respectively.  

Nevertheless, to account for both the reduction in 

variability of a system and mitigating failure probability 

stemming from uncertainties, the RBRDO process, based on 

RBDO and RDO, is typically followed by using the defini-

tion [23]: 
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In this work, the RBRDO definition is considered 

as a base model.  

 

3. The proposed simulation-based search method 
 

In this section, the proposed simulation-based 

method is explained in five steps, given by a flowchart in 

Fig. 1. 

1. Prior to starting the process, a design problem 

is chosen and analyzed. Herein, the main challenge is to deal 

with the experimental or simulated data instead of analytical 

data because there is no any analytical equation or relation-

ship between the design inputs and outputs. Thus, in the 

scope of this work, the attention is given to the design data 

obtained from FEM (Finite Element Method) simulations. 

In this step, a sample set consisting of design variables 

 ,
i

DV 1,...,
DV

i n  and design responses (
j

DR ,

1,...,
DR

j n ) are obtained from FEM simulations. 
DV

n and 

DR
n are the number of design variables and design re-

sponses, respectively. 

 

 

Fig. 1 The flowchart of the proposed simulation-based 

method 

 

2. A surrogate model is needed to represent the 

linear or non-linear relationship between the DV and DR in 

most of RBRDO problems. The ANN model is considered 

as a surrogate model so as to model the non-linear relation-

ship between the DV and DR obtained from FEM simula-

tions. To validate this model, the sample set is divided into 

two groups; one group is used for training the ANN model 

and the other for testing the model in terms of R2 value.  

3. To reduce the process time of uncertainty-based 

modelling and optimization, a deterministic optimization of 

the initial design within ranges with predetermined lower 

and upper bounds is realized by using the well-known sam-

pling method, MCS. The optimization process yields a nom-

inal or mean value of ith design variable of the first optimal 

design to be found deterministically prior to robust design 

optimization, which is denoted as 
i

n

DV
  and considered as a 

starting design point for the next steps.  

4. In this step, the stochastic characteristics of the 

DV, such as distribution type, standard deviations of the DV, 

are specified depending on the existing knowledge or expe-

rience. The standard deviation values of DV, DV
 are as-

sumed to be subjected to a known coefficient of variation (

Initial design 

Generation of a sample set consisting of design varia-

bles ( ) and design responses ( ) 

 

Building a surrogate model representing the sample set 

by ANN 

 

Optimizing the initial design deterministically using the 

ANN model (find ) 

 

Determining stochastic characteristics of DV. Calcula-

tion of the search vector (SDV) 

 

Optimizing the design under uncertainty (find ) 

subject to the desired reliability level,

 

 

Satisfies the desired  

level? 

Robust design 

Y 

N 
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DV
 ), also so-called as COV. Therefore, DV

 are calculated 

by the formula: 
i i i

n

DV DV DV
    , which is the standard de-

viation of  ith design variable. Other task is to calculate a 

search vector ( DV
S ) that has descent or ascent directions 

leading to optimal design points. The DV
S  can be found by 

 

1 1

,

(5)
, 1,

i i i DVi

DR DR

DVi

n

DV DV DV w

n n

w ij j j

j j

S

Wp Wp

  

 
 





  


 
 

where 
iDV

S  is the coefficient of variation for ith design var-

iable. 
DVi

w
  is a relatively weighted correlation coefficient 

corresponding to each design variable. 
ij

  is the correlation 

coefficient between ith design variable and jth design re-

sponse. 
j

Wp  is a weight value of relative importance (as 

percentage) for jth design response, which can be deter-

mined by the decision maker. Also the summation of theWp

is assumed to be 1.  

5. If the RBRDO definition given in Eq. (4) is re-

formulated in line with the aim of this research, the new 

form of the definition is as follows: 
 

( , , ) 1, ..., ,

, (6)

: ( ( )) 1 ,

r

DV DV s s

r n T T

DV DV DV s

v m m

Min m

S

Subject to P L DR R
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  
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

   
  

here
r

DV
 is the vector of mean values of DV of the robust 

design. s
  denotes a scaling factor that determines the min-

imum step length for the DV
S  for each evaluation of the 

limit-state or constraint function. m is a maximum integer or 

decimal value that is needed to be found in the optimization 

loop because the m might help to search for a minimum
r

DV
 . v

P  represents the probability of violation of the con-

straint or limit-state functions.  

 

4. Numerical example 
 

In this section, the design optimization of a car 

window handle under uncertainty is considered to show how 

to use the proposed method in practice, and accordingly to 

clearly demonstrate its effectiveness and efficacy. The ini-

tial geometrical dimensions of the handle are indicated in 

Fig. 2. Herein, the letters V and F in dimensions refer a de-

sign variable and fixed dimension, respectively. Totally, 

five design variables (two distances (two equal lengths, 

6mm), two radiuses (R97 and R100) and thickness 

(4.4 mm)) are selected for the design optimization. With re-

gard to boundary conditions, there is an applied load on the 

right side of the handle, its x and y components are Fx of 150 

N and Fy of 400 N, and a fixed support on the other side of 

the handle (Fig. 3). The safety factor and mass of the handle 

under the boundary conditions are accepted as design re-

sponses (DR). 

 

 
V: Variable. F: Fixed dimension in mm 

Fig. 2 The initial geometrical dimensions of the handle 

 

Fig. 3 The boundary conditions of the handle 

 

The lower and upper bounds of the design varia-

bles and the initial values of the design are presented in Ta-

ble 1. Depending on the bounds of the design variables, a 

set of 101 samples consisting of the five DV is established 

using the factorial design technique, and the corresponding 

two DR (safety factor and mass) are computationally gener-

ated using FEM simulations.  

Table 1 

The lower and upper bounds of the design variables  

and the initial values of the design 

 Design variables 

 Symbol Initial Limit values 

Distance DV1 6 5 ≤ DV1 ≤ 7 

Distance DV2 6 5 ≤ DV2 ≤ 7 

Radius DV3 97 85 ≤ DV3 ≤ 120 

Radius DV4 100 90 ≤ DV4 ≤ 130 

Thickness DV5 4.4 4 ≤ DV5 ≤ 6 

 

75 of the 101 samples generated is used to train the 

ANN model, the rest is used to test the accuracy of the ANN 

model. At the result of the network training, a promising 

ANN model, which is built based on the algorithm of feed 

forward back propagation, has three hidden layers, consist-

ing of 12, 16 and 4 neurons, respectively. A strong correla-

tion with high R2 values of 0.97 and 0.99 is achieved for the 

testing set of safety factor and mass, respectively (Fig. 4). In 

other words, the best ANN model confirm that one can gen-

erate accurate values of safety factor and mass without FEM 

simulations by utilizing the ANN model because the testing 

results of the ANN model is found to be a good agreement 

with the FEM simulations. Moreover, by means of this 

model, it is possible to generate a large number of samples 

of design variables-responses, and to faster search for the 

best optimum design point among these many samples when 

compared to that of FEM simulations.   

 

Fx=150 N 

Fy=400 N 

 

Fixed support 
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         a                                             b 

Fig. 4 R2 values achieved for the testing set: a) for safety 

factor, b) for mass  

 

After obtaining the surrogate model based on 

ANN, the next step is to realize the deterministic design op-

timization to find nominal or mean values of design varia-

bles. To that end, uniform distribution is assigned to each 

design variable according to their ranges with predeter-

mined lower and upper bounds given in Table 1, and then 

Monte-Carlo simulations with 10,000 realizations are im-

plemented. The initial and optimal/nominal mean values of 

design variables found (
ini

DV
 and

n

DV
 ) are presented in 

Table 2. Compared to the initial design variables, higher 

safety factor and lower mass values are obtained by the de-

terministic optimization method. Herein, the starting point 

of the stochastic design optimization is a critical point. For 

that end, the deterministically obtained design point  n

DV
  

can be a reasonable and rational choice as a starting point. 

Accordingly, the limit-state function can be defined as

1 2
( 1.4982 0.0662) 0

v
P DR DR    , which refers to 

nearly zero probabilities that the safety factor is lower than 

1.4982 and the mass is higher than 0.0662 kg under uncer-

tainty conditions. By doing so, it may be possible to find 

design solutions that are more robust and reliable at worst-

case compared to those of the deterministic case.    

Table 2  

Optimal design variables and responses found  

by deterministic optimization 

 Design variables and responses 

 Symbol Initial n

DV
 , DR 

Distance DV1 6 5.4915 

Distance DV2 6 6.9934 

Radius DV3 97 119.7627 

Radius DV4 100 129.9424 

Thickness DV5 4.4 4.1992 

Safety factor DR1 1.2689 1.4982 

Mass DR2 0.0692 0.0662 

 

n Step 4, the stochastic characteristics of DV of the 

handle are assumed to be Gaussian distribution and a varia-

tion subjected to a 
DV

 of 0.0001 for each DV. The weights 

of the correlation coefficient for safety factor and mass re-

sponses are assumed to be equal importance (0.5 and 0.5). 

In consideration of these given and assumed values, 
DVi

w
 ,

DV i
 and

iDV
S are easily calculated via Eq. (5). All of the re-

sults of these calculations are presented in Table 3. 

Table 3  

The results of search vector and other parameters 

DVi 

0.5 

DR1 

11
  

0.5 

DR2 

12
  

DVi
w

  n

DV
  DV

  DV i
  

 

iDV
S  

DV1 0.280 0.261 0.279 5.491 0.0001 0.000549 0.000148 

DV2 0.565 0.136 0.544 6.993 0.0001 0.000699 0.000245 

DV3 0.125 -0.133 0.112 119.762 0.0001 0.011976 -5.1E-05 

DV4 -0.079 0.059 -0.071 129.942 0.0001 0.012994 -0.000126 

DV5 0.543 0.943 0.562 4.199 0.0001 0.00042 0.000311 

 

In the last step, first, the RBRDO formulation in 

Eq. (6) is rewritten in consideration with the given or found 

variables, responses and constraints of the design problem, 

which is given below:  

  

1 2

( , , ) 1, 2, 3, 4 1, ..., .

: (7)

( 1.4982 0.0662) 0.

i i s

r

DV DV s s

v

Min i min

Subject to

P DR DR

     


   


 

In the optimization definition, the constraint of 

1 2
( 1.4982 0.0662) 0

v
P DR DR    is specified accord-

ing to the deterministically found optimal results: the safety 

factor of 1.4982 and the mass of 0.0662 kg. Here, the pri-

mary focus is to investigate the impact of uncertainties in 

the design variables on the deterministically optimized de-

sign responses, and also how to improve reliability and ro-

bustness of the deterministically optimum design under un-

certainty. For this purpose, to reflect the uncertainty to the 

five design variables, it is assumed that the mean of each 

design variable is of a coefficient of variation of 0.0001 

stemming from manufacturing or other reasons. Under these 

conditions, when the described procedure in Step 5 is em-

ployed, the optimization results of probability of violation 

 v
P  and scaling factor ( s

 ) are obtained (Table 4 and 5). 

According to Table 4 and 5, an optimum robust design point 

can be selected among the points where the v
P =0. Moreo-

ver, to decide that, a cost function that is the ratio of mass to 

safety factor is considered, and the point(s) where the cost 

function has the lowest value is chosen as the most reliable 

and robust design point. Accordingly, the optimum point is 

found to be the intersection between the safety factor of 

1.4972 and the mass of 0.0667 kg. The scaling factor ( s
 ) 

at that point is found to be 44. When the formula of 
r

DV
  

in Eq. (6) is employed, the robust mean values of design 

variables and the corresponding responses are easily calcu-

lated.  

In addition, to explicitly show the found design so-

lution to be more robust and reliable compared with the ini-

tial and deterministic design values, the v
P  values for

ini

DV
  

and
n

DV
  at the same constraint as that of the robust solution 

(
1 2

( 1.4982 0.0662)
v

P DR DR   are separately com-

puted using Monte-Carlo simulations with 1000 realiza-

tions. All of these calculation results are presented in Ta-

ble 6.  
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Table 4 

The results of the probability of violation ( v
P ) calculation 

v
P  Mass  

0.0662 0.0663 0.0664 0.0665 0.0666 0.0667 0.0668 0.0669 0.067 
S

af
et

y
 f

ac
to

r 

1.4982 0.921 0.547 0.204 0.0580 0.0090 0.0010 0 0 0 

1.4972 0.839 0.417 0.153 0.0420 0.0040 0 0 0 0 

1.4962 0.746 0.341 0.109 0.0170 0.0020 0 0 0 0 

1.4952 0.687 0.251 0.0580 0.0110 0.0020 0 0 0 0 

1.4942 0.627 0.203 0.0490 0.0050 0 0 0 0 0 

1.4932 0.596 0.154 0.0300 0.0040 0 0 0 0 0 

1.4922 0.585 0.134 0.0160 0 0 0 0 0 0 

1.4912 0.575 0.145 0.0140 0.0010 0 0 0 0 0 

1.4902 0.539 0.126 0.0090 0 0 0 0 0 0 

 

Table 5  

The optimization results of the scaling factor ( s
 ) calculation 

s
  Mass  

0.0662 0.0663 0.0664 0.0665 0.0666 0.0667 0.0668 0.0669 0.067 

S
af

et
y

 f
ac

to
r 

1.4982 3 9 19 25 36 38 44 44 48 

1.4972 1 6 13 28 34 44 45 36 37 

1.4962 1 6 16 21 35 33 37 35 36 

1.4952 1 4 8 19 27 26 29 24 31 

1.4942 1 1 9 17 18 24 24 24 25 

1.4932 1 1 4 12 18 17 17 21 20 

1.4922 1 1 2 11 9 9 9 11 10 

1.4912 1 1 1 4 8 6 6 2 9 

1.4902 1 1 1 4 3 2 1 2 3 

 

Fig. 5 The 3D graph representation of different optimization cases with different relative importances: a) The case without 

implementing optimization, b) 5% SF-95% M, c) 95% SF-5% M, d) 50% SF-50% M 
 

                                                   a                                                                                                   b 

Fig. 6 The solid geometries of initial and robust design solutions: a) initial design, b) robust design 

  
      

d 

b 
a 

c 
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As seen in the Table, the robust solution ensures a 

v
P  of zero, whereas the initial and deterministic optimal so-

lution can only ensure a v
P of 1.0 and 0.41, respectively at 

the same constraint conditions. Also, this robust design 

searching process takes only about 20 seconds. Therefore, 

all of the results demonstrates that the proposed method en-

ables designers to efficiently and effectively find reliable 

and robust designs under uncertainty. 

Table 6 

The comparison of the initial,  

nominal and robust design solutions 
 

 ini

DV
  

n

DV
  

r

DV
 , DR 

DV1 6 5.491 5.4931 

DV2 6 6.993 6.9961 

DV3 97 119.762 119.762 

DV4 100 129.942 129.941 

DV5 4.4 4.199 4.2026 

DR1 0.0692 0.0662 0.0662 

DR2 1.2689 1.4982 1.5061 

s
  - - 44 

v
P  1.0 0.41 0 

 

The proposed method also provides designers with 

a flexibility to decide against the relative importance of the 

design response criteria. In other words, in the design exam-

ple, it is possible to give more importance to safety factor or 

mass before implementing the robust optimization. In Fig. 

5, the case without implementing optimization, the case of 

5% SF- 95% M, the case of 95% SF- 5% M, and the case of 

50% SF- 50% M (SF: safety factor, M: mass) is illustrated 

by the 3D graph. The found robust optimization solution 

above is considered in the case of 50% SF- 50% M, and the 

solid geometries of initial and robust design solutions are 

shown in Fig. 6. 

 

5. Conclusion 

 

In this work, an efficient simulation-based search 

method for reliability-based robust design optimization is 

proposed, which consisting of five steps: 1. Generating a 

sample set for design variables and responses from FEM; 

2. Building a surrogate model representing the sample set 

by using ANN; 3. Optimizing the design deterministically 

via MCS; 4. Determining stochastic characteristics and cal-

culating the search vector; 5. Optimizing the design under 

uncertainty via MCS. This proposed method is applied to 

the design optimization of a car handle to show its effective-

ness and efficacy. The searching or optimization process 

took only 20 seconds. Results demonstrated that the pro-

posed method enable designers to efficiently and effectively 

find reliable and robust designs under uncertainty, and also 

provides designers with a flexibility to decide about the rel-

ative importance of the design response criteria. To enhance 

this method, some new directions on this area can be sug-

gested: 1. Integrating this method with heuristic optimiza-

tion methods such as genetic algorithm and particle swarm 

optimization algorithm; 2. Applying this method in the com-

plex system designs. 
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M. Mayda 

 

AN EFFICIENT SIMULATION-BASED SEARCH 

METHOD FOR RELIABILITY-BASED ROBUST 

DESIGN OPTIMIZATION OF MECHANICAL 

COMPONENTS 

 

S u m m a r y 

 

Reliability-based robust design optimization 

(RBRDO) aims to minimize the variation in the system, and 

ensure the levels of failure probability of the system. Despite 

significant improvements on RBRDO, several challenges 

have been emerging. First, the existing implementations of 

RBRDO are complex to apply them to design problems. Sec-

ond, an efficient method of optimum search is needed to en-

hance the RBRDO process. To address these issues, in this 

work, a simulation-based search method for RBRDO is pro-

posed by utilizing Monte-Carlo Simulation and Artificial Neu-

ral Network. Specifically, to accurately select an optimum 

searching direction and step lengths, a search vector based on 

correlation coefficients between design variables and re-

sponses is put forward. This proposed method is applied to the 

design of a car handle to show its effectiveness and efficacy. 

Results demonstrates that this method enables to efficiently 

and effectively find reliable and robust designs under uncer-

tainty compared to the deterministic case.    

 

Keywords: Monte Carlo method, reliability, robust design op-

timization, search method. 
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