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Nomenclature 

 

CFL - Courant-Friedrichs-Lewy, T - temperature, K,  

p
C - pressure coefficient, u  - velocity component in x  di-

rection, m/s, ( , , )f x y t  - characteristic surface, U - velocity 

vector (m/s), Fr - Froude number (Non-dim.), v - velocity 

component in y direction (m/s), 
cF - convective flux vector 

(Non-dim.), V̂ - pseudo-velocity vector (m/s); vF  - Viscous 

flux vector (Non-dim.), W - vector of dependent variables 

(Non-dim., Gr - Grashof number (Non-dim.).  

Greek Symbols: 

m - time level (Non-dim.),  - artificial compressibility 

(Non-dim.), n - normal direction (Non-dim.), ex
 - thermal 

volume expansion coefficient (1/K), Nu - Nusselt number 

(Non-dim.),  - Generic name for flow variables (Non-

dim.), n̂ - normal vector to characteristic surface (Non-

dim.),  - wave angle (rad.), t
n - tangential-component of 

normal vector (Non-dim.),  - connective parameter (Non-

dim.), p  - pressure (Pa),  - angular coordinate around cyl-

inder (rad.), Pr - Prandtl number (Non-dim.),  - density 

(kg/m3), q - heat flux (W/m2), 
ij - Viscous stresses (N/m2), 

R - source term in Navier-Stokes equations (Non-dim.),  

 - vorticity (1/s), Re – Reynolds number (Non-dim.),  

 - defined as 
yxt

vfuff   (Non-dim.), S - surface 

area (m2).  

Superscript: 

S  - aell area (m2),   - dimensional quantities (Non-dim.),  

t - tangential direction (Non-dim.). 

 

1. Introduction 

 

Various numerical techniques have been presented 

for incompressible flows with pressure correction schemes. 

The main difficulty is finding a relationship between veloc-

ity and pressure fields to satisfy the continuity equation. The 

artificial compressibility of Chorin can be considered as an 

alternative of these methods [1]. In this method, the conti-

nuity and momentum equations are coupled, thereby it is 

possible to use time-marching methods. Addition of artifi-

cial compressibility may affect the convergence process 

without interference on the results [2]. A few numerical 

schemes based on artificial compressibility have been de-

veloped by researchers. Among them, central scheme with 

Jameson’s artificial viscosity was proposed to prevent the 

pressure-velocity decoupling [3]. The main idea of artificial 

compressibility methods such as Godunov-type schemes is 

similar to compressible methods. The Roe’s flux difference 

splitting is used for incompressible flows [4-7]. They used 

artificial compressibility along with Roe averaging for flux 

discretization. Using pseudo-time derivative makes it possi-

ble to apply characteristic methods for incompressible equa-

tions. Conventional characteristic-based (CB) schemes 

which have been presented for fluid flows are constructed 

under the assumption of locally one-dimensional. Drikakis 

et al. extended this method for three-dimensional flows and 

incorporated it with multigrid techniques [8]. Zhao et al. uti-

lized aforementioned method to unstructured two- and 

three-dimensional grids with heat transfer [9-13]. Flow var-

iables are calculated along characteristic paths in the direc-

tions normal to the cell faces and their initial values are in-

terpolated based on the sign of the corresponding character-

istic speeds. The characteristic-based scheme has been used 

for a wide range of incompressible flows such as porous me-

dia [14], flow with various densities [15-16] and in conjunc-

tion with artificial compressibility [17-21]. The real multi-

dimensional nature of flow demands to consider the direc-

tions in which the information is propagated. Different up-

wind schemes have been developed for the multidimen-

sional Navier-Stokes equations. Razavi et al. introduced a 

genuinely multidimensional characteristic based scheme 

[22]. This scheme was developed for velocity field and 

tested for several benchmarks [23]. In the present study for 

the first time the two-dimensional characteristics for energy 

and Navier-Stokes equations are presented. The new multi-

dimensional artificially characteristic-based (MACB) 

scheme is applied for square cavity with heat transfer and 

forced convection around a circular cylinder. The results 

were presented for a wide range of Reynolds and Grashof 

numbers. The main application of the proposed scheme 

would be in solving all the incompressible flows in different 

and complex geometries with heat transfer accurately such 

as heat exchangers, vortex tubes and etc. 

 

2. Governing equations 

 

The Navier-Stokes and energy equations for two-

dimensional incompressible flow in non-dimensional form 

are expressed as: 
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where  is couples the energy, momentum and continuity 

equations. The viscous stresses and heat flux are given as 

follows: 
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Based on the non-dimensional scaling, the above 

equations have been non-dimensionalized [9]. 

 

3. Mathematical formulation 

 

To derive the characteristic relations for two-di-

mensional Navier-Stokes and energy equations, their equiv-

alent Euler counterparts are considered. Characteristic equa-

tions can be obtained by assuming a characteristic surface 

as ( , , ) 0f x y t  . 
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The kinematic relations relate the partial deriva-

tives to total ones corresponding to the assumed surface and 

yield the following system of equations [24]: 
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Where the subscripts stand for the partial differen-

tiation. 

To satisfy compatibility requirements of Equations 

(4), the determinant of coefficient matrix is set to zero, so 

one has: 
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Pseudo-velocity vector  and normal to 

characteristic surface  alike compressi-

ble Euler equations [25] are defined in which  shows the 

wave direction. Equations (5) can be expressed in terms of  

 and  thereby two types of characteristic surfaces cor-

responding to the following relations are obtained: 
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The first equation of (6) expresses pseudo-stream-

lines and the second one demonstrates the virtual character-

istic fronts. By some algebraic manipulations, takes the 

following form: 
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The above roots appear to have always different 

signs. Also, the growth of influence and dependence zones 

around the pseudo-streamlines are revealed. Two roots of 

Eq. (7) demonstrate the biplanes tangent to characteristic 

surfaces passing through a certain point and producing 

Mach cones. By considering Eq. (7), it is concluded that 

dual characteristic surfaces would exist so that their corre-

sponding tangential planes construct two Mach cones which 

extend from a certain point, namely domain of dependence 

and domain of influence. 

Wave paths can be specified by an assumed char-

acteristic path on 0),,( tyxf . Taking  0
dt

df

 

yields: 
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Virtual acoustic waves correspond to the character-

istic paths on the Mach cone. To obtain these paths, the 

above equations and the second relation of Eqs. (6) are com-

bined to yield: 
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Subtraction of above relations from each other 

yields: 
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Hence, the generators of Mach cone from Eq. (10) 

can be expressed as: 
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The compatibility equations are obtained by taking 

Eq. (4) and second value of in Eq. (5), as follows: 
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It is possible to select different characteristic paths 

and their compatibility relations to estimate the cell inter-

face values. The above-mentioned compatibility relations 

are used to model the convective fluxes, whereas viscous 

fluxes are calculated through averaging [26].  

 

4. Convective fluxes 

 

Fig. 1 demonstrates domain of influence which is 

the intersection of local Mach cone (or ellipse) with time 

level n. As seen in Fig. 2, four pseudo-waves are selected 

and Eqs. (13) are discretized along them to observe the 

physical behavior of domain of influence for face .      

 

 
 

Fig. 1 Intersection of local Mach cone with time level plane 

 In Fig. 2, φ1 to φ4 are the angles between -axis and 

normal vector to the presented directions. To evaluate con-

vective flux at face , the (φ1, φ2) pseudo-acoustic waves 

corresponding to 
 
direction and (φ1, φ4) waves corre-

sponding to direction are selected. There, 
 
is normal 

vector to common face between (i, j) and (i+1, j) and 
 
is 

normal to . Different wave numbers and directions can be 

selected with corresponding compatibility relations for eval-

uating interface values. For choosing (φ1) of face , the 

intersection of the line between midpoint of face  and 

the center of cell (i+1, j) with Mach ellipse is considered. 

The value of φ1 is determined by tangent to Mach ellipse at 

this point. This procedure is repeated for other waves. Using 

Eqs. (12), six compatibility equations corresponding to φ1 

and φ2 are obtained as follows: 
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 Here, nt1 and nt2 obtained from Eq. (7) with respect to 

wave angles φ1 or φ2 where positive sign of nt is used. Sim-

ilar compatibility equations can be written for waves φ3 and 

φ4. Discretizing Eqs. (13) along with their corresponding 

paths, yields the following system of equations: 
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where: A, B, C, D, E, F can be determined from Eqs. (7) and 

(13) as follows: 
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Fig. 2 MACB stencil for evaluating convective fluxes 

 

Similar procedure is done for φ3 and φ4. In Eqs. 

(14), p*, u*, ν* and T* denote the flow variables at cell inter-

faces. At first, u* and p*are calculated from the first and forth 

relations and the p* and ν* are determined using second and 

fifth relations. Then, T* and p*are calculated from third and 

sixth relations of Eqs. (14). An average of p* is then consid-

ered as final value. Each equation includes flow information 

which is transported from time  to time m+1 and none of 

them can be ignored. The calculated values for and ν* 

from Eq. (14) are projected onto direction and similarly, 

the obtained values from corresponding φ3 and φ4 compati-

bility relations are projected onto direction  in order to find 

the velocity components on the cell interface ''*''.  

 

4.1. Viscous fluxes and time integration 

 

Viscous fluxes are computed by variables deriva-

tives at the cell interfaces as shown in Fig. 3. For example, 

the first-order derivative at side AB is determined as fol-

lows: 
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where S' is the area of AMBN. Typically, one may use  
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For time discretization, a 4th-order Runge-Kutta 

method was used.  
The limitation of proposed scheme could be the nu-

merical range of connective parameter. Also, viscosity has 

not been taken into account in deriving the characteristic 

equation. The benefits of applied research methodology in-

clude almost second order accuracy within lesser computed 

time. 

 
 

Fig. 3 Secondary cell for discretization of viscous terms 

 

5. Results and discussion 

 

5.1. Square cavity with heat transfer 

 

To validate the present MACB code, the results 

were compared with [27-29]. At solid walls, no-slip condi-

tions are applied. The top and bottom walls are maintained 

at non-dimensional temperatures and side walls are ther-

mally insulated. The u-velocity profile is presented and 

compared with CB and central scheme [28] benchmark so-

lution in Fig. 4. The MACB scheme requires no artificial 

viscosity even at high Reynolds numbers. The results of 

MACB scheme for vorticity are compared with their coun-

terparts where the agreement is remarkable Fig. 5. 
 

 
 

Fig. 4 Comparison of velocity profile along vertical center-

line of cavity at Re = 1000 on 40×40 grid 

The Bossinesq approximation is employed and 

Prandtl number was set to 0.71 in all cases. An appropriate 

range for η is obtained by numerical tests and lies between 

one and two. To evaluate the accuracy and convergence of 

MACB scheme with conventional methods, a couple of sim-

ulations were conducted at different Reynolds and Grashof 

Numbers. Also, conventional CB was tested and its results 

were reported here. A typical error norm is defined as: 

Fig. 6 demonstrates typical convergence histories 

of MACB and conventional CB scheme using the averaging 

method for energy equation at Re = 3162 and Gr = 106 on 

the same grid structure. As seen, MACB scheme presents 

the most rapid convergence than averaging and conven-

tional CB schemes. 

m
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Fig. 5 Comparison of vorticity along the vertical centerline 

at Re = 1000 by MACB scheme on 128×128 uniform 

grid with that of Botella and Peyret [30] 

 
 

Fig. 6 Convergence history of temperature for MACB, con-

ventional CB and flux averaging at Re = 3162,  

Gr = 106 
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According to results, the maximum permissible 

CFL number for Re = 1000 and Gr = 100 on 80×80 uniform 

grid can be increased up to 1.6 for MACB, while it is limited 

to 0.9 for conventional CB.  

The temperature fields and streamlines are de-

picted for Re = 1000 and Gr = 100 on 128×128 uniform grid 

and Re = 3162 and Gr = 106 on 256×256 uniform grid in 

Figs. 7 and 8, respectively. The isotherms are clustered close 

to the bottom wall which points to the existence of steep 

temperature gradients in the vertical direction in this region. 

These temperature gradients are weak on the other portion 

of cavity.  

 

 
 

Fig. 7 Computed streamlines and isotherms at Re = 1000, 

Gr = 100 on 128×128 uniform grid: (a) streamlines 

of MACB, (b) isotherms of MACB, (c), streamlines 

of Iwatsu et al. [31], (d) isotherms of Iwatsu et al. [31] 

 
 

Fig. 8 Computed streamlines and isotherms at Re = 3162, 

Gr = 106 on 256×256 uniform grid: (a) streamlines of 

MACB, (b) isotherms of MACB, (c), streamlines of 

Cheng and Liu [32], (d) isotherms of Cheng and Liu 

[32] 

Fig. 9 shows the verification of the results for tem-

perature profiles. In the limit, when the top wall is station-

ary, i.e. Re→0, the corresponding temperature distribution 

approaches the linear profile obtained by conduction. In 

contrary, when the buoyancy effect is minor, Gr/Re<<1, in 

the middle portion of cavity the temperature changes are 

very small and rapid changes in temperature distribution oc-

cur in adjacent of top and bottom walls. 
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Figs 10 and 11 respectively refer to the results of 

u- and v-velocity profiles along horizontal line through the 

cavity centerline using MACB scheme in comparison with 

results of [31]. These figures demonstrate the change in 

basic flow character as Gr increases at a fixed Re.  

 

5.2. Forced convection around a circular cylinder 

 

In this section, steady and transient forced convec-

tion heat transfer around a circular cylinder was investigated 

using MACB as a benchmark. The far field boundary has 

intelligently been separated by the condition ˆ .V n̂  which 

shows  the  flow  direction.    For  flow  around  cylinder   at 

  
 

Fig. 9 Comparison of results for temperature profiles along 

vertical centerline, MACB and Iwatsu et al. [31] at 

Re = 400 and (a) Gr = 102, (b) Gr = 104, (c) Gr = 106 

on 80×80 uniform grids 

 
 

Fig. 10 Comparison of u-velocity profiles along vertical 

centerline, MACB and Iwatsu et al. [31] at Re = 400 

and (a) Gr = 102, (b) Gr = 104, (c) Gr = 106 on 80×80 

uniform grids 

 
 

Fig. 11 Comparison of v-velocity profiles along horizontal 

centerline, MACB and Iwatsu et al. [31] at Re = 400 

and (a) Gr = 102, (b) Gr = 104, (c) Gr = 106 on 80×80 

uniform grids 

Re≤40, the regime is steady and increasing Re leads to ap-

pearing of transient nature of flow. Fig. 12 shows conver-

gence history of MACB and convectional CB scheme using 

the averaging method for energy equation at Re = 100 on 

80×80 grid. Fig. 1 demonstrates transient temperature con-

tour at Re = 150.  

 
 

Fig. 12 Convergence history of MACB and conventional 

CB and flux averaging at Re = 100 

 
Fig. 13 Instantaneous temperature contour at Re = 150 
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Table compares the mean Nusselt number of 

MACB scheme and experimental results. Fig. 14 shows re-

sults of Comparison of the local Nu distribution along the 

cylinder surface between MACB and Baranyi [39]. Fig. 15 

demonstrates pressure coefficient distribution along the cyl-

inder surface. 

 

Table 

Comparison of mean Nusselt number for laminar 

flow passing through a circular cylinder 

Range of 

Re 

Author Mean Nu 

number 

Re = 10 

Karamers [33] 2.00 

Fand [34] 1.79 

Whitaker [35] 1.34 

MACB 1.72 

Re = 20 

Karamers [33] 2.67 

Fand [34] 2.45 

Whitaker [35] 1.93 

MACB 2.35 

Re = 40 

Karamers [33] 3.62 

Perkins and Leppert [36] 2.67 

Fand [34] 3.39 

Perkins and Leppert [37] 2.83 

Whitaker [35] 2.80 

MACB 3.25 

Re = 50 

Karamers [33] 3.99 

Perkins and Leppert [36] 3.03 

Fand [34] 3.78 

Perkins and Leppert [37] 3.21 

Whitaker [35] 3.16 

MACB 3.63 

Re = 150 

Karamers [33] 6.64 

Perkins and Leppert [36] 5.67 

Fand [34] 6.52 

Perkins and Leppert [37] 6.03 

Whitaker [35] 5.72 

Churchill and Bernstein 

[38] 

6.22 

MACB 6.21 
 

 
 

Fig. 14 Comparison of the local Nusselt number distribution 

along the cylinder surface, MACB and Baranyi [39] 

at, (a) Re = 50 and (b) Re = 150 

 
 

Fig. 15 Pressure coefficient for Re = 10, 20, 40, 50 and 150 

on 80×80 uniform grids 
 

6. Conclusions  

 

Present study proposes a new multidimensional ar-

tificially characteristic-based (MACB) scheme for simula-

tion of incompressible viscous flows with heat transfer. 

Multidimensional characteristic structure for energy propa-

gation in incompressible flow is derived for the first time. 

The proposed MACB scheme is used in finite-volume form 

to evaluate convective fluxes with heat transfer in a square 

cavity for a wide range of Reynolds and Grashof numbers 

and forced convection around a circular cylinder. Also, for 

comparison purposes, the CB scheme with averaging for en-

ergy equation is used. It was found that MACB has remark-

able faster convergence in comparison with CB scheme and 

averaging methods. At higher Richardson numbers, the con-

ventional flux averaging was failed to converge properly. 

Obtained results using new proposed scheme are in good 

agreement with the benchmark solutions in the literature. 
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S. E. Razavi, A. Rostamzadeh, S. M. Mirsajedi 

 

TOWARDS MULTIDIMENSIONAL ARTIFICIALLY 

CHARACTERISTIC-BASED SCHEME FOR 

INCOMPRESSBLE THERMO-FLUID PROBLEMS 

S u m m a r y 

A new multidimensional artificially characteristic-

based (MACB) scheme is presented for simulation of in-

compressible viscous flows with heat transfer. Multidimen-

sional characteristic relations for energy propagation in in-

compressible flow are derived for the first time. According 

to the new scheme, two-dimensional flow with heat transfer 

in a square cavity and forced convection around a circular 

cylinder are solved for a wide range of Reynolds and 

Grashof numbers. It was found a remarkable faster conver-

gence of MACB in comparison with conventional CB 

scheme. Also, by using MACB scheme, maximum permis-

sible CFL number can be increased 80 percent in compari-

son to CB scheme. At higher Richardson numbers, the con-

ventional flux averaging fails to converge properly, while 

MACB scheme presents the most rapid convergence. The 

computed results of MACB scheme are in good agreement 

with the benchmark solutions. 

 

Keywords: incompressible flow, multidimensional charac-
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ibility, heat transfer, square cavity, circular cylinder. 
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