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1. Introduction 
 

The analysis of load distribution in the threads is a 
prerequisite for determining stress concentration and fa-
tigue durability of the threaded connection which can be 
subjected not only to axial force but also simultaneously to 
bending moment. In engineering practice, the loading is 
usually asymmetric or eccentric and this causes bending 
moments to be applied to structures or to it’s elements such 
as rods and the threaded joints also [1-6]. 

The experimental study of the effect of bending 
directly on the distribution of stresses along the helix of the 
thread root by using photoelastic models is presented in 
[6]. However in analytical detailed calculations of the stud 
fatigue strength the turn loads and the loads in cross-
sections of stud/bolt core are determining primarily and 
then the stresses in turn roots [7]. Previous analytical 
analysis of the load distribution in threads due to multiple 
loading which includes bending moments and also axial 
and tangential forces is presented in [8]. However here this 

is performed without estimation of turn deflections influ-
ence on bolt core and nut wall displacements. In the article 
[9] the equation for the compatibility of bent threaded con-
nection elements’ displacement and analytical solution of 
this equation are obtained from the fundamental theory of 
elasticity. Here, the threaded connection presents one seg-
ment model of full profile turns which disregards runouts 
in the nut.  

For more accurate analysis of load distribution 
along the thread due to bending of the threaded connection 
it is useful to estimate the influence of runouts also. The 
most interest occurs in the case of coarse-pitch thread. 
Then the both runouts are located in a great part of the nut. 
That is close to the third part in the standard nut length. 

This paper describes a modification to the theory 
given in [9] and models the threaded connection by three 
longitudinal segments. The first and third segments here 
represent runouts where turns have partial engagment 
(Fig. 1). 
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Fig. 1 Scheme of threaded connection: a – loading of threaded connection: 1 - stud, 2 - nut, 3 and 4 - runouts, 5 - helix of 
the stud thread pitch diameter, 6 - cross-section of the stud; b – turn pairs pliability graph: 7 - pliability of the fully 
engaged turns, 8 and 9 - turn pair pliabilities in runouts  

2. Positions of threaded connection elements 
 

In the present model a threaded connection is di-
vided into three segments i (i = 1; 2; 3) which pliabilities 
of turn pairs are described by separate functions (Fig. 1). 
Pliability of the turns in the middle segment H2 is constant 
(γ(z2) = γ = const). Contact depth of the stud and nut turns 
within the segments H1 and H3 (in runouts) varies 
(Fig. 1, b). Therefore the pliability of the turn pair here 
varies also (γ(z1) ≠ const, γ(z3) ≠ const). The length of these 

segments is equal to the thread pitch: H1 = P and H3 = P. 
In the model the origin of any cross-section loca-

tion coordinate z = zi (i = 1; 2; 3) is receded from the free 
end of the nut on a phase length zf, which is designed to set 
a position of the threaded connection with respect to longi-
tudinal axis thus with respect to bending plane also. So the 
coordinate z of any cross-section always is linked with its 
distance ž from the free end of the nut by equality z = zf + ž. 
Position for any thread helix point now can be expressed 
by turning angle α (which is equal to α* shown in Fig. 1) 

z2

z 

qt+qb

Ft

H 

Mf1 

2 

zH2, z03

ž 

zf

z3

z1
z01

zH1, z02

zH3Rsin(cz)

γ (z)

6 

5 9

7 

8 

qt − qb

a

R

x 

b 

H1

H2

H3

4 

α* 

3 

mailto:ma@fm.vgtu.lt


 6

Last-mentioned displacements are caused by in-
ternal axial force Q(z) and internal moment M(z) which 
even act to the stud core and to the nut wall but in opposite 
direction. The load intensity q

in the following way 

czz
P

==
πα 2       (1) 

t(z) and turn pair deflection 
δt(z) caused by tightening can be calculated by the method 
given in [10]. Further there are analysed regularities of the 
load intensity q

Chanching of the phase length value zf gives a po-
ssibility to set position of the bottom runout origin with 
respect to bending plane by the value of z

b(z) and the turn pair deflection δb(z) due to 
bending only as was desined to present in this paper.  03. This is neces-

sary because turn pairs near the bearing surface of the nut 
are mostly loaded in the area around z

It is seen in Fig. 3 that turn pair deflection has re-
lation with inter-deviation of the stud and nut cross-
sections. The compatibility of displacements of these ele-
ments in any segment i of threaded connection can be ex-
pressed by the following equation  

03 and can be in va-
rious positions. The four specific positions (positions I, II, 
III, IV where sin(cz03) = 1, 0, 0, -1) of the threaded connec-
tion in respect to bending plane are shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Specific positions of runout at the bearing surface of 

nut: a, b, c, d – I, II, III, IV runout positions: 1 - stud 
core, 2 - runout origin, 3 - turns contact area in ru-
nout 

 
3. Differential equation for turn deflections 
 

External load of the threaded joint can be schema-
tized by two main components. It is axial load of tighte-
ning Ft and external bending moment Mf (Fig. 1, a). There-
fore on turns of the stud and nut in opposite directions arise 
equal distributed longitudal load intensities qt(z) and qb(z) 
caused by tightening and bending respectively (Fig. 1). 
Due to the action of these loads the proportional turn pair 
deflections δt(z) and δb(z) occur (Fig. 3) 

)()()( zqzz tt γδ = ,      )()()( zqzz bb γδ =    (2) 

The relations of these turn pair deflections to the 
stud and the nut cross-sections displacements are shown in 
Fig. 3.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Displacements of the threaded connection elements: 

a – due to tightening; b – due to tightening and ben-
ding; 1, 2 - cross-sections of the stud and the nut,  
3 - turn pair 
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where φs(z) ≈ tanφs(z) and φn(z) ≈ tanφn(z) are deviations of 
the stud and nut cross-sections, z = zi, z0 = z0i is coordinate 
of the segment i origin.  

According to the theory of elasticity the devia-
tions of the stud and nut cross-sections are 
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where Es and En, Is and In are modulus of elasticity and 
moments of inertia of the cross-sectional area for the stud 
core and the nut wall respectively.  

Bending moment in cross-section of any segment 
by using Eq. (2) and certain designation could be 
expressed in the following forms 
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where m(z) is local moment due to qb(z) [8] and y(z) is the 
function which expresses variation of turn pair deflection 
amplitude. 

Now by using Eqs. (4), (5), (7), (8) the Eq. (3) 
was rewrited in the other form and differentiated two ti-
mes. Hereby were found 
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where λ = 1/(EsIs)+1/(EnIn). 
The next equation which can be used to express 

the boundary conditions for any segment i at z = z0i and 
z = zHi is obtained from Eqs. (7), (9) 
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Because the turns pliability in the middle segment 
H2 is constant and in runouts (in segments H1 and H3) it is 
variable the differential Eq. (10) must be solved separate. 
 
4. Analytical solution for middle segment H2
 

In segment H2 of the threaded connection 
γ(z2) = γ = const. Therefore the differential Eq. (10) can be 
rewrited 

0)()(-)( =′′ zsinzbyzy    (12) 

where b = R2λ/γ is constant factor. 
The approximate analytical solution of Eq. (12) 

was postulated in the next form 

)()()( 22222 nzcoshBnzsinhAzy +=   (13) 

Further factor n of Eq. 13 must be find. At first af-
ter substitution of y′(z2) in Eq. (11) the next expression for 
certain mean bending moment was got 
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Another expression for bending moment was got 
after substituting of Eq. (13) into Eq. (7) and after integra-
ting within it 
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To determine expression for factor n was used 
equality of Eqs. (14) and (15), i.e., . 
When cz

)()( ∗∗ = czMczM m
* = k1(P/4), where k1 = 0, 1, 3, 5.., and when 

cz* = k2(P/2), where k2 = 0, 1, 2, 3.., from this equality were 
obtained two expressions respectively 
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Both these expressions give practically the same 
value of the factor n. For example, in the case of connec-
tion M16×2 the values of this factor are n = 0.15640 and 
n = 0,15630. In the sixth chapter numerically it is shown 
that the value of n defined by using Eq. (16) is right for all 
values of z, not only for z*.  

Thus, the analytical solution for segment H2 
express Eq. (13) (to find δb(z2) and qb(z2) from Eq. (8)) and 
Eq. (15) to find M(z2). 

The factors A2 and BB2 of Eqs. (13) and (15) can be 

found by using boundary conditions of all segments toge-
ther. 
 
5. Analytical solutions for runouts 
 

In the runouts, i.e., in segments H1 and H3 of the 
threaded connection γ(zi) ≠ const (i = 1 or 3). The variation 
of the turn pair pliability in length of any runout was desc-
ribed by the following formula 

ii zu
ii eVz =)(γ   (18) 

where Vi and ui are constant factor and power exponent 
which can be defined according to the tensile test results of 
the turn’ pairs, egaged over the incomplete profile [10]. 
They have been defined by using the known fully engaged 
turns’ pliabilities in one edge of segment H1 or H3 where 
γ(z ) = γ and γ(zH1 03) = γ, and also the experimental turns’ 
pliability factors in the middle of these segments. By using 
data given in [10] the corresponding ratio was determined: 
γ(z - P/2)/γ ≈ 1.67 or γ(z + P/2)/γ ≈ 1.67. H1 03 

The approximate analytical solution of differential 
Eq. (10) for runouts was postulated in the following form 
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where nAi, WAi, nBi and WBi are the factors which need to 
find, fAi and fBi are designations (further indexes Ai = A, 
BBi = B at i = 1 and i = 3).  

At first after substitution of y′(z) in Eq. (11) the 
next expression for certain fictional bending moment was 
obtained 
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Another expression for bending moment for ru-

nouts was obtained after substituting of Eqs. (18) and (19) 
into Eq. (7) and after integrating within it 
 

[ ]
=

+
+= ∫ ii

z

z
zu

i

iBiiAi
ii dzczsinR

eV
zfBzfAzMzM

i

i
ii

)()()()()( 2
0

0

 

)()( iBiiAi zFBzFA +=       (21) 
 
where F (zA i) and F (zB i) are designations which can be 
expressed in the following common form  
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where ω = Ai or ω = BBi, t = tω = nω − ui, V = Vi, p = p = t + 2 

ω 
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+ 4c , z = z2
i, i = 1 or i = 3; where are dual signs the upper 

sign is valid at ω=Ai and the under sign is valid in the case 
of ω = BiB .  

To determine four unknown factors nAi, WAi, nBi 
and WBi was used equality of Eq. (20) to Eq. (21) i.e., 

 at  and 

. The factors n
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Further in analogous way the factors nBi and WBi 

can be solved from similar equations system also 
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 b 
These two systems authors solved numerically by 

using the suite of mathematical programs Maple-9. By 
numerical experiments authors persuaded that it is enough 
to have coincidence of the functions  and 

 in two points only and that chosen coordinates  
give the most calculation results accuracy of the load distr-
bution in runouts. 
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Thus, the analytical solution for segments H1 and 
H3 (where i = 1 or i = 3) express Eq. (19) (to find δb(zi) and 
qb(zi) from Eq. (8)) and Eq. (21) to find M(zi).  Eventually unknown factors A and Bi Bi for all three 
segments (now i = 1, 2, 3) can be found by using the sys-
tem of equations, which expresses all segment’s boundary 
conditions 
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6. Calculation results 
 

The calculation of load distributions along the 
threads first has been made by using the approximate ana-
lytical method given in the chapters 3, 4 and 5. The objects 
of this calculation were threaded connections M16×2, 
M16×1.5, M16×1, M52×4 and M110×6 with compressed 
nut (height of the nut H = 0.8d) – made from grade 
25X1MФ steel. 

 
d 
 

Fig. 4 Loads distribution in bent threaded joint M16×2: a, 
b, c, d - I, II, III, IV bottom runout positions; ana-
lytical solutions: 1, 3 - qb(z) in runouts, 2 - qb(z) in 
middle segment, 4 - y(z)/γ(z), 5 - y(z)/γ(z) for model 
without runouts, × - numerical solutions of y(z)/γ(z), 
dashed line – cross-section at z

Then the differential Eq. (10) writed for both ru-
nouts and differential Eq. (12) for the middle segment of 
threaded connection were solved separate numerically by 
Runge–Kutta method. (It was realized by using the suite of 
mathematical programs Maple-9). For this the same boun-
dary conditions M(z0i) of every segment obtained in the 
analytical solution were used. The calculation results are 
presented with reference to the real coordinate ž = z – zf of 
the cross-section of threaded connection in Figs. 4-7. 

03–zf
 

Average indices of mechanical properties of 
conections grade 25Х1МФ steel: proof strength 
R = 860 MPa, tensile strength Rp0.02 m = 1010 MPa, percent-
age area of reduction of tension specimen Z = 60.2%, mo-
dule of elasticity E = 210 GPa. 

Pliabilities for one turn pair (made from grade 
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25Х1МФ steel) for every thread were established experi-
mentally by the technique given in [10]: γ  = 3.78×10- 3  ; 
4.37×10-3 ; 7.31×10-3 ; 3.54×10-3  and  
3.26×10-3  mm/(kN/mm) for threads M16×2, M16×1.5, 
M16×1, M52×4 and M110×6 respectively.  

The calculations of turn load amplitude function 
y(z)/γ(z), qb(z) and M(z) for connections M16, M52 and 
M110 have been performed at external bending moment Mf 
applied to the studs which values caused the ratio of nomi-
nal maximal normal stresses in the stud with the proof 
strength to be σb,nom,max/Rp0.02 = 0.31. For threaded connec-
tions M16×2 the total turn loads and total local stresses in 
stud thread have been determined also. In this case the turn 
loads and local stresses due to tightening have been obtai-
ned at σt,nom,max/Rp0.02 = 0.6 from the method presented in 
[10], which gives the possibility to estimate the influence 
of runouts. 

The calculation results given in Figs. 4-6 show the 
serviceability of the three segments analytical model to 
estimate position, pitch and size of threaded connection 
subjected to bending. 
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Fig. 5 Turn load due to bending amplitude functions for 

threaded connections M16 in position I:  
1 – P = 2 mm , 2 – P = 1.5 mm, 3 – P = 1 mm; lines 
- analytical solutions, × - numerical solutions of 
Eqs. (10, 12) 
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Fig. 6 Relative turn load due to bending amplitude func-

tions: 1 – M52×4 in position I, 2 – M110×6 at posi-
tion I, lines - analytical solutions, × - numerical so-
lutions of Eqs. (10 and 12)   

 
In Fig. 7 the variation of the internal bending 

moment M(z) in stud M16×2, which has been calculated by 
using three segments analytical model (Eqs. (15 and 21)) is 
shown also. 

The values of turn load (due to bending) ampli-

tude functions and M(z) obtained by Runge-Kutta method 
in Figs. 4, 5, 6, 7 are shown by criss-cross. These values 
differ from corresponding values obtained by analitical 
method less than by 1%. 
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Fig. 7 Bending moment distribution in threaded joint 
M16×2 in position I: 1 – with estimating of runouts, 
2 – model without runouts, lines - analytical solu-
tions, × - numerical solutions of Eqs. (10 and 12)   

 
As at the worst the maximal turn load location 

found after tightening in the stud (aproximately at z ≈ z03) 
is in it’s bending plane and coincides with the location of 
the maximum turn load caused by bending. This occurs 
when the threaded connection is in position I. The ditribu-
tion of the total turn loads for this connection position is 
presented in Fig. 8. 
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Fig. 8 Load distribution along the thread in connection 

M16×2 at position I: 1 – turn loads qt(z) due to 
tightening, 2 – q (z) =  qsum t(z) + qb(z); H = 12.8 mm  

 
In strength calculation norm for nuclear 

equipments [11] the fatigue durability is estimating accor-
ding the local conditional elastic stresses σ*. These stresses 
for axial loaded stud thread which arise at tightening were 
calculated by using the following formula [1] 
 

t,
s

t
t,m

t*
t K

A
zQK

f
Pzqz 0

)()()( +=σ     (28) 

 
here ,  are concentration factors of stresses due to 
the axial force Q

t,K0 t,mK

t(z) and the stud turn load qt(z) respec-
tively; As is cross-sectional area of the stud core; f is the 
turn’s contact surface projection into the plane, perpen-
dicular to the stud axis; P is the thread pitch. The values of 
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elastic stresses concentration factors, defined in work [1] 
are:  and , at the turns’ root rounding-
up radius being R = 0.144P. 

20 =t,K 951,K t,m =
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Fig. 9 Distribution of local conditional stresses along the 
thread in stud M16×2: a, b, c, d – I, II, III, IV posi-
tions of connection; 1 - due to tightening, 2 – 

total local stresses ; dashed line – cross-
section at z

)(z*
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03–zf; H = 12.8 mm  
 

The conditional elastic stresses in stud thread due 
to bending were calculated on the analogy of Eq. (28) 
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here and  are concentration fac-

tors of the stresses due to bending moment M(z) and the 
stud turn load qb(z) respectively; kr is factor which esti-
mates difference between the local stresses in the stud at 
bending and at it’s tension; here was assumed kr ≈ 0.9 after 
analysis of concentration factors of the notched rods. 

The total local stresses in the thread of the stud 
are 
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*
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Distribution of local conditional stresses along the 
thread in stud M16×2 for connection positions I, II, III, IV 
are shown in Fig. 9. The stress  as q)(z*

Σσ sum (z) have 
maximum at position I of connection (aproximately at 
z ≈ z03). At the position IV it has minimum value, which is 
by 8% less than that at connection position I.  

For comparison purpose the local stresses  
for the stud thread M16×2 have been calculated also by 
using one segment model where runouts are neglected 
(Fig. 10).  
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Fig. 10 Distribution of local conditional stresses along the 

thread in stud M16×2 according to one segment 
model: 1, 2, 3, 4 – total local stresses  at 
connection positions I, II, III, IV, 5 – local 
stresses  due to tightening; H = 12.8 mm  
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In this case the stud total local stresses  

have maximum at the connection being in position I but at 
z = z

)(z*
Σσ

H3 (on curve 1 in Fig. 10). This maximum value is by 
21% greater than that in the case of three segments model 
(on curve 2 in Fig. 9, a). The maximum value of the stud 
local stresses due to bending  is by 22% greater in 
the case of one segment model also (at connection position 
I and at z = z

)(z*
bσ

H3) than that in the case of three segments mo-
del (at connection position I and at z ≈ z ). 03
 
7. Conclusions 
 

1. The differential equation for the compatibility 
between deflections of the partly engaged turn pair and 
deviations of the stud and nut cross-sections in runouts of 
the threaded connection subjected to bending is derived. 
The approximate analytical solution of this equation is 
proposed also. 

2. For the bent threaded connection the designed 
three segments model gives a possibility to estimate the 
influence of the runouts and of the connection position t,rb, KkK 00 ≈ t,mb,m KK ≈
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upon the load distribution along the thread. The turn load 
calculation results for the threaded connections M16, M52 
and M110 obtained by using approximate analytical solu-
tions and obtained by using numerical Runge-Kutta me-
thod differ very slight – less than 1%. 

A. Krenevičius, Ž. Juchnevičius, M. K. Leonavičius 
 
TRIJŲ RUOŽŲ LENKIAMOS SRIEGINĖS JUNGTIES 
MODELIS 
 

3. In dangerous cross-sections the maximum and 
minimum values of the greatest total local stresses in stud 
threads occur when threaded connection is in the positions 
I and IV respectively. These values differ by 8% in the case 
of threaded connection M16×2 considered by using three 
segments model. 

R e z i u m ė 
 

Straipsnyje pateiktas trijų ruožų lenkiamos sriegi-
nės jungties modelis apkrovų pasiskirstymui sriegyje ap-
skaičiuoti. Modelis leidžia įvertinti jungties kraštinių vijų, 
sukibusių ne visu profiliu, ir jungties padėties lenkimo 
plokštumos atžvilgiu įtaką. Sudarytos lenkiamos srieginės 
jungties elementų poslinkių suderinamumo lygtys. Nusta-
tyti jų sprendiniai – skaitiniai ir apytiksliai analitiniai.  

4. The maximum thread local stresses  and 

 in the stud at its’ beeing in the position I and deter-
mined by using three segments model are noticeably less 
than these stresses in the case of one segment model. The 
both differences of the maximum stresses of  and of the 

maximum stresses of  obtained for the threaded connec-
tion M16×2 exceed 20%. 

*
Σσ

*
bσ

 
 
A. Krenevičius, Ž. Juchnevičius, M. K. Leonavičius *

Σσ
 *

bσ THE MODEL OF THE BENT THREADED 
CONNECTION IN THREE SEGMENTS  

  
References S u m m a r y 
  
1. Machutov, N.А., Stekolnikov, V.V., Frolov, K.V., 

Prigorovskij, N.I. Constructions and Methods of Cal-
culation of Water-Water Power Reactors. -Moscow: 
Nauka, 1987.-232p. (in Russian). 

For the calculation of load distribution between 
turns the threaded connection subjected to bending is mod-
eled by three segments. The model gives a possibility to 
estimate the influence of runouts and of the connection 
position with respect to bending plane. The equations for 
the displacements compatibility of threaded joint elements 
for every segment are constructed. The numerical and ap-
proximate analytical solutions for these equations are ob-
tained. 

2. Leonavičius, M., Šukšta, M. Shakedown of bolts with 
a one-sided propagating crack. -Journal of Civil Engi-
neering and Management. -Vilnius: Technika, 2002, 
vol.VIII, Nr.2, p.104-107. 

3. Tumonis, L., Schneider, M., Kačianauskas, R., 
Kačeniauskas, A. Comparison of dynamic behavior of 
EMA-3 railgun under differently induced loadings. 
-Mechanika. -Kaunas: Technologija, 2009, Nr.4(78), 
p.31-37. 

 
 
А. Крeнявичюс, Ж. Юхнявичюс, М. К. Ляонавичюс 
 

Atkočiūnas, J., Merkevičiūtė, A., Venskus, A., et al. 
Nonlinear programming and optimal shakedown of 
frames. -Mechanika. -Kaunas: Technologija, 2007, 
Nr.2(64), p.27-33. 

4. МОДЕЛЬ ИЗГИБАЕМОГО РЕЗЬБОВОГО 
СОЕДИНЕНИЯ 
 
Р е з ю м е 

5. Daunys, M., Bazaras, Z., Timofeev, B. Low cycle 
fatigue of materials in nuclear industry. -Mechanika. 
-Kaunas: Technologija, 2008, Nr.5(73), p.12-17. 

 
В статье представлена модель изгибаемого 

резьбового соединения, которое схематизированного 
тремя участками. Модель предназначена для расчета 
распределения нагрузок по виткам соединения и дает 
возможность учитывать как влияние крайних, выходя-
щих из зацепления витков соединения, так и влияние 
положения резьбового соединения по отношению к 
плоскости изгибающего момента. Для каждого участка 
составлены уравнения совместимости перемещений 
элементов изгибаемого резьбового соединения. Полу-
чены соответствующие дифференциальные уравнения 
и их решения – численные и приближенные анали-
тические. 

6. Burguete, R., Patterson, E. The effect of eccentric 
loading on the stress distribution in thread roots.  
-Fatigue. Fracture of Engineering Materials. Structures. 
1995, vol.18, No. 11, p.1333-1341. 

7. Patterson, E. A Comparative study of methods for 
estimating bolt fatigue limits. -Fatigue and Fracture of 
Engineering Materials and Structures, 1990, v.13, No1, 
p.59-81. 

8. Yazawa, S., and Hongo, K. Distribution of load in 
screw thread of a bolt-nut connection subjected to tan-
gential forces and bending moments. -JSME Interna-
tional Journal, 1988, Series I, vol.31, No.2, p.174-180.  

9. Krenevičius, A., Juchnevičius, Ž. Load distribution in 
the threaded joint subjected to bending. -Mechanika. 
-Kaunas: Technologija, 2009, Nr.4(78), p.12-16. 

Received March 27, 2010 
Accepted July 2, 2010 

10. Selivonec, J., Krenevičius, A. Distribution of load in 
the threads. -Mechanika. -Kaunas: Technologija, 2004, 
Nr.2(46), p.21-26. 

11. Norm for Calculation of Nuclear Power Equipments 
and Pipelines Strength. -Moscow: Energoatomizdat, 
1989.-525p. (in Russian). 


	ISSN 1392 - 1207. MECHANIKA. 2010. Nr.4(84) 
	The model of bent threaded connection in three segments 
	A. Krenevičius*, Ž. Juchnevičius**, M. K. Leonavičius*** 
	*Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania, E-mail: kron@fm.vgtu.lt 
	**Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania, E-mail: ma@fm.vgtu.lt  
	1. Introduction 



	Fig. 1 Scheme of threaded connection: a – loading of threaded connection: 1 - stud, 2 - nut, 3 and 4 - runouts, 5 - helix of the stud thread pitch diameter, 6 - cross-section of the stud; b – turn pairs pliability graph: 7 - pliability of the fully engaged turns, 8 and 9 - turn pair pliabilities in runouts  


