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1. Introduction

There are many engineering applications of com-
monly used structures, such as rods, annular disks, cylin-
drical and spherical shells when subjected to different
loading and boundary conditions. Deformation and stress
analysis of thick-walled cylinders subjected to either inter-
nal or external pressure is an important topic in engineer-
ing because of their rigorous applications in industry as
well as in daily life. For this reason, the classical problem
of a pressurized thick hollow cylinder has been the topic of
a variety of theoretical investigations.

Naghdi and Cooper [1], assuming the cross shear
effect, formulated the shear deformation theory (SDT).
Mirsky and Hermann [2], derived the solution of thick cy-
lindrical shells of homogenous and isotropic materials,
using the first shear deformation theory (FSDT). Green-
spon [3], opted to make a comparison between the findings
regarding the different solutions obtained for cylindrical
shells. Making use of Mirsky-Hermann theory and the fi-
nite difference method (FDM), Ziv and Perl [4] obtained
the vibration response for semi-long cylindrical shells.
Using SDT and Frobenius series, Suzuki et. al. [5], ob-
tained the solution of the free vibration of cylindrical shells
with variable thickness, and Takashaki et. al. [6] obtained
the same solution for conical shells. A paper was published
by Kang and Leissa [7] where equations of motion and
energy functional were derived for a three-dimensional
coordinate system. The field equations are utilized to ex-
press such energy functional in terms of displacement
components . The stress state of two-layer hollow bars in
which they are exposed to axial load is analyzed [8]. The
layers are made of isotropic, homogeneous, linearly elastic
material, and they are considered as concentric cylinders.

Assuming that the material properties vary
nonlinearly in the radial direction and the Poisson’s ratio is
constant, Zamani Nejad and Rahimi [9] obtained closed
form solutions for one-dimensional steady-state thermal
stresses in a rotating functionally graded pressurized thick-
walled hollow circular cylinder. A complete and consistent
3D set of field equations has been developed by tensor
analysis to characterize the behavior of FGM thick shells
of revolution with arbitrary curvature and variable thick-
ness along the meridional direction [10]. Using the analyti-
cal method for stress strain state of two-layer mechanically
inhomogeneous pipe subjected to internal pressure at elas-
tic plastic loading are analyzed by Brazenas and Vaiciulis
[11].

This article presents the general method of deriva-
tion and the analysis of an internally pressurized thick-

walled cylinder shell with clamped-clamped ends, taking
into account the effect of shear stresses and strains.

2. Classical theory

The plane elasticity theory (PET) or classical the-
ory is based on the assumption that the straight lines per-
pendicular to the central axis of the cylinder remain un-
changed after loading and deformation. According to this
theory, the deformations are axisymmetric and do not
change along the longitudinal cylinder. In other words, the
elements do not have any rotation, and the shear strain is
assumed to be zero. Thus, equilibrium equations are inde-
pendent of one another, and the coupling of the equations
is deleted. Therefore,
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The solution of the Eq. (3) is
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This method is applicable in problems in which
shear stresses and strains are considered zero. However, to
solve the problems such as the following it is not possible
to use the PET
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3. Shear deformation theory (SDT)

In SDT, the straight lines perpendicular to the
central axis of the cylinder do not necessarily remain un-
changed after loading and deformation, suggesting that the
deformations are axial axisymmetric and change along the
longitudinal cylinder. In other words, the elements have
rotation, and the shear strain is not zero.

In Fig. 1, the location of a typical point m (r),

within the shell element may be determined by R and z,
as

r=R(x)+z (6)
where R represents the distance of middle surface from
the axial direction, and z is the distance of typical point

from the middle surface.
In Eq. (6), X and z must be as follows
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where h and L are the thickness and the length of the
cylinder.
R(X) and inner and outer radii (I;, r,) of the cyl-

inder are as follows
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Based on PET, the radial displacement of the cyl-
inder is

U (1)=C (R+2)+ =2 ©)
Using the Taylor's expansion for |[—|<1,
ur(r):Cl(R+z)+&(l—£+Z—QZ+...) (10)
R R R
Thus,
U (1) =u, +uz+u,2° +.... (1)

According to Eq. (11), the radial displacement is
written in the form of a polynomial function of z . When
z =0, it shows the displacement of the mid-plane.

The general axisymmetric displacement field
(U,,U,), in the first-order Mirsky-Hermann's theory
could be expressed on the basis of axial and radial dis-
placements, as follows

U, (x,2) = U(X) + $(X)Z
U, =0
U, (%,2) = W(X) + p/(X)2

(12)

12

where U(X) and W(X) are the displacement components of
the middle surface. Also, ¢(X) and w(x) are the functions
used to determine the displacement field.
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Fig. 1 Cross section of the thick cylinder with clamped-
clamped ends

The strain-displacement relations in the cylindri-
cal coordinates system are
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In addition, the stresses on the basis of constitu-
tive equations for homogenous and isotropic materials are
as follows
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where o, and & are the stresses and strains in the axial
(x), circumferential (@), and radial (z) directions; v

and E are Poisson’s ratio and Young's modulus, respec-
tively.
The normal forces (N,,N,,N,), shear force

(Qy) » bending moments (M,,M,,M,), and the torsional

) in terms of stress resultants are
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On the basis of the principle of virtual work, the
variations of strain energy are equal to the variations of the
external work as follows

oU =oW (19)

where U is the total strain energy of the elastic body and
W is the total external work due to internal pressure. The
strain energy is
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where P is internal pressure .
The variation of the strain energy is
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The resulting Eq. (22) will be
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and the variation of the external work is
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Substituting Egs. (13) and (14) into Eq. (19), and
drawing upon calculus of variation and the virtual work
principle, we will have
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and the boundary conditions are

R[N,8U+M,54+Q,W+M,,dy]; =0 27)

Eq. (27) states the boundary conditions which
must exist at the two ends of cylinder. In order to solve the
set of differential equations (26), forces and moments need
to be expressed in terms of the components of displace-
ment field, using Egs. (15) to (18). Thus, set of differential
equations (26) could be derived as follows
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The set of equations (28) is a set of linear non-
homogenous equations with constant coefficients. The co-

efficients matrices [R ]4 K and force vector {F} are
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0 0 vh vRh equation in the set of Egs. (26) is integrated.
3
0 0 —uRh —(u-20) RN, =C, (34)
[A]= 121 30
—vh uRh 0 0 In Eq. (28), it is apparent that U does not exist,
3 but du/dx does. Taking du/dx as Vv,
“oRh (ﬂ_zu)r_z 0 0 ut du/dx does. Taking du/dx as
) ) u=[vdx+C, (35)
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where K is the shear correction factor that is embedded in 0 (1-v) Rh* 0 0
the shear stress term. 12
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The equations (36) are the set of nonhomogenous
linear differential equations with constant coefficients.



P(D){y}={F} “2)

The differential Eq. (42) has the general solution
including general solution for homogeneous case {y}g and

particular solution {y}p , as follows

=1y, ),

For the general solution for homogeneous case,
{y}g ={V}e™ is substituted in P(D){y}=0.

(43)

e™[m*[A]+m[A]+[A]]{vV}={0} (44)

Given that e™ =0, the following eigenvalue
problem is created.
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To obtain the eigenvalues, the determinant of co-
efficients must be considered zero.
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The result of the determinant above is a six-order
polynomial which is a function of m, the solution of
which is a 6 eigenvalues m;. The eigenvalues are 3 pairs
of conjugated root. Substituting the calculated eigenvalues
in Eq. (45), the corresponding eigenvectors {V }i are ob-

tained. Therefore, the general solution for homogeneous

Eq. (42) is

(49)

{y}y =2Ci{V e™

i=1
The constants C, to C, are obtained by applying
boundary conditions. Given that {F}is comprised of con-

stant parameters, the particular solution is obtained as fol-
lows.

v}, =[AT{F) (50)
Therefore, the general solution for Eq. (42) is
=2 {v}e™ +[A]'{F} (1)

i=1
In general, the problem consists of 8 unknown
values of C;, including C, (Eq. 34), C, to C; (Eq. 51),

and C, (Eq. 35). By applying boundary conditions, one
can obtain the constants of C;.

Given that the two ends of the cylinder are
clamped-clamped, then

(52)
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Based on PET in the plane strain state, radial
stress, circumferential stress and radial displacement are as

follows [13]:

P k®
"] ~
P k®
Oy _H{IJFWZI (54
= PET(ZHU) 1_2U+k_22 (56)
E(k —1) (7)

where T =r/r, and k=r,/r, .
5. Results and discussion

In this section, we present the results for a homo-
geneous and isotropic thick hollow cylindrical shell with
=40mm, h=20mm and L=800mm. The Young's

modulus and Poisson’s ratio, respectively, have the values
of E =200 GPa and v =0.3. The applied internal pressure
is 80 MPa.

The analytical solution is carried out by writing
the program in MAPLE 12. The numerical solution is ob-
tained through finite element method (FEM).



Table
Numerical results of the different solutions
o,,MPa | o,,MPa | o, ,MPa u,, mm
FSDT -27.56 155.62 36.24 0.03826
FEM -28.16 156.11 36.22 0.03843
PET -28.16 156.16 38.40 0.03827

Table presents the results of the different solu-
tions for the middle of the cylinder (Xx=L/2) and mid-

layer (z=0). The results suggest that in points further
away from the boundary it is possible to make use of PET.
Fig. 2 shows the distribution of axial displace-
ment at different layers. At points away from the bounda-
ries, axial displacement does not show significant differ-
ences in different layers, while at points near the bounda-
ries, the reverse holds true. The distribution of radial dis-
placement at different layers is plotted in Fig. 3. The radial
displacement at points away from the boundaries depends
on radius and length. According to Figs. 2 and 3, the great-
est axial and radial displacement occurs in the internal sur-
face (z=-h/2). Distribution of circumferential stress in

different layers is shown in Fig. 4. The circumferential
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stress at all points depends on radius and length. The
circumferential stress at layers close to the external surface
at points near boundary is negative, and at other layers
positive. The greatest circumferential stress occurs in the
internal surface (z=—h/2).

Fig. 5 shows the distribution of shear stress at dif-
ferent layers. The shear stress at points away from the
boundaries at different layers is the same and trivial. How-
ever, at points near the boundaries, the stress is significant,
especially in the internal surface, which is the greatest.
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Fig. 5 Shear stress distribution in different layers

In the Figs. 6-10, displacement and stress distribu-
tions are obtained using FSDT are compared with the solu-
tions of FEM and are presented in the form of graphs.
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6. Conclusions

In the present study, the advantages as well as the
disadvantages of the PET (Lame’ solution) for hollow
thick-walled cylindrical shells with different boundary
conditions at the two ends were indicated. Regarding the
problems which could not be solved through PET, the so-
lution based on the FSDT is suggested. At the boundary
areas (20 percent of the length of the cylinder) of a thick-
walled cylinder with clamped-clamped ends, having con-
stant thickness and uniform pressure, given that displace-
ments and stresses are dependent on radius and length, use
cannot be made of PET, and FSDT must be used. In the
areas further away from the boundaries (80% of the length
of the cylinder), as the displacements and stresses along
the cylinder remain constant and dependent on radius, PET
ought to be used. The shear stress in boundary areas cannot
be ignored, but in areas further away from the boundaries,
it can be ignored. Therefore, the PET can be used, pro-
vided that the shear strain is zero. The maximum dis-
placements and stresses in all the areas of the cylinder oc-
cur on the internal surface. The analytical solutions and the
solutions carried out through the FEM show good agree-
ment.
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M. Ghannad, M. Zamani Najad

PLONASIENIU HERMETINIU CILINDRU SU
UZSANDARINTAIS GALAIS TAMPRIOJI ANALIZE

Reziumé

Siame straipsnyje pasiilytos diferencialinés lyg-
tys, iSreiskiancios homogeniniy ir izotropiniy asimetriniy
plonasieniy cilindry, kuriy galuose sudarytos skirtingos
ribinés salygos, elgsena, taikant pirmos eilés Slyties defor-
macijos teorijg ir virtualaus darbo principa. Naudojantis
Siomis salygomis buvo iSspregsta sistema nehomogeniniy
tiesiniy diferencialiniy lygc¢iy, sudaryty skaiciuoti cilindrui
su uzsandarintais galais, iStirtas kriivio ir atramy ecfektas
itempiams ir poslinkiams. Problemai spresti taip pat buvo
taikomas baigtiniy elementy metodas, o gauti rezultatai
palyginti su analitiniais.
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ELASTIC ANALYSIS OF PRESSURIZED THICK
HOLLOW CYLINDRICAL SHELLS WITH CLAMPED-
CLAMPED ENDS

Summary

In this paper, the differential equations governing
the homogenous and isotropic axisymmetric thick-walled
cylinders with different boundary conditions at the two
ends were generally derived, making use of first-order
shear deformation theory (FSDT) and the virtual work
principle. Following that, the set of nonhomogenous linear
differential equations for the cylinder with clamped-
clamped ends was solved, and the effect of loading and
supports on the stresses and displacements was investi-
gated. The problem was also solved, using the finite ele-
ment method (FEM), the results of which were compared
with those of the analytical method

18
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VIIPYTUM AHAJIU3 TEPMETUYHbBIX
TOHKOCTEHHBIX HUJINHPOB C
SAIEMJIEHHBIMI KOHLIAMU

Pe3womMme

B craree mpemnoxeHsl aug¢epeHnnanbHbIe
YpaBHEHMsI, OMNHCBHIBAIOIIUE IIOBEACHUE TOMOTEHHBIX H
H30TPOINHBIX ACCHUMETPUYHBIX TOHKOCTEHHBIX IWIHMHIPOB
C Pa3MMYHBIMU TIPEICTbHBIMH YCIOBHSIMH B KOHIAX HC-
MOJB3YS TEOPHIO NedopManuy CABUTa M MPHHIMI BUPTY-
anbHOM paboTel. IIpM HCMONIB30BAHWMHU TIEPEUNCICHHBIX
yCJIOBHH ObUIa pelleHa CHCTeMa HETrOMOT€HHBIX JIMHEHHBIX
muddepeHManbHpIX ypaBHEHUH sl HWIMHIPA C 3alleM-
JICHHBIMM KOHIIAaMU Y HCCII€JOBAaHO BIMSHUE HArpy3Kd U
OIIOp Ha HampsHKEHUe U nepemMenieHue. s pemenus npo-
OJIeMBbI TaK)X€ HCIIOJIB30BAICS METOJ] KOHEUHBIX JJIEMEH-
TOB, a MOJIyYEHHBIE PE3yJIbTaThl COMOCTABIEHBI C aHAIM-
THUYECKHMH.
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