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1. Introduction 
 

There are many engineering applications of com-
monly used structures, such as rods, annular disks, cylin-
drical and spherical shells when subjected to different 
loading and boundary conditions. Deformation and stress 
analysis of thick-walled cylinders subjected to either inter-
nal or external pressure is an important topic in engineer-
ing because of their rigorous applications in industry as 
well as in daily life. For this reason, the classical problem 
of a pressurized thick hollow cylinder has been the topic of 
a variety of theoretical investigations.  

Naghdi and Cooper [1], assuming the cross shear 
effect, formulated the shear deformation theory (SDT). 
Mirsky and Hermann [2], derived the solution of thick cy-
lindrical shells of homogenous and isotropic materials, 
using the first shear deformation theory (FSDT). Green-
spon [3], opted to make a comparison between the findings 
regarding the different solutions obtained for cylindrical 
shells. Making use of Mirsky-Hermann theory and the fi-
nite difference method (FDM), Ziv and Perl [4] obtained 
the vibration response for semi-long cylindrical shells. 
Using SDT and Frobenius series, Suzuki et. al. [5], ob-
tained the solution of the free vibration of cylindrical shells 
with variable thickness, and Takashaki et. al. [6] obtained 
the same solution for conical shells. A paper was published 
by Kang and Leissa [7] where equations of motion and 
energy functional were derived for a three-dimensional 
coordinate system. The field equations are utilized to ex-
press such energy functional in terms of displacement 
components . The stress state of two-layer hollow bars in 
which they are exposed to axial load is analyzed [8]. The 
layers are made of isotropic, homogeneous, linearly elastic 
material, and they are considered as concentric cylinders. 

Assuming that the material properties vary 
nonlinearly in the radial direction and the Poisson’s ratio is 
constant, Zamani Nejad and Rahimi [9] obtained closed 
form solutions for one-dimensional steady-state thermal 
stresses in a rotating functionally graded pressurized thick-
walled hollow circular cylinder. A complete and consistent 
3D set of field equations has been developed by tensor 
analysis to characterize the behavior of FGM thick shells 
of revolution with arbitrary curvature and variable thick-
ness along the meridional direction [10]. Using the analyti-
cal method for stress strain state of two-layer mechanically 
inhomogeneous pipe subjected to internal pressure at elas-
tic plastic loading are analyzed by Brazenas and Vaiciulis 
[11]. 

This article presents the general method of deriva-
tion and the analysis of an internally pressurized thick-

walled cylinder shell with clamped-clamped ends, taking 
into account the effect of shear stresses and strains. 

  
2. Classical theory 
 

The plane elasticity theory (PET) or classical the-
ory is based on the assumption that the straight lines per-
pendicular to the central axis of the cylinder remain un-
changed after loading and deformation. According to this 
theory, the deformations are axisymmetric and do not 
change along the longitudinal cylinder. In other words, the 
elements do not have any rotation, and the shear strain is 
assumed to be zero. Thus, equilibrium equations are inde-
pendent of one another, and the coupling of the equations 
is deleted. Therefore,   
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The solution of the Eq. (3) is 
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This method is applicable in problems in which 
shear stresses and strains are considered zero. However, to 
solve the problems such as the following it is not possible 
to use the PET 
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3. Shear deformation theory (SDT) 
 

In SDT, the straight lines perpendicular to the 
central axis of the cylinder do not necessarily remain un-
changed after loading and deformation, suggesting that the 
deformations are axial axisymmetric and change along the 
longitudinal cylinder. In other words, the elements have 
rotation, and the shear strain is not zero. 

In Fig. 1, the location of a typical point  , 
within the shell element may be determined by  and , 
as    

m ( )r
R z

( )r R x z= +                                                          (6) 

where  represents the distance of middle surface from 
the axial direction, and  is the distance of typical point 
from the middle surface. 
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where  and  are the thickness and the length of the 
cylinder.  
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( )R x  and inner and outer radii  of the cyl-
inder are as follows 
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Based on PET, the radial displacement of the cyl-
inder is 
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Thus, 
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According to Eq. (11), the radial displacement is 
written in the form of a polynomial function of . When 

, it shows the displacement of the mid-plane.  
z

0z =
The general axisymmetric displacement field 

( ),x zU U , in the first-order Mirsky-Hermann's theory 
could be expressed on the basis of axial and radial dis-
placements, as follows 
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where  and  are the displacement components of 
the middle surface. Also, 

( )u x ( )w x
( )xφ  and ( )xψ  are the functions 

used to determine the displacement field. 
 

 
Fig. 1 Cross section of the thick cylinder with clamped-

clamped ends 

The strain-displacement relations in the cylindri-
cal coordinates system are 
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In addition, the stresses on the basis of constitu-
tive equations for homogenous and isotropic materials are 
as follows 
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where iσ  and iε  are the stresses and strains in the axial 

( )x , circumferential ( )θ , and radial ( )z  directions; υ  
and  are Poisson’s ratio and Young's modulus, respec-
tively. 

E

The normal forces ( ), ,x zN N Nθ , shear force 

( )xQ , bending moments ( ), ,x zM M Mθ , and the torsional 

moment ( )xzM  in terms of stress resultants are 



 13

2

2

1

1

x
x h

h
z

z

z
N R

dzN
N z

R

θ θ

σ

σ

σ
−

⎧ ⎫⎛ ⎞+⎜ ⎟⎪ ⎪⎧ ⎫ ⎝ ⎠⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎛ ⎞⎩ ⎭ ⎪ ⎪+⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∫      (15) 

2

2

1

1

x
x h

h
z

z

z
M R
M zdz
M z

R

θ θ

σ

σ

σ
−

⎧ ⎫⎛ ⎞+⎜ ⎟⎪ ⎪⎧ ⎫ ⎝ ⎠⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎛ ⎞⎩ ⎭ ⎪ ⎪+⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∫     (16) 

2h

z
2

1x xz
h

zQ d
R

τ
−

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫   (17) 

2h

2

1xz xz
h

zM zdz
R

τ
−

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫  (18) 

On the basis of the principle of virtual work, the 
variations of strain energy are equal to the variations of the 
external work as follows 

U Wδ δ=  (19) 

where U  is the total strain energy of the elastic body and 
 is the total external work due to internal pressure. The 

strain energy is 
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and the external work is 
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where  is internal pressure . P
The variation of the strain energy is 
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and the variation of the external work is 
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The resulting Eq. (24) will be 
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Substituting Eqs. (13) and (14) into Eq. (19), and 
drawing upon calculus of variation and the virtual work 
principle, we will have  
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and the boundary conditions are 
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Eq. (27) states the boundary conditions which 
must exist at the two ends of cylinder. In order to solve the 
set of differential equations (26), forces and moments need 
to be expressed in terms of the components of displace-
ment field, using Eqs. (15) to (18). Thus, set of differential 
equations (26) could be derived as follows 
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The set of equations (28) is a set of linear non-
homogenous equations with constant coefficients. The co-
efficients matrices 
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The parameters μ  and α  are as follows 
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where K  is the shear correction factor that is embedded in 
the shear stress term. 

It is assumed that in the static state, for cylindrical 
shells 5 6K =  [12]. 

3A⎡ ⎤⎣ ⎦ is irreversible and its reverse is needed in 

the next calculations.   In order to make  1
3A

−
⎡ ⎤⎣ ⎦ ,   the  first  

equation in the set of Eqs. (26) is integrated.  
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In Eq. (28), it is apparent that  does not exist, 
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u
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Thus, set of differential Eqs. (28) could be de-
rived as follows 
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The equations (36) are the set of nonhomogenous 
linear differential equations with constant coefficients. 

4. Analytical solution 
 

Defining the differential operator P(D), Eq. (36) 
is written as  
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The differential Eq. (42) has the general solution 
including general solution for homogeneous case { }gy  and 

particular solution { }py , as follows 
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The result of the determinant above is a six-order 
polynomial which is a function of , the solution of 
which is a 6 eigenvalues . The eigenvalues are 3 pairs 
of conjugated root. Substituting the calculated eigenvalues 
in Eq. (45), the corresponding eigenvectors {
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tained. Therefore, the general solution for homogeneous 
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The constants  to  are obtained by applying 
boundary conditions. Given that {
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}F is comprised of con-
stant parameters, the particular solution is obtained as fol-
lows.  
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In general, the problem consists of 8 unknown 
values of , including  (Eq. 34),  to  (Eq. 51), 
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Based on PET in the plane strain state, radial 
stress, circumferential stress and radial displacement are as 
follows [13]: 
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where ir r r= and o ik r r= . 

5. Results and discussion 
 

In this section, we present the results for a homo-
geneous and isotropic thick hollow cylindrical shell with 

40ir = mm, 20h = mm and mm. The Young's 
modulus and Poisson’s ratio, respectively, have the values 
of 

800L =

200E = GPa and 0.3υ = . The applied internal pressure 
is 80 MPa. 

The analytical solution is carried out by writing 
the program in MAPLE 12. The numerical solution is ob-
tained through finite element method (FEM).  
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Table 
Numerical results of the different solutions 

 

 rσ , MPa θσ , MPa xσ , MPa ru , mm 
FSDT -27.56 155.62 36.24 0.03826 
FEM -28.16 156.11 36.22 0.03843 
PET -28.16 156.16 38.40 0.03827 

 
Table presents the results of the different solu-

tions for the middle of the cylinder ( 2x L= ) and mid-
layer ( ). The results suggest that in points further 
away from the boundary it is possible to make use of PET. 

0z =

Fig. 2 shows the distribution of axial displace-
ment at different layers. At points away from the bounda-
ries, axial displacement does not show significant differ-
ences in different layers, while at points near the bounda-
ries, the reverse holds true. The distribution of radial dis-
placement at different layers is plotted in Fig. 3. The radial 
displacement at points away from the boundaries depends 
on radius and length. According to Figs. 2 and 3, the great-
est axial and radial displacement occurs in the internal sur-
face (z h= − 2) . Distribution of circumferential stress in 
different layers is  shown  in   Fig. 4.   The  circumferential 

 

 
Fig. 2 Axial displacement distribution in different layers 

 
Fig. 3 Radial displacement distribution in different layers 

 

Fig. 4 Circumferential stress distribution in different layers 

stress at all points depends on radius and length. The 
circumferential stress at layers close to the external surface 
at points near boundary is negative, and at other layers 
positive. The greatest circumferential stress occurs in the 
internal surface ( 2z h )= − . 

Fig. 5 shows the distribution of shear stress at dif-
ferent layers. The shear stress at points away from the 
boundaries at different layers is the same and trivial. How-
ever, at points near the boundaries, the stress is significant, 
especially in the internal surface, which is the greatest. 

 

 
Fig. 5 Shear stress distribution in different layers  

In the Figs. 6-10, displacement and stress distribu-
tions are obtained using FSDT are compared with the solu-
tions of FEM and are presented in the form of graphs. 

 
Fig. 6 Axial displacement distribution in internal layer 

 

 
Fig. 7 Radial displacement distribution in internal layer 

 
Fig. 8 Circumferential stress distribution in internal layer 
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Fig. 9 Radial stress distribution in internal layer 

 
Fig. 10 Axial stress distribution in middle layer 

6. Conclusions  
 
In the present study, the advantages as well as the 

disadvantages of the PET (Lame´ solution) for hollow 
thick-walled cylindrical shells with different boundary 
conditions at the two ends were indicated. Regarding the 
problems which could not be solved through PET, the so-
lution based on the FSDT is suggested. At the boundary 
areas (20 percent of the length of the cylinder) of a thick- 
walled cylinder with clamped-clamped ends, having con-
stant thickness and uniform pressure, given that displace-
ments and stresses are dependent on radius and length, use 
cannot be made of PET, and FSDT must be used. In the 
areas further away from the boundaries (80% of the length 
of the cylinder), as the displacements and stresses along 
the cylinder remain constant and dependent on radius, PET 
ought to be used. The shear stress in boundary areas cannot 
be ignored, but in areas further away from the boundaries, 
it can be ignored. Therefore, the PET can be used, pro-
vided that the shear strain is zero. The maximum dis-
placements and stresses in all the areas of the cylinder oc-
cur on the internal surface. The analytical solutions and the 
solutions carried out through the FEM show good agree-
ment.   
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M. Ghannad, M. Zamani Najad 

PLONASIENIŲ HERMETINIŲ CILINDRŲ SU 
UŽSANDARINTAIS GALAIS TAMPRIOJI ANALIZĖ  

R e z i u m ė 

Šiame straipsnyje pasiūlytos diferencialinės lyg-
tys, išreiškiančios homogeninių ir izotropinių asimetrinių 
plonasienių cilindrų, kurių galuose sudarytos skirtingos 
ribinės sąlygos, elgsena, taikant pirmos eilės šlyties defor-
macijos teoriją ir virtualaus darbo principą. Naudojantis 
šiomis sąlygomis buvo išspręsta sistema nehomogeninių 
tiesinių diferencialinių lygčių, sudarytų skaičiuoti cilindrui 
su užsandarintais galais, ištirtas krūvio ir atramų efektas 
įtempiams ir poslinkiams. Problemai spręsti taip pat buvo 
taikomas baigtinių elementų metodas, o gauti rezultatai 
palyginti su analitiniais. 
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M. Ghannad, M. Zamani Najad 

ELASTIC ANALYSIS OF PRESSURIZED THICK 
HOLLOW CYLINDRICAL SHELLS WITH CLAMPED-
CLAMPED ENDS 

S u m m a r y  

In this paper, the differential equations governing 
the homogenous and isotropic axisymmetric thick-walled 
cylinders with different boundary conditions at the two 
ends were generally derived, making use of first-order 
shear deformation theory (FSDT) and the virtual work 
principle. Following that, the set of nonhomogenous linear 
differential equations for the cylinder with clamped-
clamped ends was solved, and the effect of loading and 
supports on the stresses and displacements was investi-
gated. The problem was also solved, using the finite ele-
ment method (FEM), the results of which were compared 
with those of the analytical method 

М. Гханнад, М. Замани Наяд 

УПРУГИЙ АНАЛИЗ ГЕРМЕТИЧНЫХ 
ТОНКОСТЕННЫХ ЦИЛИНДРОВ С 
ЗАЩЕМЛЕННЫМИ КОНЦАМИ 

Р е з ю м е 

В статье предложены дифференциальные 
уравнения, описывающие поведение гомогенных и 
изотропных ассиметричных тонкостенных цилиндров 
с различными предельными условиями в концах ис-
пользуя теорию деформации сдвига и принцип вирту-
альной работы. При использовании перечисленных 
условий была решена система негомогенных линейных 
дифференциальных уравнений для цилиндра с защем-
ленными концами и исследовано влияние нагрузки и 
опор на напряжение и перемещение. Для решения про-
блемы также использовался метод конечных элемен-
тов, а полученные результаты сопоставлены с анали-
тическими. 
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