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1. Introduction 
 

For continuum damage models, when the tangen-
tial stiffness matrix becomes negative definite, problems 
such as the uniqueness and stability of the solution must be 
investigated. In strain softening conditions, the tangential 
modulus becomes negative and the equation of motion 
changes from hyperbolic to elliptic form. This change, 
called Hadamard instability [1], indicates that softening 
region is unable to propagate and the localization zone 
stays confined in an infinitely small size with respect to 
elements size of the structure. Consequently, the problem 
suffers from loss of well-posedness and numerical solu-
tions are obtained which are unacceptable from a physical 
point of view. In other words, classical continuum models 
are not capable to provide meaningful post-peak results 
and exhibit strong dependence on the size and orientation 
of the element mesh during softening [2].  

Many researchers have used plasticity alone to 
characterize the concrete behavior [3-5]. Plasticity is based 
on an elastic unloading stiffness, which is in contradiction 
to the stiffness degradation observed in experiments. 
Therefore, these studies failed to address the degradation 
of the material stiffness due to micro-cracking. On the 
other hand, others have used the continuum damage theory 
alone to model the nonlinear behaviors of material such as 
progressive micro-cracking and strain softening, which are 
represented by a set of internal state variables causing the 
decrease of the stiffness [6, 7]. But, damage mechanics is 
not suitable for the description of the irreversible deforma-
tions alone.  

Several researchers employed combination of 
damage and plasticity theories for modeling concrete be-
havior [8-12]. These investigators notified that the unique-
ness of the solution for these models was not guaranteed 
such that mesh dependent results in the finite element 
analysis may be obtained. 

Using classical plasticity theory or damage me-
chanics alone in constitutive formulation of the complex 
failure process of concrete, which is characterized by stiff-
ness degradation and irreversible deformations, not only is 
not sufficient and make results inadequate, but also, they 
could not prevail on inconsistencies such as; mesh depend-
ency, strain localization and solution instabilities due to 
these incompatibilities.  

The aim of this work is to overcome the deficien-
cies of the previous models such as, mesh dependency, 
nonobjectivity of the numerical response and strain local-

ization encountered by using general softening plasticity 
models [13-15]. 

These ill-posed problems require to be regularized 
using various methods, including visco-plasticity [16, 17], 
higher-order gradient models [18, 19] and integral type 
nonlocal models [20-22]. All these methods explicitly or 
implicitly incorporate a material characteristic length to 
control the width of the localization band, thus prevent 
strain from localizing into infinitely narrow zones and al-
low mesh-independent description of energy dissipation in 
a localized failure process. For concrete models, this length 
scale can be related to the maximum aggregate size [20]. 

For these reasons, this paper focuses on the de-
velopment of an approach for constitutive modelling of 
concrete materials, with emphasis on the use of combina-
tion between visco-plasticity and nonlocal damage models.  

We use rate-dependent plasticity, i.e. visco-
plasticity instead of rate-independent plasticity and com-
bine it with nonlocal damage to obtain a comprehensive 
constitutive model. A combination of visco-plasticity and 
damage mechanics can describe not only, most of the im-
portant features of the failure of cohesive-frictional materi-
als but also, is so beneficial to overcome deficiencies of 
classical concrete model to have reliable results. Fig. 1 
shows the differences between combined approach and 
not-combined one. As shown, in combined approach, the 
constitutive equations and damage are used together for 
structural analysis. But, in not-combined approach, damage 
model is used after structural analysis which makes results 
over-estimated.  

At first, the overstress visco-plastic methods ac-
cording to [23] will be investigated. These visco-plastic 
models are implemented by allowing the stress state to be 
outside the yield surface.  

Next, the constitutive equations for the damaged 
material are written according to the principle of strain 
energy equivalence between the virgin material and the 
damaged material; that is, the damaged material is mod-
elled using the constitutive laws of the effective undam-
aged material in which the nominal stresses are replaced by 
their effective ones. 

The changing type of the governing partial differ-
ential equation from hyperbolic to elliptic is prevented by 
introducing visco-plasticity. In other words, visco-
plasticity is introduced as an approach to regularize the 
behaviour of the concrete by employing viscosity term as a 
regularization parameter (computational point of view), or  
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Fig. 1 a - combined approach; b - not-combined approach 
 

as a sub-structural/micro-mechanical parameter, determi-
ned from observed shear band width [13], to prevent the 
field equation from being elliptic [14, 15]. 

Although the rate dependent formulation prevents 
the partial differential equation of motion from becoming 
elliptic and ensures that the problem is well posed, the re-
sults are not quite satisfactory. Despite the fact that viscos-
ity prevents the strains from becoming infinite at localiza-
tion, but the localization zone tends to an infinitely small 
size. So, a localization limiter or nonlocal formulation is 
used to overcome this problem.  

Nonlocal formulation modifies damage models 
[24] by introducing nonlocal variables, which are weighted 
spatial averaging of local variables. So, the only required 
modification is to replace the usual local damage energy 
release rate with its spatial average over the representative 
volume of the material whose size is a characteristic of the 
material. 

Finally, avoidance of spurious mesh sensitivity is 
demonstrated by Double Edge Notched (DEN) uniaxial 
test [25]. 
 

2. Theoretical framework for concrete model 
 
2. 1. Viscoplastic behaviour 
 

This model is similar to the viscoplastic model 
proposed by Perzyna [23] but the main difference is that 
the viscoplastic contribution is incorporated in the vis-
coplastic multiplier by using a parameter called character-
istic length of material. The visco-plastic part is local and 
uses a drucker-prager yield condition formulated in the 
effective stress space. Softening is incorporated through 
the yield function of the model. 

The strain rate ijε  is decomposed into elastic and 
viscoplastic parts as 

ande vp vp vp
ij ij ij

gε ε ε ε λ
σ
∂

= + =
∂

 (1) 

where, g  is plastic potential,  is viscoplastic multiplier 
and 

vpλ

σ~  is effective stress. The effective stress ( ij
~σ ) is de-

fined as the stress in the micro level and related to the 
stress in the macro level ( ijσ ) as 
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where, 

ij

+  and −

ij
 are the positive and negative parts 

of the stress tensor and obtained by decomposition of the 
stress tensor based on its principal values and principal 
directions,  is damage parameter and  is a microde-
fects closure parameter which is a material-dependent pa-
rameter and used to make different between compressive 
and tensional behaviours of material. 

D h

The viscoplastic multiplier ( vpλ ) is defined as; 
vp fλ η= , where,  is the yield function. Bracket f

22 /a/aa +=  means that a  has value only if . 

When ,

0>a

0<f 0=f ,  meaning that the point of loading is 
inside of the yield surface and thus no viscoplastic strain 

occurs. η is viscosity coefficient defined as; ρη El
2
1

= , 

where, E is the Young’s modulus, ρ is the material density 
and  is the characteristic length [20]. A good approxima-
tion of the characteristic length for concrete specimen 
could be defined as at least triple size of the biggest aggre-
gate dimension.  

l

Since concrete shows sensitivity to mean (hydro-
static) stress, the appropriate yield criterion was chosen as 
Drucker- Prager type 
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where, is the first invariant of the stress tensor, is the 
second invariant of the deviatoric stress tensor, is the 
yield stress,  is the coefficient of friction and is the 
dilatation coefficient.  and are material parameters 
and obtain from experiment. Note that 

1I 2J

HY

φC ψC

φC ψC
( )σ~f  and ( )σ~g  are 

in the effective stress space. In the internal friction materi-
als like concrete and other geo-materials, the plastic poten-
tial g  is different from the yield function (i.e. nonasso-
ciated) and, therefore, the direction of the plastic strain 
increment is not normal to the yield surface. 

f

To account the softening process, which is char-
acterized by loss of the material cohesion, it was supposed 
that yield stress varies linearly with the accumulated plas-
tic strain as below:   

p
ij

p
ijH YpYY εεββ

3
2

00 −=−=         (4)     

where, is initial cohesion, 0Y β is a constant, and  is the 
accumulated plastic strain. 

p

 
2. 2. Local Damage model 
 

The  thermodynamics of irreversible processes al- 

lows for the modeling of materials’ behavior in three steps: 
 1. Definition of state variables, the actual value of 
each defining the present state of the corresponding 
mechanism involved.  
 2. Definition of a state potential from which de-
rive the state laws and the definition of the variables asso-
ciated with the internal state variables. 
 3. Definition of a dissipation potential from which 
derive the laws of evolution of the state variables associ-
ated with the dissipative mechanisms.  
 These three steps offer several choices for the 
definitions, each chosen in accordance with experimental 
results and purpose of use. Then, the second principle of 
the thermodynamics must be checked for any evolution.  

According to the thermodynamic framework, the 
evolution law for damage derives from the potential of 
dissipation and particularly from the function  (dissipa-
tive damage potential function) as 

DF

orD D
ij

ij

F F
D D

Y Y
λ λ
∂ ∂

= =
∂ ∂

     (5) 

where  is the associated variable with the damage pa-
rameter.  is the damage driving force which character-
izes damage evolution and interpreted here as the energy 
release rate. 

ijY
Y
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There are many possible choices for the analytical 

form of the function , depending on the experimental 
results and the purpose of use. The best is the simplest with 
the  domain  of validity required, where the simplest means  

DF
the smallest possible number of material parameters. 

Experimental results [10, 26, 27] have shown that 
 must be a nonlinear function of . A good and simple 

choice is 
DF Y
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where  and S s  are material parameters and calibrated 
from regression analysis of experiments. For material pa-
rameters; , , 50MPacf ′ = 0 15MPaY = 32300 kg mρ = ,  

 and ,440.C =φ 400.C =ψ s  and  is calibrated as 
, .  

S
482102 −= e.s 335104 += e.S

 
2. 3. Discretization and derivation 
 

The local residual is defined as 

{ } { e

T

loc r DR R R R
ε

= }  (8) 

where is residual of elastic strain,  is the residual of 

yield function, and  is the residual of damage constitu-
tive function. The set of nonlinear equations is discretized 
in time considering the resolution variables at the interme-
diate time,  

eR
ε rR

DR

ttt nn Δθθ +=+ ,   with  θ   as the numerical pa- 

rameter of the θ  method. Then, based on the Newton it-
erative scheme for the local residual, the residuals must be 
derivated respect to selected variables { } to 
form Jacobian matrix. The Jacobian matrix obtained in this 
approach, not only has terms of the damage parameter, but 
also has term of viscosity. This results that damage process 
and visco-plasticity state are considered together or in the 
other word, in a coupled manner. 

D,,e ΔλΔεΔ

According to (1), the residual of elastic strain is 
obtained as 

e
e egR q

ε
Δε Δε Δλ Δε Δε Δλ

σ
∂

= − + = − +
∂

 (9) 

where g qσ
∂ =∂ . 

Then, according to (9) and (2), the residual of 
elastic strain is derivated respect to the selected variables 
as 
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where Ee
σ
ε
∂ =∂ .

Since σ~gq ∂∂=  is in effective stress space, its 
derivation respect to damage parameter is zero. 

Unlike elasto-plasticity theory, according to the 
visco-plasticity theory, the yield function can be greater 
than zero and can have a positive amount which is vis-
coplastic stress, so the yield function was modified as be-
low to account viscosity effects in the proposed model 
 

0=−→=→
∂
∂

=
∂
∂

= ληλη
σησ

λε ff~
gf

~
g
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According to Kuhn-Tucker relation, , so the 
bracket can be eliminated. Thus the modified yield func-
tion and its residual can be determined as 

0≥λ

1 2 H vpf C I J Yφ σ= + − = →              (12) 

1 2 0 1 2 0
2 2
3 3

p p p p
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According to (13), the residual of modified yield 
function has term of λ , which is a rate form of λ  respect 
to time. 

Then, according to (13) and (2), the residual of 
yield function is derivated respect to the selected variables 
as 
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According to (7), the residual of damage function 
is obtained as 
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                            (15) 

Then, according to (7) and (6), the residual of 
damage function is derivated respect to the selected vari-
ables as 
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where Y Y Ee σε
∂ ∂= ∂∂ . 

 
3. Numerical results  
 

3. 1. Mesh sensitivity 
 

In the previous sections, combination of the 
visco-plasticity theory and local damage was explained. 
Although the viscosity is introduced as a regularization 
parameter (computational point of view), or as a sub-
structural/micro-mechanical parameter determined from 
observed shear-band widths (physical point of view) and 
prevents the strains from becoming infinite at localization, 
but the localization zone tends to an infinitely small size 
and the results are not quite satisfactory. This inconsis-
tency is investigated here by using a Double Edge Notched 
(DEN) uniaxial test [25]. 

As shown in Fig. 2, when the same material pa-
rameters are used for different element mesh, numerical 
results are not meaningful. 

As shown in Fig. 3, not only the damage tends to 
localize in an infinitely small size, i.e., in a volume which 
is much smaller than that of the microstructural elements, 
but also its distribution strongly depends on the size and 
orientation of the meshing elements of the structure. This 
damage distribution conflicts with the assumed smoothness 

of the damage variable. The deformation contours are also 
of similar contours. This observation has no consistent 
physical meaning and must be obviated with an appropri-
ate approach. Thus, a localization limiter or in other word, 
a nonlocal formulation is used to overcome this problem. 

Nonlocal formulation modifies damage models by 
introducing nonlocal variables, which are weighted spatial 
averaging of local variables [24]. 

 

 
 

Fig. 2 Load-displacement curves for different number of 
elements 
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c 

Fig. 3 Damage distributions in DEN specimen for different 
mesh sizes and orientations 

 
3. 2. Nonlocal damage model 

 
Continuum damage theory introduces a set of 

field variables (damage variables) which explicitly charac-
terize  the  local  loss  of  material   cohesiveness.  A  

continuous damage variable which describes microdefects 
in a continuum medium indicates that this variable varies 
smoothly at the microscale of the structure.  

In this section, the necessary smoothness of the 
damage field is ensured by relating the damage growth in a 
material point to a weighted average of the corresponding 
field in a neighbourhood of the point.  

The growth of damage ( ) in a point is delo-
calized as follow 

LocalD
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∫
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where ( )x;yφ  is a weight function and determines the in-
fluence of the local damage in the infinitesimal volume V . 
The nonlocal weight function is a new parameter of the 
model, chosen as the Gauss distribution function 
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where  is the length parameter which represents the scale 
of the microstructure. For concrete models, this length pa-
rameter is related to the maximum aggregate size [20].  

l

Also, in addition to above formulation, for suffi-
ciently smooth damage field, the integral relation (17) can 
be rewritten in gradient terms of by expanding 

into a Taylor series [24,28]. The integral relation 
(17) can then be approximated by the relation 
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(19) 

 

With the assumption of an isotropic influence of 
the averaging equation, the integral of the odd terms van-
ish. Thus, the nonlocal damage can be written as 

  
(20) 

2
1

4 6
2 3

Nonlocal Local Local

Local Local

D D c D

c D c D

= + ∇
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where the Laplacian operator  is defined by n∇

∑ ∂∂=∇ i i
nn x . If the nonlocal damage defined by (20) is 

used instead of the growth law (7), a gradient-enhanced 
damage model is obtained. Since the nonlocal damage is 
given by (20) explicitly in terms of the local damage, this 
gradient model will be referred to as explicit. The charac-
teristic length of the nonlocal model is preserved in the 
gradient coefficients , which is of the dimension length 
squared. For instance, the Gaussian weight function (18) 

ic

22lc = .  
Employing of (20) together with the set of consti-

tutive equations (stated previous), results a new set of 
modified partial differential equations which are able to 
prevent damage distribution from being localized and con-
sequently, make it independent from size and orientation of 

meshing elements. As shown in Figs. 4 and 5, the numeri-
cal results are now objective, i.e., global responses con-
verged upon mesh refinements and the damage distribu-
tions are consistent for different element sizes and orienta-
tions. 

 

 
 

Fig. 4 Load-displacement curves for different number of 
elements 
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Fig. 5 Damage distributions in DEN specimen for different 
mesh sizes and orientations. 

 
4. Conclusion 
 

The ill-posedness of the set of partial differential 
equations, nonobjectivity of the numerical response, mesh 
dependency and strain localization are the basic deficien-
cies encountered by using general softening plasticity 
models. Overcoming these deficiencies requires two cate-
gories. The first involves the use of rate dependent formu-
lation, i.e. visco-plasticity to regularize constitutive equa-
tions. The second involves the introduction of nonlocal 
damage based on spatial averaging to achieve a realistic 
description of the damage localization instability.  

This paper illustrates both the regularizing capa-
bilities of the rate dependent formulation via visco-
plasticity theory and nonlocalizing of the damage distribu-
tion via gradient approach. This combination approach 
satisfies expected requirements and the numerical results 
show the desired behaviour, i.e. a realistic damage distribu-
tion and a satisfactory mesh independency. 

The proposed model could be coupled with pre-
dictive models [29, 30] and used for simulation of concrete 
behaviour. 
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TĄSUS PLASTIŠKUMAS IR LOKALIZUOTO 
PAŽEIDIMO NESUDERINAMUMAS SU 
DEFORMACINIU SILPNĖJIMU 

R e z i u m ė 

Šio darbo tikslas – pašalinti ankstesnių modelių 
trūkumus, t.y. priklausomybę nuo tinklelio, skaitmeninės 
reakcijos ir deformacijos lokalizacijos įvertinimo naudo-
jant bendrus plastiškumo silpnėjimo modelius, neobjekty-
vumą. Pagrindinių dalinių diferencinalinių lygčių tipo pa-
keitimo galima išvengti naudojant greičio priklausomybės 
modelius, pavyzdžiui, tąsaus plastiškumo, nepaisant to, 
kad tąsumas neleidžia deformacijoms neribotai didėti loka-
lizacijos metu, nes jos vyksta labai mažuose tūriuose. Lo-
kalizacijos metu pažeidimas yra be galo mažas, ir jo pasi-
skirstymo nevienalytiškumas prieštarauja tolygaus pažei-
dimo principui. Reikalingas pažeidimo lauko tolygumas 
gali būti pasiektas lokalizacijos ribojimu ir tąsumo regulia-
vimu. Šiame straipsnyje siūlomas kombinuotas požiūris: 
atliekant betono elgsenos struktūrinį modeliavimą naudoti 
tąsaus plastiškumo teoriją ir nelokalų pažeidimo modelį. 

P. Pirali, Gh.H. Liaghat, M.T. Ahmadi 

VISCOPLASTICITY COUPLED WITH 
NONLOCALIZED DAMAGE FOR 
INCOMPATIBILITIES DUE TO STRAIN SOFTENING 

S u m m a r y 

The aim of this work is to overcome the deficien-
cies of the previous models such as, mesh dependency, 
nonobjectivity of the numerical response and strain local-
ization encountered by using general softening plasticity 
models. The change of type in the governing partial differ-
ential equation can be prevented by introducing rate-
dependent models such as visco-plasticity. Despite the fact 
that viscosity prevents the strains from becoming infinite at 
localization, but the localization zone tends to an infinitely 
small size. When localization occurs, damage is confined 
in an infinitely small zone and its discontinuous distribu-
tion conflicts with the supposed smoothness of the damage 
variable. The necessary smoothness of the damage field 
can be ensured by using localization limiter in addition to 
viscous regularization. This paper focuses on the construc-
tion of a combining approach with emphasis on the use of 
visco-plasticity theory and nonlocal damage model to con-
stitutive modelling of concrete behaviour. 

П. Пирали, Гх.Х. Лиагхат, М.Т. Ахмади 

НЕСОВМЕСТИМОСТЬ ВЯЗКОПЛАСТИЧНОСТИ И 
НЕЛОКАЛИЗИРОВАННОГО ПОВРЕЖДЕНИЯ С 
ДЕФОРМАЦИОННЫМ РАЗУПРОЧНЕНИЕМ 

Р е з ю м е 

Цель настоящей работы – устранение недос-
татков прежних моделей, например, зависимости от 
сетки, необъективности численной реакции и оценки 
локализации деформации при использовании общих 
моделей снижения пластичности. Изменения типа ос-
новных частных дифференциальных уравнений можно 
предотвратить вводом моделей зависимости скорости, 
например, вязкопластичности, не учитывая того, что 
вязкость предохраняет деформации от бесконечного 
увеличения при локализации, потому что она происхо-
дит в очень малых объемах. При локализации повреж-
денность происходит в бесконечно малых объемах и 
неоднородность ее распределения противоречит ожи-
даемому равномерному повреждению. Необходимая 
равномерность поля повреждения может быть достиг-
нута используя ограничитель локализации совместно с 
регулированием вязкости. Эта статья предлагает ком-
бинированный подход, акцентируя теорию вязкопла-
стичности и нелокальную модель повреждения при 
оценке поведения бетона. 
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