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1. Introduction 
 
 Model identification is one of the most important 
requirements for advanced control systems. Fast response 
and quick disturbance recovery of an advanced controller 
[1, 2] cannot be achieved without an accurate model of the 
plant. Although after years of development linear methods 
for model identification [3 - 5] have become mature, 
nonlinear identification methods are still needed in high 
performance applications to maintain sufficient identifica-
tion accuracy over the entire operation range. 
 When analytical nonlinear methods, e.g. least-
squared algorithms based on quadratic error functions [6], 
are not able to find a global solution for nonlinear systems, 
a promising alternative to these traditional methods is the 
swarm intelligence based optimization algorithms. In ref-
erences [7-11], Genetic Algorithm (GA) is applied to some 
optimization problems and good results are achieved, how-
ever, the number of manipulations and required memory 
increases with and increase in the dimension of searching 
space. Therefore it is difficult for the GA algorithms to 
maintain searching velocity and convergence for the real-
time identification applications. Referring to [12-15] Parti-
cle Swarm Optimization (PSO) algorithm acts well when 
dealing with multimodal and multidimensional problems. 
PSO algorithm is theoretically simple, and computationally 
efficient. It provides many advantages for complex engi-
neering problems.  
 In this paper, a parameter identification approach 
using Adaptive Particle Swarm Optimization (APSO) is 
utilized, which is a development of PSO based identifica-
tion approach [13]. Furthermore, the proposed method is 
applied to a real ball on plate setup, which is a typical ex-
ample of highly coupled, nonlinear electromechanical sys-
tem. 
 The ball on plate system is an extension of the 
traditional ball and beam [16] that moves a ball on a rigid 
or flexible surface. The mechatronic design of a ball on 
plate, which uses inexpensive materials with a simple 
setup, can be valuable. In addition, control of such a 2D 
coupled and nonlinear dynamical model is a very interest-
ing and challenging example for studying and testing vari-
ous control methods. 
 In principle, rolling resistance of a ball on plate 
system is required for modeling the system, but in practice, 
the varying nature of such a resistance with the ball’s ma-
terial, mass and dimensions make it difficult to be meas-
ured. To the best of our knowledge, such a real-time identi-
fication solution has not been reported before. It is the first 
report of identifying this critical value for modeling a ball 
on plate system.  

 The rest of this paper is organized as follows: 
Section 2 provides a brief introduction on ball on plate 
mechatronic design. System modeling and problem formu-
lation will be discussed in Section 3. APSO will be briefly 
introduced in Section 4. Section 5 shows an APSO ap-
proach for ball on plate parameter identification. Simula-
tion results and experimental verification are presented in 
Section 6 and 7 respectively and concluding remarks are 
given in Section 8. 
 
2. Ball on plate mechatronic design 
 
 This section describes the design and develop-
ment of a ball on plate system. This electromechanical 
balancing system, due to its inherent complexity, presents 
a challenging design problem. In the context of such an 
unconventional problem, the relevance of mechatronic 
design methodology becomes apparent.  
 One of the main differences between a ball on 
plate setup and a traditional ball and beam system is the 
ball position sensing dimensionality. Various 2D position 
sensing methods can be considered like touch sensors, im-
age-processing with overhead camera, resistive grid, infra-
red sensors, etc. [17, 18]. 
 

 
 

Fig. 1 Designed ball on plate test-bed 
 
In the proposed mechatronic design, an overhead 

digital camera is used, which is economically efficient and 
makes the mechanical setup of the system optimized in 
terms of time and cost. 

 The next problem is choosing the proper actuation 
system to change the plate orientations in the space with 2-
degrees of freedom. Some proposed methods are “using of 
a pair of linear actuators in two corners of plate”, “using of 
cable and pulley to turn the plate with two motors”, “using 
of four-beam linkage with servomotors”, etc. The proposed 
mechatronic design uses cables and pulleys in order to ro-
tate the plate fast and accurate. 

 Generally, the designed ball on plate balancing 
system (Fig. 1) compared to the other existing ones [18, 
19] is cheaper, quicker and more reliable to build and more 
compact. 
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3. Ball on plate modelling  
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In this section, the differential equations of the 
ball on plate system are driven, while the following as-
sumptions hold.  

Assumption1. Plate angles of rotation are small. 
Assumption2. The Ball remains in contact with the plate 

and rolling occurs without slipping at any time. 
Assumption3. The Ball does not rotate about its vertical 

axis. 
Assumption4. The plate is always considered as a com-

plete square in the sight of digital camera. 
Assumption5. Distance between the camera and the ball 

remains constant.  

 
Fig. 2 Plate rotating schematic 

 
The slope of the plate can be adjusted by setting 

the height of two adjacent corners (h1 and h2) as shown in 
Fig. 2.  
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Fig. 3 Physical model (a) when plate rotates about X = X2 

axis, (b) when plate rotates about new axis (Y2 = Y3) 
 

 Physical model of the ball on plate setup is shown 
in Fig. 3 and differential equations of the ball on plate sys-
tem are derived in Eq. (1) 
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where 

2
3 4xS 2x= +  (2) 

 State variables x1, x2, x3 and x4 represent the ball 
position and velocity in x and y directions respectively. 
Other model parameters are introduced in Table 1.    

 
Table 1 

Model parameter nomenclature 
 

m, kg mass g, m/s2 gravity 

r, m ball radius D, m plate width 

Iball, 
kgm2

ball mass moment 
of inertia  L, m plate length 

µ rolling resistance 
coefficient z, m 

distance be-
tween universal 
joint and plate 

4. Particle swarm optimization (PSO) 
 
4.1. Simple PSO 
 

 Inspired by the social behaviour of natural organ-
isms like fish schooling and bird flocking, Kennedy and 
Eberhart introduced PSO in 1995 [13] for the first time. In 
PSO, the population (swarm) of individuals (particles) in 
the search space is randomly initialized. Each individual in 
PSO moves through the searching space and remembers 
the best position it has ever seen. Members of a swarm 
communicate good positions to each other and dynamically 
update their positions based on these good positions.  

 At each iteration, each particle can adjust its ve-
locity vector, based on its momentum and the influence of 
its best position ( idp ) as well as the best position of its 

neighbours ( gdp ), and then concluded to a new position 
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that the particle is to fly to. Supposing the dimension of 
searching space is D, the total number of particles is n, the 
position of the ith particle can be expressed as vector Xi = 
= (xi1, xi2, ... , xiD); the best position of the ith particle 
searched until now is denoted as Pid = (pi1, pi2, ... , piD), and 
the best position of the whole swarm searched until now is 
denoted as vector Pgd = (pg1, pg2,  ... , pgD); the velocity of 
the ith particle is represented by vector Vid = 
= (vi1, vi2, ... ,viD). Then the traditional PSO is described as 

( ) ( ) ( ) ( )( )
( ) ( )( )

1 1

2 2

1id id id i

gd i

V t wV t c r P t X t

c r P t X t

+ = + − +
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R

)

 (4)  

where c1, c2 are acceleration constants with positive values; 
r1 , r2 are random numbers between 0 and 1; w is the inertia 
weight. In addition to the w, c1 and c2 parameters, adjust-
ing the parameters w, c1 and c2, is needed to achieve its 
best searching ability.  

 
4.2. Adaptive PSO (APSO) 
 

 Good performance of traditional PSO is highly 
depended on its parameter settings [13, 15]. Therefore, in 
many applications the performance of general PSO is not 
satisfactory in the whole experiment. The particle velocity 
is very important factor because wrong direction and im-
proper magnitude can lead the system divergent and it is 
essential to set the parameters based on characteristics of 
the problem. Inertia weight controls the influence of the 
previous velocity on the current one. Therefore, it is impor-
tant to make balance between exploration and exploitation 
by the proper adaptive value of the inertia weight. Too 
much stress on exploration results in a pure random search 
whereas too much exploitation results in a pure local 
search. Using [15] w is made dependable with objective 
function of the locally best and globally best solutions and 
adaptive inertia weight is chosen. 

 Consider the cost function C(.) belongs to 
. The update law for inertia weight of the ith par-

ticle (X

DR →
i) is defined as follows 
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where wmin is a lower bound for the inertia weight, and 
some wmax is defined by designer.  

 For the problems involved with higher cost, 
higher learning factors are required to provide higher step 
size for maintaining the sufficient global exploration. 
Whereas, fine-tuning of the concerned solution needs 
lower learning factors when objective function of that solu-
tion is nearer to the best solution. Considering this phe-
nomenon learning factors update law is proposed as fol-
lowing 

1 ( ) / ( )i ic C X C P= id  (6) 

2 ( ) / ( )i ic C X C P=

 From the above equations, it can be concluded 
that learning factors are always greater than unity. 

 Another improvement in proposed APSO scheme 
is a modification on random coefficients r1 and r2 in 
Eq. (1). 

 Since we generate two random parameters r1 and 
r2 independently, there are cases in which they both are too 
small. In this case, both the exploration and exploitation 
behaviour are neglected, and in some cases when both of 
the coefficients are too large the exploration and exploita-
tion behaviour are overused. Therefore, the convergence 
performance of the algorithm is undermined in both cases. 
In other words, the two random weighting parameters can-
not be completely independent. By assuming the sum of 
two inter-related weighting parameters as 1, we can gene-
rate one single random number r1 and calculate r2 as 

gd

1r

 (7) 

2 1r = −  (8) 

 Using modifications on inertia weights from 
Eq. (5), learning factors from Eqs. (6) and (7), and random 
coefficients generation Eq. (8), the adaptive form of 
Eq. (1) is considered as following 
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 APSO algorithm can be divided into six steps and 
represented as following 

 

[step1] initialize the population set 
[step2] determine cost function for each particle  
[step3] select pbest solution 
[step4] update the whole population 
[step5] select gbest solution 
[step6] check convergence, if the terminal condi-

tion has not been satisfied go back to step2. 
 

 From the aforementioned algorithm of APSO and 
the updating rules, it can be seen that APSO is very simple 
in concept and easy in realization. In the next section, the 
APSO algorithm will be used to solve parameter identifica-
tion problem. 

 
5. Real-time identification design 
 

 Generally, identification methods are classified 
into structured and unstructured methods. The APSO iden-
tification approach proposed in this study is an effective 
structured identification method. Therefore, it is assumed 
that the structure of the plant is known and unknown pa-
rameters can be estimated using proposed method. The 
basic idea is to achieve a cost function, which represents 
how well the model output tracks the system output. This 
cost function can be defined as the difference between sys-
tem and model outputs.   

 Consider a general state space form of system dy-
namic as following  

( , , , )
( , , )

k u

k u

X F X P P U
Y G X P P
⎧ =⎪
⎨

=⎪⎩  
(10) 

where X is the system state vector, Y represents the output 
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vector, functions F(.) and G(.) can be either linear or 
nonlinear and the vectors Pk and Pu are the known and un-
known parameters respectively.  

 To estimate the plant output Eq. (10) following 
model dynamic is introduced 

ˆ ˆ ˆ( , , , )

ˆ ˆ( , , )

k u

k u

X F X P P U

Y G X P P

⎧ =⎪
⎨
⎪ =⎩

 (11) 

where X̂  is the estimated states vector,  represents the 
estimated output and U is the same control signal used in 
Eq. (10).  

Ŷ

 In real-time applications after the N th sampling, a 
cost function is evaluated using the following weighted 
quadratic function 

1

ˆ ˆ( ) ( ) (
N

T
u i i i

i

C P Y Y W Y Y
=

= − −∑ ˆ )i

iY

 (12) 

where  are system output and model output in the 
i

ˆandiY
th sampling and W is usually chosen as a diagonal positive 

definite matrix. Obviously, the resultant cost is a function 
of the estimated parameter vector ûP .  

 Now, the identification problem is replaced with a 
multidimensional optimization problem. Although many 
identification methods can be used to solve such an opti-
mization problem, a highly coupled nonlinear multidimen-
sional optimization cannot be solved with any traditional 
methods. Therefore, in this research an optimization algo-
rithm based on swarm intelligence methods is proposed to 
find the most optimized solutions in real-time applications.   

 In real-time identification applications, fast identi-
fication algorithms have a very important effect on system 
performance. Therefore, in the proposed method; in each 
iteration, half of the initial population of the APSO algo-
rithm is chosen randomly and the rest is chosen from the 
best individuals in previous iterations.  

 In the next two sections, a ball on plate system is 
chosen as an experimental setup. The rolling resistance µ 
of the electromechanical system is assumed unknown 
 in Eq. (1).  
 
6. Simulation results 
 

 In this section, a ball on plate setup is simulated in 
MATLAB® to illustrate the performance of the proposed 
APSO identification approach applied to electromechanical 
system parameter identification. Although Parameter iden-
tification can be used to design some robust and high per-
formance controllers, this is not the main goal of this paper 
and in the next two sections, just a simple proportional-
integral-derivative (PID) controller, which is widely used 
in industrial control applications, is applied to the plant. 
Nominal parameters of the simulated ball on plate dynami-
cal model Eq. (1) are listed in Table 2.  

 To show the effectiveness of the identification 
method, the rolling resistance coefficient used in Eq. (1) is 
assumed unknown. However, more parameters (e.g. m, r or 
I) can easily assumed unknown and good simulation re-
sults will be achieved.  

 During simulations, each swarm generation con-
tains 10 particles. Coefficient wmin is set to 0.8 in Eq. (5) 
and L1, L2 and w are determined adaptively using Eqs. (5), 
(6) and (7). Fig. 4 shows the cost function value and un-
known identified value for within 20 iterations.  

 
Table 2 

Nominal parameters used for modelling 
 

 Value  Value 
m 245 gr z 2 cm 
r 13.5 mm x1(0) -30 
µ 0.15 x2(0) 30 
D 60 cm x3(0) 0 
L 60 cm x4(0) 0 

Iball 17.8 kg.cm2 g 9.806 m/s2
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Fig. 4 Offline APSO identification (a) Cost function (b) 
estimated rolling resistance  

 
 Fast convergence and identification accuracy of 

the approach make it suitable for applications that require 
real-time solutions.  
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Fig. 5 Model ouputs tracking the simulated outputs 

 
 To run the real-time simulation, the identification 

algorithm is repeated during the simulation. The maximum 
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number of allowed iterations after each data sampling is set 
to 20. In addition, half of the initial particles used after 
each new sampling consists of the best-estimated parame-
ters used in previous iterations.  

 Fig. 5 shows the tracking performance of the 
model output and simulated system.  
 Obviously, after less than 4.5 seconds model out-
put tracks simulated plant output perfectly. 

 
7. Experimental verification 
 

 In order to verify the effectiveness of the pro-
posed identification method, experiments are implemented 
on a real ball on plate setup (Fig. 1). This section presents 
the experimental results.  

 As mentioned in Section 2, all the components 
used for mechatronic setup (Fig. 1) are inexpensive and 
commercially available. A pair of 300 rpm DC motors de-
rived by a microcontroller-based driver is used for chang-
ing the altitude of two adjacent corners of the plate. Typi-
cal encoders measure the altitude and send data to the PC 
by a DAQ card. Any typical PC can be used to run image-
processing software. Main controller laws and identifica-
tion algorithms. 

 The procedure of this experimental verification is 
similar to the simulation described previously in section 6, 
except that the real data are utilized for identification pro-
cedure. The experimental-identification results are pre-
sented for five different balls each one with a specific type 
of material. These different balls used in the experiment 
and the rolling resistance coefficients identified with pro-
posed APSO algorithm, are listed in Table 3.  

 
Table 3 

Experimentally identified rolling resistance coefficient 
(RRC) 

 

No. Ball Mass, gr Dia, mm RRC 
1 Steel (solid) 245.0 27.0 0.1635 
2 Steel (shell) 75.0 27.0 0.0815 
3 Plastic (solid) 11.0 30.0 0.0325 
5 Sponge (solid) 3.0 35.0 0.0215 

 
 To evaluate the performance of identification me-

thod the initial ball position is [ , , , ]x y x y =  [ . 
The plate dimensions are 

30,30,0,0]−
60 cm 60 cm× and the steel solid 

ball is used in this experiment. As shown in Fig. 6 esti-
mated model outputs are compared with the measured data. 
It is shown that using some arbitrary rolling resistance co-
efficient in the model dynamics, the model outputs (E2) do 
not track the plant outputs; however, with using the APSO 
identifier to identify the unknown parameter; the effective 
tracking of (E1) is proved. 

 Another advantage of the proposed method is the 
inherent noise filtering feature of the method. In many 
real-time electromechanical experiments, the measured 
data consists of noises, which are filtered digitally in many 
previous published works. However, when using APSO, 
there is no need to an additional filtering algorithm and this 
leads to speed up of the real-time experiments by omitting 
the filter block during system identification and control.   

 In order to have a quantitative comparison be-
tween differenet identification methods based on swarm 

intelligence, ˆ|| ||e y y= −  is defined as the identification 
error and Integral Absolute Error (IAE) is selected as the 
criterion. Table 4 gives the IAE values for three Swarm 
Inteligence (SI) based identification methods. Genetic al-
gorithm (GA) identification results are presented as a tradi-
tional SI. PSO and APSO are the next two methods which 
are compared. 
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Fig. 6 Estimated model outputs tracking the real data. 

“measured” is the raw plant output, “E1” is the 
model estimated output using APSO and “E2” 
shows the model estimated output with unidentified 
parameter 
 

Table 4 
IAE comparison between GA, PSO and APSO 

 

 
2.5

0
( )e t dt∫  

5

0
( )e t dt∫  

GA 21.1243 35.3120 

PSO 15.5874 25.1007 
APSO 15.0351 17.1159 

 
 Using Table 4 we can see that Adaptive PSO 

compared to original PSO has more convergence accuracy 
as exploitation plays a more important role than explora-
tion, while the particles converge to the final answer.  Also 
comparing GA results with other two methods shows the 
GA performance criteria is unsatisfactory at all. The main 
reason for that, is its time consuming manipulations like 
selection, crossover and mutation [10] which makes the 
algorithm not suitable for real-time parameter identifica-
tions. 

 
8. Conclusion 
 

 An identification scheme has been proposed in 
order to overcome the limitations in the suitability and ef-
fectiveness of existing methods for identification of multi-
modal and multidimensional electromechanical systems. 
These limitations relate both to the computational effec-
tiveness in real-time identification, and also to the global 
optimization of nonlinear, highly constrained optimization 
problems. Simulation results have been used to confirm the 
efficiency of the proposed approach. In addition, this ap-
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proach is applied to a ball on plate test-bed, in order to 
directly verify its capability. Rolling resistance of the ball 
is identified using the proposed method and quantitative 
comparisons have been presented to prove its superiority, 
compared with some existing real-time identification 
methods. Potentially, the proposed identification method 
can be used to design more robust controllers for nonlinear 
constrained, multiple-input multiple-output (MIMO) sys-
tems with parameter uncertainties. 
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REALAUS LAIKO NUSTATYMAS OPTIMIZUOJANT 
ADAPTYVIŲ STIPRIAI SUJUNGTŲ DALELIŲ 
SPIEČIAUS NETIESINES SISTEMAS  

R e z i u m ė 

Šiame straipsnyje pasiūlytas adaptyvus detalių 
spiečiaus optimizavimo metodas stipriai sujungtoms elekt-
romechaninėms sistemoms identifikuoti. Naudojant kai 
kurių stipriai sujungtų dalelių spiečiaus modifikacijas skai-
čiavimo efektyvumas padidėjo. Šiuo būdu yra pagerinta 
realaus laiko identifikavimo procedūra. Pasiūlyto identifi-
kavimo metodo efektyvumui padidinti papildomai yra pa-
naudotas realus maketas su ant plokštumos sumontuotu 
rutuliu ir sukurtas šio įtaiso dinaminis modelis. Tiek imita-
vimo, tiek eksperimento rezultatai rodo, kad parametrų 
identifikavimo, naudojant pasiūlytąjį algoritmą, rezultatai 
yra kur kas geresni, nei panaudojant kitus identifikavimo 
metodus, pagrįstus tradicinį dalelių spiečiaus optimizavimu 
ir genetiniu algoritmu. 
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REAL-TIME PARAMETER IDENTIFICATION FOR 
HIGHLY COUPLED NONLINEAR SYSTEMS USING 
ADAPTIVE PARTICLE SWARM OPTIMIZATION 

S u m m a r y 

The In this paper, an Adaptive Particle Swarm 
Optimization (APSO) method is proposed for parameter 
identification of highly coupled electromechanical sys-
tems. Using some modifications on the APSO, better com-
putational efficiency is achieved. In this way, the speed of 
real-time identification procedure is improved. In addition, 
to show the effectiveness of the proposed method, it is im-
plemented on a real ball on plate setup and its dynamic 
model is achieved. Both the simulation and the experimen-
tal results show that parameter identification of the pro-
posed algorithm is significantly improved when compared 
with other existing identification methods based on the 
traditional PSO and Genetic Algorithm (GA). 
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ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ РЕАЛЬНОГО 
ВРЕМЕНИ ДЛЯ СИЛЬНО СВЯЗАННЫХ 
НЕЛИНЕЙНЫХ СИСТЕМ ИСПОЛЬЗУЯ 
АДАПТИВНУЮ ОПТИМИЗАЦИЮ РОЯ ЧАСТИЦ 

Р е з ю м е 

В данной статъе метод адаптивной оптимиза-
ции роя частиц предложен для идентификации сильно 
связанных электромеханических систем. При исполь-
зовании некоторых сильно связанных модификациях 
роя частиц получен более эффективный расчет. Таким 

образом улучшена процедура идентификации реально-
го времени. Дополнительно для оценки эффективности 
предложенного метода идентификации создан реаль-
ный макет со смонтированным шаром на плоскости и 
создана его динамическая модель. Результаты имита-
ции и эксперимента показывают, что имитация пара-
метров при использовании предложенного алгоритма 
является существенно предпочтительнее по сравнению 
с другими методами, использующими традиционную 
оптимизацию роя частиц и генетический алгоритм. 
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