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1. Introduction

Since the 70's headed by Academician U.A.
Dzholdasbekov Kazakh school of TMM (Theory of mech-
anisms and machines) was created, where first began to
solve problems associated to the analysis of high classes
mechanisms (MHC). For more than four decades’ scien-
tists-mechanics carried fundamental research in the crea-
tion of high classes mechanisms theory. In practice of me-
chanical engineering to carry out the dwell often applied
cam mechanisms and mechanisms with curvilinear cou-
lisse. Their disadvantage is that the law of motion of the
output link is totally dependent on profile of the cam or the
coulisse, change the cam when it is worn out leads to
downtime of mechanism and tangible material losses. Be-
cause of friction in higher kinematic pairs and rapid wear
of the cam profile and a roller driven link of the cam
mechanism appear inaccuracies and dynamic errors in the
implementation of the desired motion law. High classes
mechanisms with dwell link have high reliability, durabil-
ity and low material and energy consumption. The ana-
lyzed plane lever mechanisms of high classes (MHC) con-
tain group of Assur with variable closed circuits. Because
of the structural features the mechanisms of high classes
have broad functional capabilities. Foreign publications on
the dynamics of high classes mechanisms existing ana-
logues for this article is limited. This mechanism can be
used to replace the cam mechanisms.

In the monography of Academician U.A. Dzhold-
asbekov sets out the new graphic analytical, analytical and
numerical methods for the analysis and synthesis of plane
lever mechanisms. When solving various problems of the
kinematics of high classes mechanisms used methods of
replacing the driving link, instant centers of speeds [1].

In the paper the dynamic response of a DC sepa-
rately excited motor coupled to a general four-bar linkage
is investigated. The constraint equations are based on the
velocity ratio equations rather than the commonly used
loop equations [2]. The method of solving the problem we
have used in this article to the above fourth class mecha-
nism to determine the current, the angular velocity of mo-
tor and the velocity of mechanism links. Calculation of
Lagrange multipliers will be shown in the second part of
this article.

The article is considered the slider-crank mecha-
nism driven by a servo motor for which the dynamics
equations are obtained by using the new identification
method based on real encoded genetic algorithm. In the
work the corners and the speeds of links by numerical and
experimental methods are obtained [3].

The article presents the kinematics model of slid-
er-crank mechanism with a stepping motor that has been
integrated using MATLAB Simulink software. The pro-
posed method of proportional integral - differentiating reg-
ulation has been effective for position control of slider-
crank mechanism with good accuracy. The graphs of mo-
tion of the mechanism slide are obtained [4].

In the article is considered the model of the mech-
anism with rigid links and the motor having an ideal char-
acteristic. In the case of one motor and of one mechanism
the dynamic model of an ideal machine can be described
by equations ¢=f(U), 6=I1(¢), of which are obtained the
dependence of the motion law of the mechanism output
link from the change law of the input parameter. Differen-
tial equations of motion of the motor electromechanical
model obtained using Kirchhoff's and Newton’s laws. Ac-
cording to the equation of the drive defined the angular
velocity of motor [5].

This article describes the motion of one electro-
mechanical system with feedback. Differential equations of
motion of this system is in the form of Lagrange - Maxwell
and Kirchhoff equations. Differential equations that allow
to fully study the process of inhibition and disinhibition are
made up, their solutions under certain initial values of elec-
trical circuits currents and of rotation angles of the elec-
tromagnet anchor are obtained [6].

The article presents a unified dynamic modeling
environment for the "differential drive - mobile robots"
system. Dynamic model of the "differential drive - mobile
robot" using the methods of Lagrange and Newton - Euler
is constructed, it allows you to track the trajectory of mo-
tion of the system. It is also shown that both formulations
are mathematically equivalent to their conformity [7].

In the book sets the basis of mathematical model-
ing of motion of the mechanical systems, mechanisms and
machines. The methods of compiling the differential equa-
tions for mechanisms with rigid links, which can be repre-
sented in the form of one reduced mass, moving under the
action of given force, are proposed and their general solu-
tions are obtained [8].

The article considers the principle of the direct
analogy of constructing a simple electric model of the sim-
plest linear mechanical system with translational motion.
Differential equations of electrical and mechanical circuit
are obtained and the motor speed of mechanical system in
the transitional process with the help of classical or opera-
tor method is defined [9].

The research of the dynamic model of single-
acting crank pump with damless hydro turbine drive has
been made in the present work. Compiled dynamic and
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mathematical models of single-acting crank pump with
damless hydro drive have been constructed. The graph of
dependence between angular velocity and rotation angle of
hydro turbine for different values of rotor radius and at
different values of flow velocity of the watercourse have
been constructed. Been obtained, that the average speed of
rotation depends only on the hydro turbine parameters and
on flow rate of the watercourse. The average angular ve-
locity of hydro turbine in a steady state equal to the angular
velocity of hydro turbine at idle and does not depend on
the mode of operation of piston pumps [10].

2. Differential equations of motion of the system «elec-
tric motor — mechanism of class 1V with dwell driven
links»

Equivalent systems of different physical nature,
described by ideal differential equations, allow us to estab-
lish a correspondence between the various physical quanti-
ties and parameters [1]. The equation of motion of a me-
chanical system with one degree of freedom, which is de-
termined by the deviation of mass m from the equilibrium
position, the vertical movement of the force p, the elastic
restoring force, characterized by a stiffness ¢, and damping
force of viscous friction with coefficient r (mechanical
resistance) has the form:

@

The equation of the current i, permeates all ele-
ments of an electrical circuit consisting of serially connect-
ed elements - the source of EMF e, inductance L, re-
sistance and the inverse capacitance S (S=C), is written as
follows:

me+ro+cp=p.

di . .
Ldt+R|+Sf|dt e. 2)

To obtain the equation of motion of the machine,
the expression (1) should be considered in conjunction
with equation (2). The problem of dynamics mechanisms
with non-linear function of the position (especially in mul-
timass systems, in systems that form branched and closed
circuits) the expression of kinematic and potential energies
through independent generalized coordinates leads to com-
plex functional relations.

Necessity to express all the coordinates system
through the generalized coordinates can be removed using
a special form of Lagrange equations with «unnecessary»
coordinates.

Lagrange equations in the presence of holonomic
constraints are of the form [2]:

)

m constraint equations are as follows: @, (q;,t)=0;

m

d
dt

a
dg;

oL 00,

i 0;i=1,...,
6qi j=1 5Q.

®)

n ’

j=1,...,m.

Euler-Lagrange equation with first order con-
straint @, (q t)=0; j=1,...mwhere 74 is indefinite
multiplier; g, is generalized coordinate of mechanism; g;
is the first derivative of the generalized coordinates and the
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angular velocity of the links mechanism. @, are a func-

NE 00, 00, .
"dt oG, oq )) "
@)

The driving motor. The selected driving motor is a
direct current motor with independent excitation. Motor
speed is regulated by choosing terminal voltage of the an-
chor at constant current of the stator. If the stator current is
constant, it can be assumed that the back EMF is propor-
tional to the motor speed with a coefficient kp . The equa-

tions of the motor have the form:

(

m

2

j=1

d

dt

tions of g, and g, , then:
oL

%)

i=1,.,n

A —L+

x

' aq,

o
aq;

L dia+ri U, —kp
— = —kpo
a dt aa T

{J
where L, is inductance of the anchor; r, is resistance of
the anchor; U, is the voltage at the terminals; i, is current
of the anchor; o_,, is motor speed; J is moment of inertia

of the rotor; f is damping coefficient of the rotor; T, is

load torque. Motor torque is proportional to the current of
the anchor T, =kp'i,, where kp' expressed in electro-

mot

d : ©®)

wmot

dt

-7

+fo,, =T

mot L

ra

mot

mechanical units, N-m/A; kp is in electrical units, V-s

(E=c-@,-n, @ —magnetic flux). Choosing the angle of
rotation the driving link of the mechanism for the general-
ized coordinate q,, current of the anchor for q,, the equa-
tion (5) can be rewritten as:

|

{TL =kp' g, — Jg, — fq,

. 1 .
O = L_[UT -0 — kpql]

a ’

(6)

where T, is the moment corresponding to the coordinate

g .
Driven mechanism. As the driven mechanism is
selected the mechanism of class IV with dwell slave units

(Fig. 1).

Fig. 1 The electromechanical system «motor—mechanismy
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_ Closing circuits KEDAO, KEPNCO:, OABCO,, +meg[/s sin(q6+06)+ l o sin@1]+
the projections we obtain the following dependence of ve-
locity mechanism links: +m7g[ g sin(q; +6;)+ o SINO, + Lo sm@] (10)
do, 1 sin(es-9) in(gs-¢,) M Euler — Lagrange equations. For the mechanism of
dt _| in(p, - %) dt class IV with dwell driven link construct the Euler-
Lagrange equations, substitute equations (9) and (10) in
do, _ L sin(9,-¢1)sin (95 - ;) LY equation (4), will also assume that F, =T, and L=T -V .
dt 1y sin(p, -9 )sin(p; -p;)  dt After determination of derivatives and association mem-
do, L sin(@,-¢,)sin(gs-9;) do, bers we obtain the equation of the system:
dt 1, sin(p,-g¢;)sin(p,-¢,) dt ) _—
do, _ 21, sin(¢, - %)X%’ (1, +m, 7 +3)6, +m, 4,7 cos(-0,+0,+6,)d, -
dt |5 sin(g,-p) dt . ) . .
) -m, ¢,/ sin(—q, +0, +6,)d, + DG, —kp g +
dﬂzl_lS|n(§02'(/71)5|n((/)3'q05)><% +m, g/ cos(q, +6,)+m,g¢, cosqg, +K, =0
dt I sin(p, -¢)sin(pg -9,)  dt 1975, COS G T OO, 056 R =0
i=2
d I, sin(@, -, )sin(g, -, d )
e i ) i - S)Xﬂ (I2+m2/§ +myly +mgly )q2+m2/1/3
dt 1, sin(p,-g¢;)sin(p,-¢,) dt 2

-cos(—q, +q, +6'2)q1+m3//S -c0S(—Q, + 0, +6,) 0, +
Hereinafter, will be used the following selected

) - +m. .l cos(—qQ, +Q. +6.)q. +m, 7, L
generalized coordinates: /5”5, C08(~G; + 85+ 05) G,

291%s, ”
'Sin(_q1+q2+92)q1 m3/2(s S'”(‘Qz+q3+93)(j32—

{qlzﬂ; O, = @25 O3 = @35 q4=(-p4; (8) m5/5/5 sin(—q2+q5+6’5)q5 +ng/SZCOS(q2+6’2)+
=0, =0, =0, =i.
G5 =@5: G = %6: & = ¢r: G =1, +m,g¢, cosq, +m,g’, cosq, + K, =0.
The energy mechanism. In accordance with Fig. 1 =3 , o -
can be written kinetic energy of the class IV mechanism as (15+my2 +m, 03t + My, 0 cos(~a, +0, +6,) 0, +
follows:

+m, L cos (- q3+q4+94)q4+m3/2/s

1r, . . . . . : . -sin(— 0,)q7 —m, ¢,/ sin 0,)q:
Tl (%6 G0+ o) s, S~ v, + )4+
+myg ¢ C0s(0, +6;)+m,g’; cosq, + K, =0.

+m, (476 + 73 d; + 24,/ 6,d, cos (=g, +0, +6,)) + 4
+m3(/2 24 02 q3 +24,0 6,0, cos(—0, + 0, + 6, ))+ (|4+m4,/§4)q'4 +m4/3/34 cos(—q, +0a, +6,)d; +
+m4(/ Ga + 2,45 +20,7 d,4, cos ( q3+q4+9))+ +m, L,/ sin(=q, +q, +6,) 43 +
Mg (4604 0,60+ 2050 Qoo 0080y + 05+ 05)) | (9) a0, o8k 0y) K, =0
i=5
The equation of the potential energy of the class (15 +mgZ2 )by +my/ ol cos(—a, +0s +0,) 0, +

IV mechanism has the form: . &
m5/5/S sin(-q, + 05 +6;)d, + msg/85

V =mg/gsin(q,+6,)+ -cos (g + 65 )+ Ky =0.
+m,g (¢, sing, + /5, sin(q, +6,))+ i:“6
G +Meg s, COS (g +6, )+ Ky =0.
+m g(/ sing, + ¢, sm(q3+03))+ _
+m4g(/3 sing, + /54 Sin(q4 +‘94))+ 1., "’m7g/s7 cos(q7 +€7)+ K; =0, (11)
+msg(/ sing, + £, sin(q5+05))+

6 (. 0. oD. 0. .
where K, =>| 4, = +ij[i L _ ’] =47, sin(ds —q,)+ 44, cos(gs -, )ds + £, sin(q, — g, )-
i 0q, dt 09, 0q,

-[/iz sin(gs —dg )+ 4, c0s(ds — g ) (ds —qs)+/i3 sin(gs —0; )+ 4, cos (g, —a, )(ds —q7)—2/i4 +
""/is Sm(qs q5)+/15 Cos(qs _qs)(qs _qs)""j“s Sin(q4 _q5)+ﬂe COS(qA _qs)(q4 _qs)]""
""/1 COS(q2 ql)'[/lz Sin(qs _q6)+/13 Sin(qs _q7)_224 +/15 Sin(qa _qs)""/le Sin(q4 _qs)]qw
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' adq, dt g, aq,
( [3q3+l/eqe)sm(qe q3)+(/13f4q4+ﬂe/7q7)3in(q4_q7)}_/1cos(qz_q1)'
[ﬂ (qs—q5)+i3sin(q5—q7)—2/14+/155in(q3—q5)+/lesin(q4—q5)}ql,

s( . 0w, d oo, o0o,\) . o
KZ:Z A +/11. —————— | |= A7, sin(gs—0,)+cos(gs — 0, ) - [( 47, + 4,75 )ds +
j=

Zﬁl[ J i {d 0, _%D:sin(qs_qz).[/iz,/3sin(q6_q3)+(/12/3+,15/6).
i=1 5% dt og,  od,

-cos(q6—qs)q6]+/1/scos(q5—qz)sin(qs—qg)(q's—qz)—ﬁsflsin(qz—ql)cos(qS—qs)ql,

:26:[ J [iac,pj—%D:sin(q5—qz)-[ig/‘,sin(q4—q7)—(,13/4+/16/7).
i=1 6q4 dt oq, oaq,

-cos(q, —q;) q7]+/13/4cos(q57q2)sin(q4fq7)(q57q2)716/13in(q27q1)cos(q4fq5)q1,
Zsl[ i iid [iac,bj—%Dz/i/ssin(qs—qz)—cos(qs—q2)~[(/11/2+ﬂ4/5)q2+
j=1 6q5 dt 6q;  oq,

+(A0 45 + 257 5Gg ) SiN (0 — 0y ) + (457,40, + A< G, ) sin (q, —a, ) |- 4,4, cos (g — g, ) d, —
—/1sin(q2—q1 [/Izcos(qs—q5)+/13cos(q5—q7)—/15003(q3—qs)—)%cos(q‘l—qs)}ql,

0D, 0, .
i .J - : :Sin(qs_qz)"[%/e Sin(qe_qa)_(/12/3+/15'/e)'
dt oq, 0q,

-cos(q6 _qa)qs}"'ﬂ's/s Cos(qs _qz)Sin(qe _qs)(qs _qz)"'}“z/lsm(qz —ql)cos(qs _q6)q1’

5 (. 00, d 00, 00, . . ,
K7:Z‘1 4 a4 A= - :Sm(qs_qz)'[ﬂeﬂ sin(a, —a; )+ (4,7, + 44, )
i= 7

dt 69, oaq,

-cos(q4—q7)q4}+/16/7 cos(qs —d,)sin(q, —q;)(ds —G,)+ 4,4, sin(a, — g, )cos (qs — g, ) d,. 12)
The equation of current .1 G, L=
q o p1_G_'pi= —p,=-H;,i=27, (16)
LG, +1,0g +kpg, =U
where
Equations of state. We introduce seven new state G
variables defining the motion of the system in phase space: G_z =ctg (g5 — 0, )(Ps — Py )+t (d, =5 ) (Ps — P, );
2
{pl:qf; P i om0 P (13) 6
p5 :q51 pe :qs’ p7 :q7 G_3:(:tg(qz _ql)(pz —_ p1)+ctg(q5_q6)(p5_ p6)+
3
what gives: +ctg (d, =05 ) (Ps = P, ) +¢tg (ds =03 ) (P = Ps )
G = Pys G = Pys Gy = Py Gy = Py G
{ S (14) —*=ctg (0, ~q,) (P, ~ P)+ctg (05—, )(Ps — P, ) +
q5:p5; qe:pe; g, = P;. G,
+ctg (A, =05 )(Ps — P, ) +ctg (d, —a; ) (P; — Ps);
Equation (7) can be written as:
é, .
[pl_i. p, =0; pl_i. p, =0, pl_i. p, =0; G—=ctg(q1—q2)(p1— p,)+ctg(a, =05 )(Ps — P,);
G, G, G, 5
1 1 1 (15
lp 2. =0 p-——.p.=0: p——-p, =0 G
[pl G, Ps + P G, Ps + P G, Pr l G—:ctg(qz—ql)(pz—p1)+ctg(q3—q5)(p3—p5)+
6
+ct - -p,)+ct - - pg);
where G, +G, — the coefficients in the equations (7). 9(0: ~0s)(Ps = P2)+ 10 (G ~ 0z ) (P2 = Ps)
Differentiating equations (15) we obtain: G,
o = ct0(d; —a) (P, = p) +ctg (a, —as ) (Py = Ps )+
7
+Ctg(q2 _qs)(ps - p2)+ctg(q4 _q7)(p7 - p4)' (17)
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qlz U qzz Py, qsz Ps» q4: Py

The first seven of equations (11) can be written:
{ . ) . (21)
q5:p51q5:p51q7:p71

Ap, +Bp,+ Clil + Dliz + Fl/i3 +

+LAdy+ Mydg + N + B, =0, we add to them the equations for the angular velocity of

B,p, + AP, +B,p, + B, p, +C,4 +E, =0, the mechanism p, = p,, the equations for the Lagrange
B,p, + A,p, + B, ?4 +D,4, +E, =0, 18) multipliers 4, =4, given below, and the equation for the
B,ps +A,p, +F, A +E, =0, current. g, =[U, —r,q, —kpp, ]/L, -

B, P, + A Ps + Ls/iA +E, =0, The coefficients in the system of differential equa-

. . tions are given by the expressions:
Apg+M A, +E; =0,

%,22,23,14,15,/16,%]. (20)

A7p7+N7j“6+E7 =0. A= |1+m2/12+~]; A, = |z+m2/522 +m3/22+m5/§2;
_ )2 2. _ )2 .
Together with the equations (16) equations (18) A=y tmylo +mlai A=l +mZ
f(?rm 'a I!near system of equations for the variables A=l +m i A =1 A =1
P+ P, A+ A B, =M,/ cos(—q, +0, +6,);
We introduce the following notations: B, =m,/, 7, cos(—0, +0; +06;);
. ( ) . ( ) B4:m4/3/54cos(—q3+q4+94);
sin(q, — ¢ sin(q, — ¢
ﬂlz.#: ,Uzz.;en BSZrns/s/s2 COS(_q2+q5+95);
sin(q, -a,) sin(q, —d;) . ) .
. . K1=Sln(q2—q1);K2=Sln(q2—q1)SIn(q6—q3);
oo SnGma) o, sin(% ) ‘e . _
*osin(gu-q,)" Tt 7 sin(g-q,) C3 ‘;'”quql)s'”(‘;Aqv),
i i =4;sin(g; —q,) = 44K,
. :SII'l(q4—q5) #zsm(%—%) (19) 1 [1 - ( 5 1) - 1™ ) .
° sin(q,-q,)’ sin(a, —q,) D, = 4;sin(d, —q,)sin(d; =0 ) = /146K, ;
F=4 Sin(qz _ql)Sin(qs _q7): {1 Ky
Adding the motor equation, we get the twenty-one L =-24,sin(q, —q,) = £4,K,;
first order differential equation (thirteen of which are non- o ) , )
linear) describing the system «motor — linkage»: M, = ¢, sin(q, —q,)sin(q, —0s) = £, 1K, ;
¢ N1:flsin(qz*q1)5in(q4*q5):/1/“6K3;
x=f(x . :
( ), C,=4,sin(0;—0,)=—4,uK;
- Ds—/3sm(q5_q2)sm(q6_q3):_[3/‘K21
Where X :[q1,q21q31q4|q51q5|q7|p11p21p3'p4’p5' pG'p7‘ %
F.=7, Sm(qs —qz)sm(q4 _q7):_[4/”K37
)

The first seven equations of the system are as Mg =g sin(ds —a,)sin(gs —d;) = /1K,

follows: N, =/, sin(gs —q,)sin(q, —q,) = -4, uK,.

E, =-m,/ /g, sin(—q, + 0, +6,) ps+ Dp,— kp'dy+ m,g 7, cos (g, + 6, )+ m,g 7, cosq, + 4 ¢, cos (qy —d, ) ps +
+/, cos(q, —ql)-[/lz sin(gs —0g )+ 4, sin(as — 0, ) — 24, + 4 sin(q, — g5 )+ 4 sin(q, —qS)] p, + 7, sin(q, —q,)-
-[/12 c0s(ds — g ) ( Ps — P )+ 4, €05 (05 — 0 ) ( Ps — Py )+45 €OS (0 — G5 ) (P — Ps ) + A5 cOs(a, — s ) (P, — ps)};
E, =m,/, /g, sin(=q, +0, +6,) pi =My, g, sin (=0, + 0y +6,) ps — My L, sin (=0, + Qs + 6, ) pe +
+m,g/,cos(q, +6,)+m,g<, cosq,+m;g <, cosq,— ¢, cos(a, —q1)~[/12 sin(gy —0g )+ 4, sin(g; —q, ) -

—2, + Agsin(0, — 05 )+ A, sin(a, —qs)] Py +€08(0s =0, )-[(A47, + 2,75 )Ps + (4,05 P5 + A5 P ) SiN(Qg — 05 ) +
+( 257 4Py + 467 P )sin(d, — ;) |

E, =m,/, /g, sin(=q, + 0, +6,) ps—m, <, 7, sin(—q, + 0, +6, ) ps+m,g’,cos(d; +6,)+m,g¢, cosg,—
—2s¢,sin(q, —q,)cos(a, —0s ) p, + 4,75 €08 (05—, )Sin(as — 0y ) (Ps — P, ) + (4,45 + 4545 )sin(gs -, ) -

+c0s (s — 05 ) P>

E,=m, /s, sin(-q, +0, +6,) ps+m,g s, cos(q, +6,)— ;4 sin(d, —q,)cos (g, —dy ) p, + 4,7, cos(ds — 1, )-
-sin(a, —a,)(ps — P,)— (4,7, + 2575 )sin(gs -, )cos(a, —d, ) p;;



Es = Mg/, cos(—0, + 0 +65) p5+mgg ¢, cos(gs + 65 ) — 4,4, cos (s —a, ) p, — ¢, sin(q, — ¢, )-

-[/12 c0s(0s — g ) + A, €0S (s — 0, ) — 45 c0s (0, — 5 ) — A, €OS (q, —qs)} P, —cos(0s —0a,)-[( 47, + 24,45 )p, +
+( 205 P5+ A5C 5 Pg ) SIN (G — g )+ (474 Py + 4547 P;)sin (A, =, ) |

Es =Me’sss5IN(0g + 65 )+ 2,4, sin(q, —0,)cos(gs —0g ) P, + A5 £ €0S (s — 0, )sin(ds — ;) (Ps — P, ) —

(2,45 + 2575 )sin(d; — 4, ) c0s (s — 05 ) Py

E, =m,/ /¢, cos(q, +6,)+ 4,4, sin(q, —q,)cos(a; —a, ) p, + 4, ¢; €os (g5 —a, )sin(a, —a, ) (ps — p,) +

+( /13/4 + 26/7 )sin(q5 _qz)COS(Q4 _q7) Py

G
H, :G_Zpl :[Ctg(qs _ql)(p5_ p1)+

2

+ctg (0, =05 ) (Ps — P,) |- P

G
H, :G_3p1 =[Ctg(q2—q1)(p2 B p1)+

3
+Ctg (s — 05 ) (Ps — Pg ) +Ctg (A, — 0 ) (Ps — P, ) +
+Ctg (05 — 05 ) (Ps — pe)] P.;

G
H, :G_Ap1:|:Ctg(q2_q1)(p2_ p1)+

4
+Ctg(q5—q7)(p5— p7)+ctg(q2—q5)(p5— pz)""
+Ctg(q4_Q7)(p7_ p4)]' Py.s

G
H, :G_5p1 :[Ctg(qliqZ)(pli p2)+

5

+ctg (A, =g )(Ps = P,) |- Py

G
H, :G_6p1 :[Ctg(qZ _ql)(pz B p1)+
6

+ctg(q3—q5)(p3— p5)+ctg (qz_qs)(ps_ pz)""
+ctg (ds —d3)(Ps — Pg) |- Pi

G
H, :G_7p1 :[Ctg(qz _ql)(pz - p1)+

7
+ctg (d, —ds ) (P, — Ps)+ctg (a, —ds ) (Ps — P, )+
+ctg (a, —a; ) (P; = Pa) |- Py

3. Example

The equations of integrated using the Runge-
Kutta method of fourth order (ode45) during acceleration.
An analysis of the coefficients of equations (18) show that

at t=0 in view of p,(0)=e,(0)=0 all the members
containing undefined multipliers are zero.

Physical characteristics of the mechanism. Exam-
ple of the mechanism shown in Fig.1. The calculations
changed damping and the total moment of inertia of the
rotor and the driving link. The initial parameters of the
mechanism are:

7, =10,040m;r,=0m; ¢, =0,090 m; 7,, = 0,041 m;
/,, =0,072m; r, =0,045m; ¢, =0,060 m;

/4, =0,030 m;

/4, =0,040m;r, =0,03 m; ¢, =0,047 m; £,, =0,100 m;
/,,=0115m; r,=0,3m; 7, =0,72m; r, = 0,36 m;

/,=050m; r, =0,25m; 7, =0,65m; r, =0,325m;
L,=0,148 m; L,=0,126 m; L,=0,082 m;
I, =1,28-10°N-m-s?; 1, = 80-10° N-m-s?;
I, = 21,97-10° N-m-:s%, 1, = 176-10° N-m-s;
I, = 3,73-10°N-m-s%; I, = 2,510 °N-m-s?;
I, =5,49-10°N-m-s% m, =0,4 kg; m, =2 kg;
m, = 1,3 kg;
m, = 2,6 kg; m; = 0,72 kg; m, =0,5 kg; m, = 0,65 kg;
TH, =TH, =TH, =TH, =TH, =TH, =TH, =0.

The physical characteristics of the motor.
kp=0,678 N-m/A=0,678 Vs; ra=0,4 0; r=0,125 m;
L.=0,05 H; J=0,0565 N-m-s?, D=0,226 N-m-s (damping

coefficients of the rotor and the driving link are combined).
Operating voltage U,=15V with zero initial current of

anchor i, (0)=0.

4. Conclusions

Results. There are two variants of the example.
The total moment of inertia of the rotor and the driving
link is increased from 0,0565N-m-s?> to 0,346N-m-s2. In
both cases, the motion starts from rest.

Fig. 2 shows graphs of operating points of the an-
gular velocity of the mechanism of class IV with dwell
driven links. Set the speed of all the links is achieved by
1.5 seconds. The angular velocity of the second link mech-
anism is 50 rad/s, the third is 79 rad/s, the fourth is 23
rad/s, the fifth is 120 rad/s, the sixth is 40 rad/s and seventh
is 18 rad/s. The negative sign of the angular velocity of the
mechanism links indicate a change in direction of rotation
of links.

Fig. 3 shows the reaction of the system described
with given above data. The graph represents the depend-
ence of the angular velocity of the driving link or the motor
on time. The motor overclocks the mechanism is similar to
the reaction of weak damping system. Set the speed of
close to 10 rad/s and achieved by 0,4 seconds. In this case,
increasing the damping leads to only an increase of con-
sumed current and a similar but somewhat slower reaction
with decreased maximum speed, in addition to energy
losses. Is much more effective in excluding of overclock-
ing is to increase the dimensions of the flywheel (moment
of inertia the driving link). Established fluctuations consti-
tute about 30% of the average velocity.



Fig. 2 The graph of operating points velocities of the class
IV mechanism
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Fig. 3 The graph of the velocity of the class IV mechanism
driving link at J+11=0,0565+1,28-10°N-m-s?

Fig. 4 illustrates the effect of increasing the di-
mensions of the flywheel on the angular velocity of rota-
tion of the driving link. Acceleration time increases, but
the fluctuations increased with the above mentioned mo-
ment of inertia of the rotor and the driving link.
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Fig. 4 The graph of the velocity of the class IV mechanism
driving link at J+11=0,346+1,28-10"3N-m-s?

Fig. 5 shows the corresponding graph of con-

sumed current during acceleration. High initial current is

valid during the time equal to 1.5 seconds and is equal to

872

62 A. Since the motor torque is proportional to the current
of anchor, we can see that torque is almost constant, but
varies by almost 3% from the steady average value. High
initial current corresponding to a special short time of
overclocking, may be undesirable in practice, but is an
example of the extreme behavior of the system (like
"weakly damped" reaction).

Fig. 5 The graph of the motor current

Investigation of graphs showed that when differ-
ent applications torque to the drive link, it changes the val-
ue of a steady rate for the same time. Solution, as used here
in, is easily reproduced, obtained quickly, it is stable and
exact, as the multiple cycles are carried out without the
accumulation of errors. Choice of optimal parameters, that
is, the motor must conform to the mechanism, and modes
or calculation of the driving motors of mechanisms can be
facilitated using the analysis of similar type which will
reduce energy consumption.
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D. Kinzhebayeva, A. Sarsekeyeva

DYNAMICS OF MOTION OF THE SYSTEM
«ELECTRIC MOTOR — MECHANISM OF CLASS IV
WITH DWELL DRIVEN LINKS» DURING
ACCELERATION

Summary

In this article the dynamics of electromechanical
system "electric motor — mechanism IV class with dwell
driven links" is investigated. Numerical values of the
lengths of mechanism links and physical parameters of the
electric motor are given. Differential equations of motion
of the electromechanical system using the second type La-
grange equations with indefinite multipliers is compiled.
The equations of motion are solved using the method de-
scribed in the paper by A. Myklebust, where the constraint
equations are based on the equations of velocity relations.
It was revealed that the value of the fluctuations depends
on the value of the applied torque to the driving link of
mechanism.

The results obtained in the theoretical research
can be successfully used for the calculation and selection
of the drive motors, as well in the study of the dynamics of
high classes mechanisms.

Keywords: the electric motor, 1V class mechanism with
dwell driven links, differential equations of motion of IV
class mechanism, the second type Lagrange equations,
constraint equations, angular speeds.
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