
337 

ISSN 13921207. MECHANIKA. 2016 Volume 22(5): 337342 

Identification of elastic properties of individual material phases by  

coupling of micromechanical model and evolutionary algorithm  

W. Ogierman*, G. Kokot** 
 

*Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland, E-mail: witold.ogierman@polsl.pl 

**Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland, E-mail: grzegorz.kokot@polsl.pl 
 

  http://dx.doi.org/10.5755/j01.mech.22.5.16313  
 

1. Introduction 
 

Development of the novel composite materials 

leads to obtaining materials with unique properties, some-

times with characteristics opposite to the materials used as 

phases of the composite. There are many works that are 

focused on estimation of effective material properties in 

dependence on properties of individual phases. Various 

analytical and numerical approaches has already been pro-

posed in literature, therefore the second chapter of this 

article describes briefly the homogenization procedures 

applicable for multi-phase materials. However, the main 

aim of this paper is connected with solving an inverse 

problem of identifying the individual material phases prop-

erties in dependence of known effective properties. The 

identification can be treated as a minimisation of some 

functional depending on appropriate variables. There are a 

few works dealing with the identification of elastic con-

stants of composite materials. For example, Maletta and 

Pagnotta in work [1] and Beluch and Burczyński in work 

[2] combined finite element analysis with evolutionary 

algorithms in order to identify the elastic constants of 

composite laminates with the use of vibration test data. 

Moreover, work [2] presents how to solve the same prob-

lem with the use of artificial immune systems. Burczyński 

at. al. [3] identified elastic constants of osseous tissues by 

combining evolutionary algorithms with finite element 

method. Similar approach was also applied by Makowski 

and Kuś [4] in order to optimize  periodic structure of bone 

scaffold. Herrera-Solaz at.al [5] used Levenberg-Marquard 

method combined with finite element analysis for the iden-

tification of single grain properties by using the knowledge 

of polycrystalline behaviour. This study proposes to solve 

the identification problem with the use of evolutionary 

algorithms. Traditional identification methods, such as 

gradient methods, tend to stack in the local optima or cause 

problems with the calculation of fitness function gradient. 

Evolutionary algorithms overcome that problems by taking 

into account a wide range of exploration directions what is 

a result of population diversity. Moreover, evolutionary 

algorithms do not require information about fitness func-

tion gradient [2, 6]. To calculate fitness function value, the 

well known Mori-Tanaka micromechanical method has 

been used. The original contribution of this paper is a new 

identification strategy involving a resultant error represent-

ing the uncertain character of both the experimental data 

and model predictions. The error is introduced and magni-

fied gradually during the evolutionary identification up to 

reaching zero value of fitness function. During this study, 

several analyses with different assumptions were per-

formed in order to demonstrate this new approach. The 

identification focuses on a three-phase composite whose 

matrix is reinforced with spherical particles and long fi-

bers. Experimental data considered as input to analysis is 

based on results published in work of Duc and Minh [7].  
 

2. Effective stiffness of three phase material 
 

In order to calculate the effective stiffness tensors 

of multi-phase materials by considering the properties of 

the individual phases, the use of homogenization procedure 

is essential. Homogenization involves replacing the heter-

ogeneous material with an equivalent homogeneous mate-

rial. The stiffness of multi-phase material can be estimated 

with the help of various approaches that have already been 

proposed. One of the most versatile method that can deal 

with the finite number of phases of any morphology is nu-

merical homogenization based on finite [8-10] or boundary 

[11, 12] element analysis of representative volume element 

(RVE). On the other hand, this approach generally requires 

relatively high computational cost. Another popular group 

of homogenization methods is mean field approach that is 

based on the well-known equivalent inclusion approach of 

Eshelby [13]. In comparison with finite element or bounda-

ry element based homogenization, mean field methods 

have got few limitations but the huge advantage of this 

approach is computational efficiency and simplicity. In 

case of solving the identification problem, the objective 

function that contains homogenization procedure has to be 

computed multiple times. As the computational efficiency 

of homogenization is one of the crucial issues, the study 

proposes the use of the well-known, mean field Mori-

Tanaka method [14]. In this case, effective elasticity tenor 

can be determined by using the following relation: 
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is Mori-Tanaka strain concentration tensor, S is an Eshelby 

tensor, I is identity tensor, Cm and Ci are stiffness tensors of 

matrix and inclusion material, fm and fi are volume fractions 

of matrix and inclusion phases respectively. Although Mo-

ri-Tanaka method is originally dedicated to the analysis of 

two-phase materials, it can be easily extended to multi-

phase materials by simply performing homogenization 

several times. The concept of this approach is presented in 

Fig. 1 using the example of three-phase composite (inten-
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tionally similar to the one that was experimentally exam-

ined in work [7]). At the first level the matrix material is 

homogenized with reinforcing particles. Thus obtained 

effective material plays the role of a fictitious matrix (Ma-

trix II) which is reinforced with fibres. The second homog-

enization allows to obtain equivalent material properties of 

composite.  
 

 

Fig. 1 Multi level homogenization scheme using the exam-

ple of three-phase material 

The material considered during this study is a 

three-phase composite reinforced with spherical particles 

and unidirectional long fibers. The properties of each phase 

are presented in Table 1. The experimental study presented 

in work [7] contains data for the individual phases and for 

composites with different volume fraction of phases. These 

are presented in Table 2 - EL denotes longitudinal Young 

modulus, ET is transverse Young modulus, XEL and XET 

denote absolute relative percentage difference between 

experimental results and models predictions. Table 2 also 

contains the results of Mori-Tanaka homogenization and 

the results of finite element based homogenization. During 

Mori-Tanaka homogenization, different Eshelby solutions 

were considered: at the first homogenization level, it was 

the solution for spherical inclusion and at the second ho-

mogenization level, it was the solution for infinite fiber. 

The mentioned Eshelby solutions can be found in closed 

form, for example, in the work of Mura [15]. As finite el-

ement computation is not the main goal of this study, it 

was conducted only for the first material presented in Ta-

ble 2, in order to compare the obtained results with Mori-

Tanaka and experimental results. Finite element based ho-

mogenization was performed for representative volume 

element containing three phases (similar to the one pre-

sented in Fig. 1) in a way presented in the previous works 

of authors [8, 9]. It should be underlined that, in general, 

the applicability of multi-phase Mori-Tanaka methods is 

limited by their tendency to predict non-symmetric stiff-

ness tensors. It may occur, for example, during studying 

composites reinforced with nonaligned inclusions [16]. To 

deal with misaligned composites, Pierard et al. proposed to 

decompose inclusions into the so-called pseudo grains, use 

Mori-Tanaka method at the first homogenization level for 

each pseudo grain and then use Voight method at the sec-

ond homogenization level [17]. 
 

Table 1 

Elastic constants of individual phases [7] 
 

 Matrix Particles  Fibers 

Young modulus, GPa 1.43 5.58 22.00 

Poison ratio 0.345 0.200 0.240 

 

Table 2 

Material properties of composites: experimental data [7], 

analytical and numerical predictions 
 

Composite 20% particles + 15% fibers 

 EL XEL ET XET 

Experiment 4685.71  2710.03  

Mori-Tanaka 4927.45 5.16% 2493.86 7.98% 

FE homogeni-

zation  

4941.06 5.45% 2674.40 1.35% 

Composite 20% particles+ 20% fibers 

Experiment 6296.40  2874.98  

Mori-Tanaka 5960.41 4.93% 2741.34 4.65% 

Composite 30% particles+ 15% fibers 

Experiment 4950.75  2975.76  

Mori-Tanaka 5183.26 4.70% 2844.02 4.43% 

Composite 30% particles+ 20% fibers 

Experiment 6448.83  3201.23  

Mori-Tanaka 6222.70 3.51% 3144.98 1.76% 

 

3. Solving identification problem by using evolutionary 

algorithms 
 

The idea of identification of the individual mate-

rial phases properties proposed in this work is based on the 

knowledge of Young modulus of composites determined 

for the materials with different volume fraction of the rein-

forcement. In order to solve the identification problem, this 

study proposes the use of evolutionary algorithm. The 

scheme of applied algorithm is presented in Fig. 2. 
 

 

Fig. 2 Scheme of evolutionary algorithm combined with 

homogenization procedure 
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The fitness function that is minimized during the 

optimization is defined as follows: 
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where xi are variables, i
y are known elastic constants (for 

example from experimental data), yi are elastic constants 

computed during optimization in dependence of variables 

xi, n denotes the number of materials used. Variables xi that 

are accounted are Young moduli and Poisson ratios of the 

individual composite phases. Another issue that is raised in 

this article is the treatment of uncertain character of exper-

imental data and the material homogenization model. 

Apart from an experimental test error, in some cases only a 

few specimens can be examined which very often leads to 

obtaining relatively large standard deviation of the mean 

value. On the other hand, homogenization methods are 

based on some idealised, simplified assumptions (e.g. per-

fect geometry of inclusions, uniform distribution of inclu-

sions, perfect bonding between matrix and inclusions) and 

do not reflect real material behaviour exactly. Therefore, a 

novel method of identification involving resultant error 

estimation is proposed. Resultant error means that it is nei-

ther connected with experimental data nor with homogeni-

zation method errors. It is of implicit nature and can be 

treated as an effective error. Fitness function, accounting 

for an error, is evaluated in a fashion presented in Fig. 3. 
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Fig. 3 Fitness function evaluation, accounting for an error 
 

While the resultant error is of an implicit nature, 

determining it is no trivial task. The iterative method of 

error estimation proposed in this paper considers gradual 

magnification of error during evolutionary computation up 

to reaching zero value of fitness function, computed in 

accordance with the scheme presented in Fig. 4. The re-

sultant error value corresponds to the last iteration of the 

algorithm.  
 

Table 3 

Evolutionary algorithm parameters 
 

Population size 100 

Crossover fraction 0.9 

Selection procedure Rank selection 

Elite count 5% of population size 

Crossover Heuristic 

Mutation Adaptive feasible 

Stall generation limit 5 

 

Fig. 4 Scheme of proposed evolutionary algorithm, ac-

counting for resultant error  

Evolutionary algorithm parameters, common for 

all performed analyses, are introduced in Table 3. The pa-

per focuses on three-phase material; therefore the defined 

fitness function depends on six variables. Table 4 contains 

information about variables and applied constrains.  

 

Table 4 

Variables accounted for during identification and  

applied constraints 
 

Accounted variables 
Min.  

value 

Max. 

value 

Young modulus of matrix 0.5, GPa 1000, GPa 

Young modulus of particles 0.5, GPa 1000, GPa 

Young modulus of fibers 0.5, GPa 1000, GPa 

Poisson ratio of matrix 0.16 0.36 

Poisson ratio of particles 0.16 0.36 

Poisson ratio of fibers 0.16 0.36 

 

4. Results of identification 

 

At the beginning, in order to verify the algorithm 

presented in Fig. 2, simple identification of elastic con-

stants of composite constituents was carried out by using 

the results obtained with Mori-Tanaka method as input 

data. The input data is generated for four different compo-

sites described in Table 2. Two different types of analyses 

accounting for different input data were conducted. In the 

first one, all five independent, effective constants of com-

posite are taken into account (transversally isotropic effec-

tive behaviour). In this case, fitness function is formulated 

as follows: 
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where EL is longitudinal Young modulus, ET is transverse 

Young modulus, v is in plane Poisson ratio, GP is in plane 

shear modulus and GT is transverse shear modulus. Thus 

obtained results are presented in Table 5. 

The second analysis assumes knowledge only of 

longitudinal and transverse Young moduli. In this case, 

fitness function is formulated as follows: 
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Thus obtained results are presented in Table 6. 

The next identification was performed by using 

experimental results, presented in Table 2, as input data, in 

particular longitudinal and transverse Young moduli were 

considered. Initially, the identification was performed 

without including error (in accordance with scheme pre-

sented in Fig. 2). The results are presented in Table 7. 

Then the identification was carried out while accounting 

for error (in accordance with scheme presented in Fig. 4). 

Error increment that was taken into consideration equals 

0.25%. The results are presented in Table 8 and additional, 

averaged values in Table 9 - XE denotes absolute relative 

percentage error between the identified modulus E and the 

known one. Moreover, Fig. 5 shows Young modulus errors 

in a function of resultant error, encountered during the 

identification of individual phases (for each identification 

procedure, it was slightly different due to the nondetermin-

istic nature of applied algorithm). Figs. 6-9 present Young 

moduli identification errors in function of resultant error 

for matrix, particles and fibres respectively.  

 

 

Fig. 5 Young Modulus error in a function of resultant error 

 
Fig. 6 Fitness function value in a function of resultant error 

for five independent algorithm executions 

 
Fig. 7 Matrix Young modulus error in a function of  

resultant error for five independent algorithm  

executions 

 
Fig. 8 Particles Young modulus error in a function of  

resultant error for five independent algorithm  

executions 

 
Fig. 9 Fibres Young modulus error in a function of result-

ant error for five independent algorithm executions
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Table 5 

Results of evolutionary identification, input data: all five independent, effective constants of four  

different composites determined by Mori-Tanaka model 
 

Test no. XEm, 
% 

XEp, 

% 

XEf, 

% 

Xvm, 

% 

Xvp, 

% 

Xvf, 

% 

Fitness 

function 

value 

Total number 

of  

generations 

1 0.0001 0.0016 0.0003 0.0000 0.0130 0.0069 3.69E-05 148 

2 0.0000 0.0009 0.0000 0.0015 0.0118 0.0005 2.16E-05 149 

3 0.0011 0.0041 0.0000 0.0010 0.0096 0.0000 3.99E-05 122 

 

Table 6 

Results of evolutionary identification, input data: longitudinal and transverse Young moduli  

of four different composites determined by Mori-Tanaka model 

 

Test no. XEm, 
% 

XEp, 

% 

XEf, 

% 

Xvm, 

% 

Xvp, 

% 

Xvf, 

% 

Fitness 

function 

value 

Total number 

of  

generations 

1 0.0613 0.0164 0.0278 0.5026 5.7571 14.3592 2.39E-05 172 

2 0.0529 0.0333 0.0454 0.5056 5.1514 13.9351 1.44E-05 183 

3 0.0951 0.0092 0.0347 0.6946 8.5994 20.5272 3.92E-05 163 

 

Table 7 

Results of evolutionary identification, input data: longitudinal and transverse Young moduli  

of four different composites determined in experiment [7], errors excluded 
 

Test 

no. 

EM, 

MPa 

EP, 

MPa 

EF, 

MPa 

XEm, 
% 

XEp, 

% 

XEf, 

% 

Fitness func-

tion value 

Total number of 

generations 

1 1731.62 3748.21 22905.88 21.09 32.83 4.12 0.24465 268 

2 1731.91 3748.77 22904.82 21.11 32.82 4.11 0.24465 355 

3 1855.29 3738.98 19514.68 29.74 32.99 11.30 0.24675 54 

4 1747.33 3760.16 22837.15 22.19 32.61 3.81 0.24473 115 

5 1731.92 3749.10 22904.43 21.11 32.81 4.11 0.24465 374 

 

Table 8 

Results of evolutionary identification, input data: longitudinal and transverse Young moduli  

of four different composites determined in experiment [7], errors included 

 

Test no. EM, 

MPa 

EP, 

MPa 

EF, 

MPa 

XEm, 
% 

XEp, 

% 

XEf, 

% 

Resultant 

error, % 

Total number of 

generations 

1 1440.51 5955.78 21813.34 0.73 6.73 0.85 5.209 1762 

2 1439.32 5976.66 21814.52 0.65 7.11 0.84 5.206 1890 

3 1501.38 4799.02 21846.29 4.99 14.00 0.70 5.264 1163 

4 1480.78 5155.55 21834.33 3.55 7.61 0.75 5.247 1191 

5 1473.54 5289.60 21828.77 3.04 5.20 0.78 5.242 1615 

6 1440.80 5967.06 21811.27 0.76 6.94 0.86 5.211 1334 

7 1461.77 5497.52 21826.07 2.22 1.48 0.79 5.227 1609 

8 1439.64 5974.18 21813.39 0.67 7.06 0.85 5.207 1722 

9 1481.37 5204.61 21891.68 3.59 6.73 0.49 5.520 1332 

10 1449.33 5756.53 21818.80 1.35 3.16 0.82 5.216 1472 

 

Table 9 

Mean values of identified moduli and corresponding errors 
 

EM, 

MPa 

EP, 

MPa 

EF, 

MPa 

XEm, 
% 

XEp, 

% 

XEf, 

% 

1460.84 5557.65 21829.85 2.16 0.40 0.77 

 

5. Discussion on the results and conclusions 

 

The results presented in Table 5 show that using 

all independent elastic constants of analyzed composites as 

input data leads to only a unsubstantial error between iden-

tified elastic constants of the individual material phases 

and the actual one. The results of the next example in 

which input data consisted only of longitudinal and trans-

verse Young moduli (results presented in Table 6) point to 

the fact that Young moduli of the individual phases were 

identified with slightly less precision than in the previous 

example (maximum observed error does not exceed 0.1%) 

and Poisson ratios were not accurately identified. This fact 

leads to the conclusion that the lack of information about 

Poisson ratios or shear moduli does not significantly affect 

the identification of Young moduli of the individual phas-

es. The next problem under consideration was connected 

with the identification based on experimental input data. 

The results presented in Table 7 show an unacceptable 

identification error (about 32% in case of modulus of parti-
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cles). However, the application of a novel approach, dis-

cussed in this paper, that is connected with the introduction 

of resultant error leads to satisfying results that are pre-

sented in Table 8. Moreover, the presented approach, apart 

from resulting in a relatively small identification error, 

provides information about the resultant error. The pro-

posed approach should be verified by further work on dif-

ferent materials. Moreover, the method efficiency will be 

improved by introducing adaptive changes of the resultant 

error. 

 

Acknowledgement 

 

The results presented in the paper are  

partially financed from BKM-547/RMT4/2015 

(10/040/BKM_15/2016) and 10/990/BK_16/0040. 

 

References 

 

1. Maletta, C.; Pagnotta, L. 2004. On the determination 

of mechanical properties of composite laminates using 

genetic algorithms, International Journal of Mechanics 

and Materials in Design 1(2): 199-211. 

http://dx.doi.org/10.1007/s10999-004-1731-5. 

2. Beluch, W.; Burczyński, T. 2014. Two-scale identifi-

cation of composites' material constants by means of 

computational intelligence methods, Archives of Civil 

and Mechanical Engineering 14: 636-646. 

http://dx.doi.org/10.1016/j.acme.2013.12.007. 

3. Burczyński, T.; Kuś, W.; Brodacka, A. 2010. Mul-

tiscale modeling of osseous tissues, Journal of  

Theoretical And Applied Mechanics, 48(4): 855-870. 

Available from Internet: http://www.ptmts.org.pl/2010-

4-burczynski-in.pdf. 

4. Makowski, P.; Kuś, W. 2016. Optimization of bone 

scaffold structures using experimental and numerical 

data, Acta Mechanica, 277(1): 139-146. 

http://dx.doi.org/10.1007/s00707-015-1421-4. 

5. Herrera-Solaz, V.; LLorca, J.; Dogan, E.; Karaman, 

I.; Segurado, J. 2014. An inverse optimization strategy 

to determine single crystal mechanical behavior from 

polycrystal tests: Application to AZ31 Mg alloy, Inter-

national Journal of Plasticity 57: 1-15. 

http://dx.doi.org/doi:10.1016/j.ijplas.2014.02.001. 

6. Arabas, J. 2001. Lectures on Evolutionary Algorithms, 

WNT, Warsaw, 303p. (in Polish). 

7. Duc, N.D.; Minh, D.K. 2011. Experimental study on 

mechanical properties for a three-phase polymer com-

posite reinforced by glass fibers and titanium oxide par-

ticles, Vietnam Journal of Mechanics 33(2): 105-112. 

Available from Internet: http://www.vjs.ac.vn/ 

index.php/vjmech/article/viewFile/42/198. 

8. Ogierman, W.; Kokot, G. 2014. Particle shape influ-

ence on elastic-plastic behavior of particle-reinforced 

composites, Archives of Material Science and Engi-

neering 67(2): 70-76. Available from Internet: 

http://www.archivesmse.org/vol67_2/6723.pdf. 

9. Ogierman, W.; Kokot, G. 2015. Modeling of constitu-

tive behavior of anisotropic composite material using mul-

ti-scale approach, Mechanika 21(2): 118-122. 

http://dx.doi.org/10.5755/j01.mech.21.2.10276. 

10. Segurado, J.; Llorca, J. 2002. A numerical approxi-

mation to the elastic properties of sphere-reinforced 

composites, Journal of the Mechanics and Physics of 

Solids 50: 2107-2121. 

http://dx.doi.org/10.1016/S0022-5096(02)00021-2. 

11. Fedeliński, P.; Górski, R; Czyż, T.; Dziatkiewicz, 

G.; Ptaszny, J. 2014. Analysis of effective properties 

of materials by using the boundary element method, 

Archives of Mechanics 66(1): 19-35. Available from 

Internet: http://am.ippt.pan.pl/am/article/viewFile/ 

v66p19/pdf. 

12. Ptaszny, J. 2015. Accuracy of the fast multipole 

boundary element method with quadratic elements in 

the analysis of 3D porous structures, Computational 

Mechanics 56(3): 477-490. 

http://dx.doi.org/ 10.1007/s00466-015-1182-x. 

13. Eshelby, J.D. 1957. The determination of the elastic 

field of an ellipsoidal inclusion, and related problems, 

Proceedings of the Royal Society of London A 

241: 376-396. 

http://dx.doi.org/ 10.1098/rspa.1957.0133. 

14. Benveniste, Y. 1987. A new approach to the applica-

tion of Mori-Tanaka’s theory in composite materials, 

Mechanics of Materials 6: 147-157. 

http://dx.doi.org/ 10.1016/0167-6636(87)90005-6. 

15. Mura, T. 1987. Micromechanics of Defects in Solids, 

Dordrecht: Martinus Nijhoff Publishers, 587p. 

http://dx.doi.org/10.1007/978-94-009-3489-4. 

16. Böhm, H.J. 2004. Mechanics of Microstructured Mate-

rials.- Springer-Verlag, 306p. 

http://dx.doi.org/10.1007/978-3-7091-2776-6. 

17. Pierard, O.; Friebel, C.; Doghri, I. 2004. Mean-field 

homogenization of multi-phase thermo-elastic compo-

sites: a general framework and its validation, Compo-

sites Science and Technology 64: 1587-1603. 

http://dx.doi.org/ 10.1016/j.compscitech.2003.11.009. 

 

 

W. Ogierman, G. Kokot 

IDENTIFICATION OF ELASTIC PROPERTIES OF 

INDIVIDUAL MATERIAL PHASES BY COUPLING OF 

MICROMECHANICAL MODEL AND 

EVOLUTIONARY ALGORITHM.  

S u m m a r y 

The paper is devoted to an inverse problem of 

identification of individual material phases properties in 

dependence of known effective properties. In order to 

solve the identification problem, combining evolutionary 

algorithm with Mori-Tanaka method is proposed. In par-

ticular, the study focuses on a three-phase composite and 

takes experimental results from literature as an input data 

to analysis. The original contribution of this paper is a new 

identification strategy involving a resultant error that rep-

resents the uncertain character of both experimental data 

and model predictions. The new approach is demonstrated 

by performing several analyses with various assumptions.  
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