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1. Introduction 

 

Due to the applications and important roles of 

cavitation bubbles in various industries and medicine, 

many researches has been carried out on the bubble dy-

namics in the vicinity of various surfaces and in a confined 

spaces. These studies show that the bubble behavior is 

highly dependent on its neighbor boundary. The applica-

tions role of the bubbles in a confined space can be men-

tioned in medicine [1], and also it can be used in food in-

dustry for processing [2], with the assistance of ultrasound 

waves. The main intention of this study is recognition of 

the role of bubbles in governing mechanism of the enhanc-

ing oil recovery assisted ultrasound waves (EOR/US). The 

growth and collapse of the vapor bubbles are the outcome 

of the transferred energy to the porous medium via the 

ultrasonic waves. The growth and collapse of the vapor 

bubble and the liquid jet formation cause a highly explo-

sive movement in the fluid in the cavities of the porous 

media.  The liquid movement in the cavities of a porous 

medium increases the permeability, and leads to enhancing 

oil recovery. Many laboratory observations shows the in-

creasing of the enhanced oil recovery, using ultrasound 

waves. Duhon [3] was one of the first researchers who 

tested ultrasound waves radiation on the oil-saturated sand-

stone and observed increasing oil recovery. He has ex-

plained that the reason of the enhanced oil recovery is for-

mation of the cavitation bubbles because of the transmitted 

energy of the ultrasound waves that causes a force on the 

trapped oil drops inside the pores and increases the perme-

ability. Gadiev [4] radiated the ultrasound waves with a 

frequency of 15-40 kHz to the oil-saturated sandstone, and 

he observed a significant increase in the rate of oil recov-

ery and explained its reason due to the Sono-Capillary Ef-

fect, and stated that the vapor bubbles formed by the ultra-

sound waves increase this effect. 

Hamida and Babadagly [5] in their experimental 

research placed oil saturated sandstone in an ultrasound 

bath and observed that radiation of the ultrasound waves 

enhances oil recovery from the oil-saturated sandstone. 

Also, experimental observations of some researchers indi-

cate increasing of the permeability of a porous medium and 

enhancing oil recovery by radiation of the ultrasound 

waves [6-9]. 

Rambarzin et al. [10] in their recent paper studied 

a cavitation bubble dynamics generated by the ultrasound 

waves in different types of pores of a porous medium nu-

merically, to obtain the primary recognition of the govern-

ing mechanism of the increasing of the permeability of a 

porous medium via radiation of the ultrasound waves. 

Finding the effect of increasing or decreasing the 

transferred energy to the porous medium is very important. 

Because it can be effective in identifying the limitations of 

the method and process optimization and energy saving 

methods. In this research, the effects of changes in the en-

ergy transmitted to the liquid-saturated cavity of a porous 

medium is investigated numerically. The problem is con-

sidered to be three-dimensional axisymmetric. In this pa-

per, boundary element method (BEM) is employed for 

Numerical simulation of the problem under investigation. 

 

2. Mathematical model 

 

2.1. Assumptions and geometry of the problem 

 

According to the physics of the problem, the cavi-

ty of the porous medium filled by brine. In the mathemati-

cal model, the liquid around the vapor bubble inside the 

cavity is assumed that an incompressible and inviscid, and 

the flow around the vapor bubble is irrotational. It is as-

sumed that the scale bubble is in millimeters dimensions, 

so the effects of the buoyancy force can be ignored. The 

cavity surfaces of a porous medium are considered as rigid. 

Geometry of the problem is shown in Fig. 1 that is 

the proposed model of the pores of a porous medium.  In 

the middle of the liquid filled cavity is a small spherical 

vapor bubble. The vapor bubble grows symmetrically. 

 

Fig. 1 Schematic representation of a cavity of a porous 

medium and a cavitation vapor bubble generated via 

ultrasound wave 

2.2. Governing equations 

 

It is assumed that the gases inside the cavitation 

vapor bubble are liquid vapor and non-condensable gas. 

Also it is assumed that the gas inside the vapor bubble sat-

isfies the polytropic law with the polytropic exponent of γ, 
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that γ is the special heat ratio inside the vapor bubble. Soh 

[11] and Soh and Shervani-Tabar [12] showed that if 

1 15.  , the numerical results will be more compatible 

with the experimental results of the cavitation bubbles be-

havior. In this study, the amount of γ is considered equal to 

1.15. Through the balance of the forces exerted on the va-

por bubble, it can be written as: 

  0
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V
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where  P V  is the liquid pressure on the bubble surface 

which is equal to the pressure inside the bubble, Pc is satu-

rated vapor pressure of the gas inside the bubble, P0 is the 

initial gas pressure inside the bubble, V0 is the initial vol-

ume of bubble and σ is the Surface tension of the liquid 

inside the cavity. In this study it is assumed that 
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N

.
m

  . κ is the average surface curvature. The 

average surface curvature for a Rotational symmetry axis 

surface, as Nitsche and steen [13] Calculated it, is given as 

below: 
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that r and z are radial axis and axis of symmetry respec-

tively. 

The equation that describes the motion of a spher-

ical bubble in an infinite fluid domain, and is known as 

Rayleigh-Plesset equation and is given as [14]: 
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where R is the radius of the bubble, R  and R  are the first 

and second derivatives with respect to time, respectively 

that R is the radial velocity and R  is the radial accelera-

tion of a spherical bubble. P  is the pressure difference 

between the pressure in the far field,por a, and the v P
  

pressure inside the bubble, Pc. 

The initial conditions for this problem are: 0R   

at 0
R R , where R0 is the initial bubble radius, and also 

when the bubble reaches its maximum radius, m
R R , 

0R   occurs again. Before solving the problem, the 

Eq. (5) should be non-dimensionalized. 

 

2.3. Non–dimensional equations 

 

Non-dimensional parameters are defined as fol-

lows: 
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where the superscripts indicate the dimensionless parame-

ters, ε is called the Strength parameter that can be consid-

ered as the amount of the transferred energy. η is the sur-

face tension parameter, R is the radius of the bubble at any 

time, r is the radial axis, z is the axis of symmetry, ρ is the 

liquid density around the vapor bubble, and ϕ is the veloci-

ty potential. 

Now, with analytical solution of the Eq. (5) and 

then making it dimensionless using the defined non-

dimensional parameters and by satisfying the initial condi-

tions, the Eq. (5) becomes as below [15]: 
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By solving the above equation in a given Rm, the 

maximum radius of the vapor bubble, and given ε and η, 

the initial dimensionless bubble radius, 
0

R , can be ob-

tained by the Newton-Raphson method. 
 

2.4. Boundary integral equation 
 

According to the assumption of the potential fluid 

flow around the vapor bubble, the Green's integral equa-

tion is the governing equation for the fluid flow around the 

vapor bubble. 
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where s is the domain boundary including the vapor bubble 

surface, the cavity surface and the boundary at physical 

infinity; Ω is the liquid domain; p is any point in the liquid 

domain or on the boundary, and q is any point on the 

boundary. 

 

2.5. Evaluating of time historical 

 

The unsteady Bernoulli equation is employed for 

evaluating of time historical of the velocity potential and 

can be written as: 

21
,

2
b
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where Pb is the pressure inside the vapor bubble and u  is 

the mean velocity of the boundary of the vapor bubble. 

 

3. Numerical computation 

 

3.1. Discretization of the problem 

 

Fig. 2 shows discretization of the boundaries of 

the suggested cavity model from a porous media. 

The problem is considered axially symmetric. The 

cavity is saturated by liquid. The rigid surface of the cavity 

are discretized with linear elements and to avoid numerical 

instabilities, bubble boundary discretized by the cubic 

spline elements. 

 

Fig. 2 Discretization of the boundaries of the proposed model of a cavity of a porous medium 

Green integral equation that is mentioned in the 

Eq. (8), is discretized as follow: 
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Also discretized form of the unsteady Bernoulli 

equation with the Lagrangian approach is as follow: 
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Discretization of the rigid boundaries of the cavity 

continues to physical infinity. The collocation points are 

located in the middle of each element and the velocity po-

tential and the normal velocity functions have been consid-

ered to be constant along each element. 

3.2. Numerical procedure 

 

The numerical calculations starts when the sphe-

rical vapor bubble via transmitted energy of the ultrasound 

waves into the liquid saturated cavity is in its initial mini-

mum volume. The initial very high pressure inside the va-

por bubble drives the bubble boundary, and the vapor bub-

ble grows.  

For obtaining the better numerical results, varia-

ble time step is obtained from the unsteady Bernoulli equa-

tion as follow: 
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where   is an approximate constant number that indi-

cates the  maximum increase of the velocity potential on 

the vapor bubble boundary between the two consecutive 

time steps. At the beginning of the solution, the velocity 

potential on the bubble boundary and the normal velocity 

on the rigid surface given, and their value are equal to zero. 

With the given velocity potential at time t, by using the 

unsteady Bernoulli equation and fourth-order Runge-Kutta 

method, the velocity potential on the bubble boundary for 

the next time step, t t , can be obtained. 

 

4. Numerical results and discussion 

 

Fig. 3 shows the evolution of the cavitation vapor 

bubble which is generated by the transmitted energy of the 

ultrasound waves to a liquid-saturated cavity. In the vapor 

bubble growth phase, as seen in the Figs. 1-3, the vapor 

bubble expands along the axis of symmetry. Then the liq-

uid particles in the vicinity of the vapor bubble are acceler-

ated away from the vapor bubble to the left and right sides. 

The accelerated liquid particles apply impact forces on 

possible obstacles in the left and right sides of the cavity. 

The applied forces could lead to removing of the possible 

obstacles, i.e. clays or sands, and consequently the perme-

ability of the porous medium increases.  
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At the end of the growth phase, two high pressure 

range are created on the both sides of the vapor bubble. 

Due to the pressure difference created between this high 

pressure region and the pressure inside the vapor bubble, 

liquid jet develops around the vapor bubble and it takes the 

shape of an hourglass. This stage is called the necking 

phenomenon. 

 

a 

 

b 

Fig. 3 Bubble's evolution in the center of the cavity of a 

porous medium with profiles: a - a-c: growth phase; 

b - c-e: collapse phase 

 

Fig. 4 Time history of the pressure inside the vapor bubble 

Fig. 4 illustrates the changes of the pressure inside 

the vapor bubble with respect to the non-dimensional time 

during the growth and collapse phases in the cases of with 

and without the surface tension. As it is clear in figure 4, in 

the case of existence of the surface tension, during the 

growth phase of the vapor bubble, due to the inertia the 

vapor bubble can not grow enough than the case of without 

surface tension. So the pressure drop rate inside the vapor 

bubble is higher for the case of without surface tension. 

Fig. 5 shows time history of the variations of the non-

dimensional liquid jet velocity on both sides of the vapor 

bubble. As it can be seen in this figure, during the growth 

and collapse phases of the vapor bubble in the cases of 

with and without surface tension, the two diagrams almost 

overlap each other. Given the scale of the problem which is 

millimeter, the effect of the surface tension on the liquid jet 

velocity is negligible. 

 

Fig. 5 Variations of liquid jet velocity, at both sides of the 

bubble the non-dimensional time during the phases 

of growth and collapse for the cases: with surface 

tension and without surface tension 

 

Fig. 6 Time history of the variation of the relative volume 

of the vapor bubble during its growth and collapse 

phases for the cases: with and without surface  

tension 

Fig. 6 shows the rate of the growth and collapse 

phases of the vapor bubble in two cases: with surface ten-

sion and without surface tension. As it has been illustrated 

two graphs are overlap. However, to see the effects of sur-

face tension, charts at the end of growth and collapse phas-

es with higher precision drawn in Figs. 7, a and b. Because 

this result could be useful for micro scale of the problem 

that surface tension is important. As it has been shown in 

Figs. 7, a and b, the rate of the growth and collapse phases 

of the vapor bubble in the case of existence surface tension 

is lower than the case of without surface tension. It can be 

concluded from Fig. 7, b that the bubble lifetime in the 

condition of the presence the surface tension compared to 

the case of the absence surface tension is higher. 
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a 

 

b 

Fig. 7 Magnified time history of the variation of the  

relative volume of the vapor bubble for the cases 

with and without surface tension in: a - end of the 

growth phase; b - end of the collapse phase 

To investigate the effects of the transmitted ener-

gy to a liquid-saturated porous medium, the transferred 

energy is increased 2.5, 5 and 10 times. It should be con-

sidered that the energy intensity of the ultrasound waves 

can not be increased indefinitely, because the maximum 

size of the bubbles is also dependent on the pressure ampli-

tude, because may be not sufficient time for collapsing of 

the vapor bubble in a wavelength. 

Fig. 8 illustrates rate of the growth and collapse 

phases of the bubble in the different amount of the trans-

mitted energy to the liquid-saturated cavity of a porous 

medium. As it can be seen in the diagram, with the in-

crease in the energy intensity that specified by the arrow in 

the figure, the rate of the growth and collapse phases of the 

vapor bubble shows significant increase, but there were no 

significant changes in lifetime of the vapor bubble. 

Fig. 9 shows the variation of liquid jet velocity on 

both sides of the vapor bubble that are developed during 

the collapse process of the vapor bubble in different trans-

mitted energy intensities. As can be seen in this figure, by 

reducing the energy intensity has been transferred that 

shown by the arrow in Fig. 9, in the both sides of the vapor 

bubble, the liquid particles along the axis of symmetry are 

less acceleration. 

 

Fig. 8 Variations of the bubble volume relative to the  

minimum volume in non-dimensional time, during 

the process of growth and collapse with different  

intensities of transmitted energy to the liquid-

saturated cavity of a porous medium 

 

Fig. 9 Variations of liquid jet velocity on both sides of the 

bubble along the axis of symmetry relative to non-

dimensional time for different transmitted energy in-

tensity  
 

5. Conclusion 
 

In this paper, the dynamics of cavitation bubbles 

with different energy transfer and in the presence and ab-

sence of surface tension, the pores of the porous medium 

saturated with a liquid such as oil wells was studied nu-

merically. With the increase in energy intensity has been 

transferred to a fluid-filled canal in a porous medium speed 

growth and decay phase shows a significant increase. But 

not observed significant changes in longevity bubble. The 

fluid particles through porous media on both sides of bub-

bles along the axis of the model are accelerated by increas-

ing the intensity of transmitted energy. As a result, the 

force applied to the possible barriers at both ends of the 

cavity increases which ultimately increases the permeabil-

ity of the porous medium. Increasing the permeability of 

the oil wells will result in increased oil recovery. The re-

sults show that the effect of surface tension on the results is 

not significant because of the scale of the problem. But to 

extend it to issues that porous medium filled with fluids 

with different surface tension and the problem is a micro 

scale dimension, on closer examination showed that sur-

face tension is applied in the problem, because of the iner-

tia of the growth of bubbles, the bubbles can not grow as 
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much as the absence of surface tension is not applied, Be-

cause of the inertia of the bubble growth, Bubbles could 

not grow enough when the surface tension is not applied, 

therefore in absence of surface tension is greater pressure 

drop rate inside the vapor bubble. The numerical results 

also showed that if the surface tension to be applied in the 

problem, collapsing of the vapor bubble later than when 

the surface tension is not considered. Results show that the 

rate of growth and collapse phases of the vapor bubble in 

the case of existence surface tension is less than the case of 

absence surface tension. 
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F. Rambarzin, M. T. Shervani-Tabar, M. Taeibi-Rahni 

NUMERICAL STUDY ON A BUBBLE DYNAMIC 

GENERATED BY ULTRASOUND WAVES IN LIQUID-

SATURATED POROUS MEDIA 

S u m m a r y 

In this paper, the effect of increasing or decrea-

sing energy transferred by ultrasound waves on the dynam-

ics of a cavitation vapor bubble in a confined space such as 

pores of a porous medium saturated liquid is investigated. 

The main motivation of this investigation is identifying 

and understanding the mechanisms of the enhanced oil 

recovery using ultrasound waves method in order to be 

able to recognize the limitations and important parameters 

in this method. Boundary element method for the numeri-

cal solution is used. The problem is solved for the cases 

with and without surface tension. Numerical results show 

that by increasing the amount of energy transferred to the 

liquid filled cavity, bubble growth and collapse rates shows 

a significant increase which results the acceleration of liq-

uid particles around the vapor bubble at both ends of the 

cavity. As a result, the exerted force on the possible obsta-

cles, like sand particles or trapped oil droplets, increases 

and moves them. Consequently the permeability of the 

porous medium increases. Increasing the permeability of 

oil well, leads to Enhanced Oil Recovery. The numerical 

results show that with increasing energy transferred to sat-

urated liquid cavity, no significant changes occurs during 

the life time of the vapor bubble. The results also show that 

the effect of surface tension on the results, given the scale 

of the problem, is not significant. 

 

Keywords: porous medium, permeability, ultrasound 

waves, vapor bubble, energy, boundary element method 

(BEM). 
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