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1. Introduction 

 

In recent years, affected by the extreme global cli-

mate change and seismic event, serious natural disasters oc-

cur frequently. However, a lot of rescue work was delayed 

because of blocking of the destroyed road and bridges as 

well as deep moat of the canyon, which poses a serious 

threat to the local residents’ safety of life and property, and 

even causes serious disaster. Therefore, it’s urgent to design 

an emergency rescue equipment to overcome obstacles of 

deep moat canyon and rapidly transport emergency relief 

supplies and people. The precision-guided line throwing 

rocket can send the rope to the opposite bank rapidly and 

precisely in complex geographical conditions, forming an 

air bridge in short time, thus, the staff and emergency relief 

supplies will be transported safely and efficiently. So it is of 

great significance to improve the efficiency of disaster relief 

and promote the national overall emergency rescue ability. 

And the research on flight dynamics of the precision-guided 

line throwing rocket is an important part of the entire devel-

opment process.  

The problem studied in this paper is put forward 

under this background. The working process can be de-

scribed as follows: by the steel wire rope, the rocket was 

connected to one end of the rope of high strength which was 

neatly placed in the rope storage box. After launch, the 

rocket flies out with the power of the powder gas. At the 

same time, the rope is constantly pulled out from the rope 

storage box. 

The rope in the flight is a flexible variable mass 

system, which has infinite degree of freedom and complex 

dynamics characteristics. Dynamic researches on the rope 

mainly focus on marine towing systems, space towing sys-

tems and high-altitude tethered drag systems. Many scholars 

carried out detailed researches on rope dynamics from dif-

ferent perspectives. McVey and Wolf developed the integra-

tion of axial and radial momentum equations, with which 

they predicted deployment and reefed ribbon parachutes [1]. 

Russell and Anderson used a two-degree-freedom lumped 

mass model to gain the understanding of the equilibrium and 

stability of a circularly towed cable [2]. Ablow and 

Schechter computed the motion of a towed cable with the 

finite difference approximation to the differential equations 

derived from basic dynamics [3]. Triantafyllou derived the 

static and linear zed dynamic governing equations along the 

local tangential and normal directions to study the dynamics 

of translating cables [4]. Niedzwecki and Thampi presented 

a general two-part analysis procedure for the investigation 

of snap load behavior of marine cable systems in regular 

seas [5]. Kamman and Huston presented an algorithm for 

modeling the dynamics of towed and tethered cable systems 

with fixed and varying lengths [6]. Driscoll used a one-di-

mensional finite-element lumped mass model to accurately 

reproduced eight snap loads and their non-linear character-

istics occurred during the measurements for validation [7]. 

Buckham used the lumped mass approach to develop a 

mathematical model and computer simulation of an ROV 

tether operating in low-tension situations [8, 9]. Qui-

senberry laid out a methodology for developing a numerical 

simulation of the aerial towed system [10]. It is obvious that 

the above researches mainly focus on the underwater towed 

systems [11-13], aerial towed systems [14-18] and para-

chute systems [19-21], while research on the flight of rocket 

with rope is less [22-24]. 

In the present paper, the finite segment model 

[25, 26] was used to deal with rope, and the dynamic mod-

eling of the line throwing rocket was built based on Kane’s 

method [27] was developed with its kinetic characteristics 

analyzed. The study has presented more accurate dynamic 

model on flight of the line throwing rocket, providing the 

theoretic model for research on disturbance of the rope, con-

trolling as well as guidance on the line throwing rocket. 
 

2. The Kane’s method 
 

2.1. The basic concept 
 

1. Generalized coordinates, generalized velocity, 

partial velocity. 

Suppose there is a system with n particles in a se-

lected frame of reference. The system has n degrees of free-

dom and n generalized coordinates. Assuming the position 

vector of the i-th particle is ri. Then it can be written as: 

 1 2i i n
r r q q ... q t    1, 2 , , i ... n , (1) 

where qi is the i-th generalized coordinate and t is the time.  

The velocity of the particle is defined to be the time 

derivative of the position vector. The velocity vector vi of 

the i-th particle can be written as: 

1 1

l l
i i

i j ij j

j jj

r r
v q u q

dt q

 

 

 
   

 
 

     , 1, 2, , i j ... n , (2) 

where 
j

q  is defined to be the time derivative of 
j

q , it is the 
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j-th generalized velocity. i i

ij

j j

r v
u

q q

 

 
   is the partial ve-

locity of the i-th particle to the j-th generalized velocity. 

2. Generalized active force and generalized inertial 

force. 

Generalized force is defined as the projection of 

the force along the side of the partial velocity. Assume that 

the mass of the i-th particle is mi, the force acting on the 

point is fi, its acceleration vector is ai. Define 

1

n

j i ij

i

F f u


  ,
1

n
*

j i i ij

i

F m a u


  , Fj is the generalized ac-

tive force, *

j
F  is the generalized inertial force. 

3. Kane’s equation. 

According to Kane’s method, the sum of general-

ized active force and generalized inertial force correspond-

ing to the generalized velocity is zero. It is: 

0
*

j j
F F  ,   1, 2, , j ... n . (3) 

This is the Kane dynamics equation of particle sys-

tem. 

If the system is multi-body system, the generalized 

active force and generalized inertia force are expressed as: 

1 1

n n

j i ij i ij
i i

F f u t w
 

     ,  1, 2, , j ... n ; (4) 

1 1

n n
* * *

j i ij i ij

i i

F f u t w
 

     ,  1, 2, , j ... n , (5) 

where fi and ti are active force and moment of the rigid body, 
*

i
f  and 

*

i
t  are the inertial force and moment of the rigid 

body, 
ij

w is its partial angular velocity. 

 

2.2. Advantages of the Kane’s method 

 

Kane’s method projects active force and iner-

tial force along certain directions, which shows a clear geo-

metric intuition. This approach not only has the advantage 

of Newtonian mechanics, but also has the advantages of an-

alytical mechanics. There are no constraint forces in the dif-

ferential equations, so the tedious analysis of the interac-

tions between bodies are avoided; by generalized velocity to 

characterize motion of the system and developing the dy-

namic model of multi-body system through partial velocity 

and partial  angular velocity, the number of equations is re-

duced and it is flexible to select independent variables; The 

introduction of generalized force and vector cross prod-

uct  instead of the complicated derivative operation makes 

it easy to write computer program for numerical calculation 

[28]. 

 

3. Dynamic modeling of the line throwing rocket  

 

3.1. Assumption 

 

Assume the whole system is located in a plane, and 

the motion is in the plane, it is a planar motion. The rocket 

is simplified as a mass point and the rope is broken into n 

arbitrary segments in accordance with the finite segment 

method, wherein the length of each rope sections is li and 

the last segment is variable-length and variable-mass seg-

ment, labels from the rocket pulled segment to the ground 

segment just follow 1, 2, 3, ..., n. Without considerations on 

the elongation and bending of axial direction of the rope, 

assuming the mass of each rope segment mainly distributes 

on end of the segment further from the rocket, and different 

sections connected by a hinge, when the rope is pulled out 

and length of the last segment is changing till it fits the set-

ting condition, a new rope segment n + 1 will be pulled out. 

 

3.2. Kinematics analysis 

 

The coordinate system shown in Figure 1 is the in-

ertial coordinate system. Define the launch point as the 

origin of coordinates. The X axis is along the rocket flight 

direction and is locally parallel to the ‘ground’. The Y axis 

is vertical to the ‘ground’. The derivation of the motion 

equations of the flexible cable and the rocket will be carried 

out in the inertial frame. 

 

Fig. 1 Simplified model 

3.2.1. Position analysis 

 

At time t the position of the rocket in the inertial 

frame are [  0
x t  0

y t ]’, and the angle between the i-th 

rope segment and the Y axis is  i
t . Select the rocket po-

sition  0
x t ,  0

y t , and define angles between each line 

segment and the Y axis  i
t  as the generalized coordi-

nates. There are totally n + 2 generalized coordinates. Then 

the position of each rope segment is: 

 

 

   

   

1

1

i i i i

i i i i

x t x t l sin t

y t y t l cos t









   
   

      

,   1, 2, , i ... n . (6) 
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3.2.2. Velocity analysis 

 

The velocity is produced by derivation of the posi-

tion of the rocket and each rope segment. Define

   i i
t t  , so velocity of the rocket is [  0

x t  0
y t ]’, 

and velocity of the intensive mass point on each rope seg-

ment is: 

 

 

     

     

1 1

1 1

i i ii

i i i i

x t l cos t tx t

y t y t l sin t t

 

 





  
   

     

, 1, 2, , i ... n . (7) 

3.2.3. Partial velocity analysis 

 

By the Kane’s method, we can get the partial ve-

locity of each rope segment to generalized velocity as Ta-

ble 1. 

That is 

 

 

0
, ;

0

1
1;

0

0
2;

1

.

ij

i i

i i

i j j n

j n

u

j n

l cos t
i j

l sin t





 
  

 
 
   
 

 
     


 

 
  

 (8) 

By derivation of the partial velocity derivative of 

the partial velocity can be obtained as is shown in Table 2. 

That is 

   

   

0
;

0

ij

i i i

i i i

i j

u
l sin t t

i j.
l cos t t

 

 

 
 

 
 

 
 

  

 (9) 

Table 1 

Partial velocity 

  1
t   2

t  …  n
t   0

x t   0
y t  

0 
0

0

 
 
 

 
0

0

 
 
 

 … 
0

0

 
 
 

 
1

0

 
 
 

 
0

1

 
 
 

 

1 
 

 

1 1

1 1

l cos t

l sin t





 
 
  

 
0

0

 
 
 

 … 
0

0

 
 
 

 
1

0

 
 
 

 
0

1

 
 
 

 

2 
 

 

1 1

1 1

l cos t

l sin t





 
 
  

 
 

 

2 2

2 2

l cos t

l sin t





 
 
  

 … 
0

0

 
 
 

 
1

0

 
 
 

 
0

1

 
 
 

 

… … … … … … … 

n 
 

 

1 1

1 1

l cos t

l sin t





 
 
  

 
 

 

2 2

2 2

l cos t

l sin t





 
 
  

 … 
 

 

n n

n n

l cos t

l sin t





 
 
  

 
1

0

 
 
 

 
0

1

 
 
 

 

 

Table 2 

The derivative of the partial velocity 

  1
t   2

t  …  n
t   0

x t   0
y t  

0 
0

0

 
 
 

 
0

0

 
 
 

 … 
0

0

 
 
 

 
0

0

 
 
 

 
0

0

 
 
 

 

1 
   

   

1 1 1

1 1 1

l sin t t

l cos t t

 

 

 
 
  

 
0

0

 
 
 

 … 
0

0

 
 
 

 
0

0

 
 
 

 
0

0

 
 
 

 

2 
   

   

1 1 1

1 1 1

l sin t t

l cos t t

 

 

 
 
  

 
   

   

2 2 2

2 2 2

l sin t t

l cos t t

 

 

 
 
  

 … 
0

0

 
 
 

 
0

0

 
 
 

 
0

0

 
 
 

 

… … … … … … … 

n 
   

   

1 1 1

1 1 1

l sin t t

l cos t t

 

 

 
 
  

 
   

   

2 2 2

2 2 2

l sin t t

l cos t t

 

 

 
 
  

 … 
   

   

n n n

n n n

l sin t t

l cos t t

 

 

 
 
  

 
0

0

 
 
 

 
0

0

 
 
 

 

3.2.4. Acceleration analysis 

 

Derivation of velocity of the rocket and each rope 

segment produces their acceleration, and acceleration of the 

rocket and each rope segment are 
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1

0

n

i ij j ij j

j

a u q u q




  ,   0, 1, 2, , i ... n , (10) 

where 
j

q  is the 
th

j  generalized velocity, 
j

q  is derivative of 

the 
th

j  generalized velocity. 

 

3.3. Dynamic analysis 

 

3.3.1. Generalized active force 

 

(1) Gravity fg. Quality of the rocket is m0 and grav-

ity of the rocket can be obtained as: 

0

0

0
fg

m g

 
  
 

, (11) 

the linear density of the rope is ρ, the quality of each rope 

segment is i i
m l , and gravity of each rope segment can 

be obtained as: 

0
i

i

fg
m g

 
  
 

,   1, 2, , i ... n . (12) 

(2) Aerodynamic forces fd. The rocket will be ef-

fected by aerodynamic forces when it flying in the air. Ex-

perimental results show that: the aerodynamic forces acting 

on the rocket is proportional to the dynamic pressure of the 

flow and the characteristics area of the rocket [29]. Assum-

ing that the rocket axis coincides with the velocity vector, 

then the aerodynamic force acting on rocket is along 

the shaft backwards, and it is air resistance: 

0 0 0

0

0 0 0

x

y

c q S
fd

c q S

 
  
 

, (13) 

where c0 is drag coefficient of the rocket, S0 is the rocket 

characteristic area, 
2

0

1

2
x a x

q V , 
2

0

1

2
y a y

q V  are dy-

namic pressures, ρa is the air density situated at the height of 

the rocket, Vx, Vy represent velocities in the X- and Y-axis 

direction. 

Because the soft fabric has breathability, it is very 

difficult to accurately calculate drag force of the rope. Con-

sidering the engineering requirements, we can get the air re-

sistance acting on each rope segment as the air resistance 

acting on the rocket: 

1, 2, , 
i ix i

i

i iy i

c q S
fd i ... n

c q S

 
  
 

, (14) 

where ci is the drag coefficient of the i-th rope segment, Si 

is characteristic area of the i-th rope segment, ix
q and 

iy
q  are 

dynamic pressures of the i-th segment in the X- and Y-axis 

direction. 

(3) Thrust fi. After launch, the engine starts to 

work, gunpowder gas combusts, the combustion products 

emits from the nozzle thus promote the rocket to fly for-

ward. This is the driving force to promote the rocket, the 

force would be acting on the rocket until the engine stop 

working, and it is thrust. Assuming that the thrust I is along 

the axis of the rocket, it can be written as: 

0;

0
1, 2, , ,

0

x

y

i

I
i

I
fi

i ... n

 
 

 
 

 
 

 

 (15) 

where Ix, Iy are thrust in the X- and Y-axis direction. 

(4) The Forces Acting on the Last Segment ft. 

When the rope is pulled out, the forces acting on the last 

segment are very complex. According to Wolf’s pulling 

model of straight line [30], assuming the forces acting on 

the last segment is T: 

0
0, 1, 2, , 1;

0

,

i

x

y

i ... n

ft
T

i n
T

 
  

 
 

 
 

 

 (16) 

where Tx, Ty are forces acting on the last segment in the X- 

and Y-axis direction. 

(5) Combination of Active Forces fz. The combina-

tion of active forces acting on the rocket and each rope seg-

ment can be written as: 

0, 1, 2, , 
i i i i i

fz fg fd fi ft i ... n     , (17) 

its matrix formulation is: 

fz fg fd fi ft    . (18) 

(6) Generalized Active Force Fl. According to 

the Kane’s method, generalized active force of the j-th gen-

eralized coordinates is: 

1

, 1, 2, , 2
n

j i ij

i

Fl fz u j ... n


   . (19) 

The generalized active force of the whole system 

is: 

'
Fl u fz . (20) 

3.3.2. Generalized Inertial Force Fl* 

 

According to the Kane’s method, The generalized 

inertial force of the j-th generalized coordinates is: 

 
1 1

;

1, 2, , 2 .

n n

j i i ij i ij j ij j ij

i i

Fl m a u m u q u q u

j ... n



 


     


  

 
 (21) 

Generalized inertial force of the whole system is: 

* ' '
Fl u Muq u Muq   , (22) 

where u, q , q  are matrixes formulations of 
ij

u , 
j

q , 
j

q , u'  
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is the transpose matrix of u,  0 1 n
M diag m ,m ,...,m . 

 

3.4. Dynamic equation 

 

According to the Kane equation 

0
*

Fl Fl  . (23) 

Put Eq. (22) into Eq. (23), we have: 

0
' '

Fl u Muq u Muq   . (24) 

By transposition: 

' '
u Muq Fl u Muq  . (25) 

Formula (25) can be written as: 

Aq fl , (26) 

where 
'

A u Mu , 
'

fl Fl u Muq  . 

Formula (26) includes n + 2 equations and totally 

n + 2 variables. Then the kinematic parameters of 

the rocket and rope sections can be obtained. 

 

3.5. The calculation program 

 

The calculation program was shown in Fig. 2. 

 

Fig. 2 Flow chart of the calculation 

4. Simulation calculation and discussion 

 

4.1. Physical model 

 

Taking a rocket for example, where the rocket 

length is 1m, diameter 122 mm, total weight 20 Kg, gun-

powder weight 2.33 Kg, rocket total impulse is 4770 N s, the 

engine working time 0.43 s, linear density of the rope 

0.43 Kg/m, each rope section is taken as 1 m, emission an-

gles 25°, 35°, 45°, 55°. 

 

4.2. Law of motion 

 

1. The variation rule of the rocket trajectory when 

the launch angle changed from 25°to 65°is shown in Fig. 3. 

As can be seen from the chart, the trajectory is significantly 

asymmetric. The descending arc is steeper than the upward 

arc. The vertex distance is much larger than the half range. 

With the angle’s increasing, top height of the trajectory in-

creased. And the range increased at the beginning, when the 

angle reaches a certain value, the range decreases gradually. 

Under the same condition, there is an angle for the line 

throwing rocket to reach the maximum range.  

 

Fig. 3 The trajectory of different launch angles 

2. The variation rule of the rocket velocity when 

the launch angle changed from 25°to 65°is shown in Fig. 4.  

 

 

Fig. 4 The velocity of different launch angles 

As can be seen from the chart, the velocity in-

creased in a very short period of time from 0 to the maxi-

mum, and then began to decrease, reducing to a minimum, 

and then began to increase. In the boost phase, rocket engine 

worked, the thrust is larger than the air resistance, gravity of 

the rocket, the pulled rope and the force acting on end of the 

rope, so the velocity of the rocket increased rapidly until it 

reached the maximum value. When the rocket engine 

stopped work, the boost phrase ended, and the rocket kept 

rising with the act of inertia until it reached trajectory vertex. 
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At the same time, the velocity began to decrease, being in-

fluenced by the air resistance, gravity and rope pulling force. 

Then the rocket changed the direction of movement and fly 

downward, and the velocity reduced to a minimum value. 

Gravity accelerated this movement trend, so the velocity of 

the rocket began to increase until it landed. With the angle 

increases, the time of the rocket flying in the air increases, 

and landing velocity of the rocket also increased. 

3. The variation rule of the rocket trajectory angle 

when the launch angle changed from 25°to 65°is shown in 

Fig. 5. As can be seen from the chart, at the beginning, tra-

jectory angle changes slowly. Then it decreased rapidly 

from a positive to a negative value with the rocket flying. It 

kept decreasing until landed. It is because in the early stage 

of the rocket engine, thrust play the leading role, trajectory 

angle changes slowly, after the engine working, gravity 

plays the leading role, forcing the rocket to head down. And 

the rocket was at trajectory corresponding vertex when the 

trajectory angle equals 0. The rocket landing angle was rel-

atively large and the trajectory was relatively steep when the 

angle changes from 25° to 65°. 

 

Fig. 5 Trajectory angle of different launch angles 

4. The states of the rope in the air at different times 

are shown in Figure 6 while the launch angle is 45°. You can 

see: at the beginning, the rope is relatively straight, and lat-

ter, the middle part of the rope appears upwardly convex 

shape. It is mainly because during the early flight, the rocket 

has large engine thrust and the velocity is fast, the move-

ment is basically along a straight line with the rope pulled 

out quickly, therefore, the rope is relatively flat. By the end 

of the flight, the rocket velocity has decreased, the motion 

of the rope back has lagged behind the front, while due to 

the effect of air resistance, and the middle part of the rope 

forms the upwardly convex sharp, which is in accordance 

with the actual situation. 

 

Fig. 6 Aviation gesture at different times 

5. The acceleration curve is shown in Fig. 7 when 

the launch angle is 45°. You can see the acceleration at the 

initial time is positive, and the value is larger, then it begins 

to decrease. It mutated to negative at 0.43 s and continues to 

decrease. After it reduces to a minimum, it increased and 

crossed zero and reached a positive value, then the curve is 

relatively flat. The acceleration at the beginning was large 

because the engine thrust played a major role, as the velocity 

increases and segments of the flying rope increase, the air 

resistance and tension acting on the rope and rocket increase 

correspondingly. Hence, the rocket acceleration begins to 

decrease. Acceleration mutated because there is no thrust af-

ter the engine stopped work, and the air resistance and ten-

sion of the rope are in the opposite direction with the move-

ment of rocket. The velocity of the rocket is at minimum 

when the acceleration is zero. 

 

Fig. 7 The Acceleration of the Rocket 

4.3. Comparison between simulation results and experiment 

results 

 

According to the simulation parameters used in 

calculation, a certain type of rocket was tested. The test set 

is shown as Fig. 8: 

 

a 

 

b 

Fig. 8 a) The schematic diagram of the set; b) Set of the ex-

periment 

Data comparison between simulation results and 

experiment results can be seen in Table 3 and Table 4. The 

range, maximum velocity, and the flight time obtained by 

simulation and test at the launch angle of 30° are shown in 
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Table 3. As can be seen from Table 3: the range measured in 

the simulation experiment is 7.2 m over the test data, the 

relative error is 1.13%; maximum velocity of the simulation 

calculation is 7.1 m/s faster than the measured test data, and 

the relative error is 3.4%; the flight time of simulation is 

0.5 s less than the test data. 

 

Table 3 

Comparison between simulation and experiment results at the launch angle of 30° 

Parameters Range, m Maximum velocity, m/s Flight time, s 

Simulation results 637.1 206.6 8.1 

Test results 629.9 199.5 8.6 

Absolute error 7.2 7.1 0.5 

 

The range, maximum velocity and flight time ob-

tained by simulation and test at the launch angle of 40°are 

shown in Table 4. As can be seen from Table 4, the range of 

simulation is 10.1 m over the test data, the relative error is 

1.6%; maximum velocity of the simulation calculation is 

7.2 m/s faster than the measured test data and the relative 

error is 3.5%; flight time in the simulation is 0.6 s less than 

the test data. 

 

Table 4 

Comparison between simulation and experiment results at the launch angle of 40° 

Parameters Range, m Maximum velocity, m/s Flight time, s 

Simulation results 631 206.1 9.1 

Test results 620.9 198.9 9.7 

Absolute error 10.1 7.2 0.6 

 

The velocities of the rocket measured by radar and 

obtained by simulation at the launch angle of 30° are shown 

in Fig. 9. From Fig. 9 we can see: the maximum velocity 

measured by the test is 199.5 m/s, the calculation maximum 

velocity is 206.6 m/s, after the engine stopped working; at 

1 s, 2 s, 3 s and 4 s, the test velocities measured were 

154.3 m/s, 99.3 m/s, 73.8 m/s and 60.5 m/s, and the calcu-

lation velocities are 158.7 m/s, 98.9 m/s, 70.3 m/s and 

58.5 m/s. The absolute errors are 2.8%, 0.4%, 5.0% and 

3.4% with the average 2.9%. 

 

Fig. 9 Simulation and experiment velocity curve at the 

launch angle of 30° 

The velocities of the rocket measured by radar and 

obtained by simulation at the launch angle of 40° are shown 

in Fig. 10. From Fig. 10 we can see: the maximum velocity 

measured by the test is 198.9 m/s, the calculation maximum 

velocity is 206.1 m/s, after the engine stopped work; at 1 s, 

2 s, 3 s and 4 s, the test velocities measured were 151.3 m/s, 

103.2 m/s, 76.1 m/s and 58.1 m/s, and the calculation veloc-

ities are 159.9 m/s, 100.5 m/s, 71.4 m/s and 59.4m / s. The 

absolute errors are 5.4%, 2.7%, 6.6% and 2.2% with the av-

erage 4.2%. 

It can be seen from comparison of data in two ta-

bles and the velocity curves   of two sets of test and simula-

tions: the simulation results are very close to the experi-

mental results and the velocity changes of the simulation 

and test are in good agreement, it also indicates that the dy-

namic model of the line throwing rocket is precise. 

 

Fig. 10 Simulation and experiment Velocity Curve at the 

launch angle of 40° 

5. Conclusion 

 

1. The line throwing rocket is analyzed through 

kinematics with the force acting on the rocket and the rope 

taken into account, which is transformed to the generalized 

active force and inertia force, and then the dynamic model 

of the flight of line throwing rocket was established. 

2. The line throwing rocket model was simulated. 

And the calculation results show that: the dynamics model 

can simulate the movement of line throwing rocket effec-

tively and reveal the law of its motion, thus, it is a feasible 

theoretic model. 

3. The test results show that the dynamic model is 

relatively accurate. 

4. The dynamic model is theoretically significant 

for the further study on the disturbance of the rope as well 

as guidance and flight control of the line throwing rocket.
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Lu Ming, Gu Wenbin, Liu Jianqing, Wang Zhenxiong,  

Xu Jinling 

 

DYNAMIC MODELING OF THE LINE THROWING 

ROCKET WITH FLIGHT MOTION BASED ON 

KANE’S METHOD 

S u m m a r y 

A dynamic model of the line throwing rocket flight 

is presented based on Kane’s method．Through kinematic 

description of the line throwing rocket’s flight，the rope is 

divided into N discrete finite segments by finite segment 

method．The dynamic model for the line throwing rocket 

is developed with the consideration of such forces as the 

gravity, thrust, aerodynamic forces and the tension in the 

rope during rocket flying．The numerical example shows 

that the numerical results are exactly consistent with exper-

iments results and the numerical model of the line throwing 

rocket flight can be realized, revealing the motion law of the 

dynamic model．The dynamic model is a key theoretical 

support to the research on the disturbance of the rope, the 

guidance and flight control of the line throwing rocket． 

 

Keywords: line throwing rocket; Kane’s method; dynamic 

model; finite segment. 
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