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1. Introduction

Faults detection and their diagnosis play an essen-
tial role in the industry. The search for signatures or fault
indicators has as a purpose to characterize the operation of
the system by identifying the type and origin of each of the
failures. Indeed, they contribute, by a rapid and early de-
tection, to saving points of availability and production to
the capital invested in the production tool.

In the last decade, maintaining and diagnosing
machines is an effective tool for early faults detection and
continuous tracking of their evolution in time. Machine
maintenance requires a good understanding of the phe-
nomena related to the onset and development of faults.
Detecting their occurrence at an early stage and following
their evolution is of a great interest [1]. It is possible to
distinguish three types of approach for surveillance, de-
pending on the nature of the monitoring element: analytical
model methods, data based methods, and knowledge based
methods.

Fault diagnosis is considered as the problem of
multi-classification after the fault data is detected. VVarious
approaches developed for this purpose can be mainly di-
vided into two categories. The first is mathematical model-
based, such as multinomial logistic regression and bayesi-
an network (BN). The second is related to the artificial
intelligence, (i.e. fuzzy classifier, artificial neural networks
(ANN), SVM and ELM) [2].

The structure and relationship of components are
complicated in rotary complex machines, and the graphical
construction of (BN) can be tedious and difficult, a fault
tree is considered to simplify determining causality be-
tween components. The construction of the Fault tree al-
lows constructing a bayesian network for exploit the mass
of existing data. Which means that any fault tree can be
transformed into a corresponding bayesian network by
creating a binary bayesian network node for each event in
the fault tree? Moreover, in the context of transforming the
fault tree into a bayesian network, several works have been
carried out (more details on these transformation steps are
given in reference) [3].

Bayesian network probabilistic graphical models
have been widely used to solve various problems (for ex-
ample diagnosis, failure prediction and risk analysis, clas-
sification) [4]. Modelling by using bayesian network is
performed in two steps: the quantitative step (estimating
the probability distribution tables) and the qualitative step
(construction of the network or the graph).

The phase of the quantitative analysis in the con-
struction of bayesian networks is considered a very diffi-
cult task in estimating the a prior marginal and conditional
probabilities of each node of the network. A prior probabil-
ity is based on the knowledge provided by expert of the
process or obtained by learning methode or algorithm from
an experimental or experience feedback database [5].

The priori information, the posterior information
and the likelihood in bayesian probability theory are repre-
sented by probability distributions. The prior probabilities
represent the distribution of knowledge or belief concern-
ing a subject or a variable before any relevant evidence
taken into account. A posterior probability is the condi-
tional probability on collected data by a combination of a
prior probability and likelihood via Bayes' theorem. The
likelihood is a parameter function of a statistical model,
reflecting the possibility of observing a variable when
these parameters have a value [6]. On the other side, in
fault tree method the probability of occurrence of the top
event, intermediaries vents are governed by their basic
events; the occurrence of the latter can be modeled by var-
ious statistical distributions (Exponential, Normal,
Lognormal, Weibull, Gamma ...) [7].

The method of fault tree is widely used in the
field of the reliability. It offers a framework privileged to
the deductive and inductive analysis by means of a tree
structure of logical gates [8].

The procedure that uses fault trees for diagnosis
purposes is abductive, focusing first on adverse events and
then identifying their causes. A fault tree is established as a
logical diagram and has the undesirable event at the top.
The immediate causes that produce this event are then hi-
erarchized using logical symbols "AND" and "OR". To
perform a correct diagnosis from the fault trees, these must
largely represent all the causal relationships of the system,
capable of explaining all possible fault scenarios.

In FT Analysis, the analysis is realized in two
steps: a quantitative step in which, on the basis of the
probabilities assigned to the failure events of the basic
components, the probability of occurrence of the top event
(and of any internal event corresponding to a logical sub-
system) is calculated; a qualitative step in which the logical
expression of the top event is derived in terms of prime
applicants (the minimal cut-sets) [3].

Works on bayesian network and system safety
have recently been developed by [3] in 2005; explaining
how the fault tree can be achieved using bayesian network
static. Moreover, works which concern applications to reli-
ability are numerous; [9] in 2003, [10] in 2006 provide also


mailto:malakmedkour@yahoo.fr;%20m.medkour
mailto:ouafae.bennis@univ-orleans.fr
http://dx.doi.org/10.5755/j01.mech.23.6.17281

the use of bayesian network for modelling purpose of the
cause-and-effect relationships between the degradation, the
causes and consequences, and calculation, alike, of the
reliability of complex mechanical systems. Bayesian net-
works can also take a dynamic dimension, [11] describes
the representation of dynamic fault trees by dynamic
bayesian networks.

The advantage of probabilistic graphical models
is interesting graphical representation of models, easy to
understand and analyze. In addition, the probabilistic fail-
ure analysis evaluates the probability of failure of a com-
plex system that its weak points can be identified.

Bayesian network are increasingly used in various
fields and applications such as operating safety, risk analy-
sis, maintenance, as well as finance [4], and the field of
image processing [12].

Bayesian network and fault tree have a probabilis-
tic aspect. The main objective of the present work is to
show the strong contribution of these tools in the field of
fault diagnosis and enhance the knowledge in the area of
ensuring reliability and maintaining of mechanical systems
among simulated scenarios.

2. Methodology of work

The main purpose of this works is to give a meth-
odological approach based on the transformation method
of fault tree into bayesian network to model a complex
system. This work is divided into:

Qualitative exploitation of events for the fault tree
representation.

Define the undesired event to be analyzed; ex-
plicitly shows all the different relationships that
are necessary to result in the top event.

Exploits the existing data (historical data base) of
the system under study, to quantify the failures
probability.

Estimate the failures probability of events by us-
ing Weibull model (failure probabilities of events
are normalized to become prior failure probabili-
ties).

Deriving the graphical structure of the bayesian
network via transforming the Fault Tree into
bayesian network according to the proposed
methodology.

In order to diagnose industrial system and evalu-
ate their reliability, in the absence of analytical model, it is
possible to carefully analyze the history of their behavior
over time. At the end of this study, a fault diagnosis of
strategic motor pump at the Annaba ARCOLOR-METAL
(Algeria) is presented.

2.1. Bayesian network

A Bayesian network is a probabilistic graphical
model that represents a set of random variables represented
by nodes, bounded by oriented arcs and accompanied by
their conditional independencies. In a formal way, a
Bayesian network is defined by [13]:

Its graphical component represented by a graphe G di-
rected acyclic (DAG) comprising nodes X , and arcs
E,G=(X,E).
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Its quantitative component X represented by probabil-
ity tables (PT) for parent nodes and conditional proba-
bility tables (CPT) for descendant’s nodes, arcs

X ={X;}={P(X, / parents(X;))}.

A set of random variables associated with nodes, arcs
X ={X4, X,,..X, }, and the joint distribution function
arcs P(X ) consisting of:

p(X, X, X, )= [T DX,/ C(X,)), )

i=1

where P(X;) is the set of causes (parents) of X; on the
graphe G .

BN used Bayes theorem to update the prior belief
of variables given observations of other variables. For tow
event X, and X ,, provided that arcs P(X , )= 0 consisting
the relationship of joints probability to conditional and
marginal probability are written as:

P(Xi) P(X./X,)

P(X2)

p(X,/X,)= 2)

with p(x,) is Priori probability (or marginal, or occur-
rence probability) of event X it is prior in the sense that it
does not take into account any information about X,,
p(X,) is Marginal probabilities of event x,, p(X,/ X,)
is Posterior probability (or conditional probability) of X,
knowing X,, p(X, / X,) is Likelihood function (or con-
ditional probability) of X , knowing X , .

The marginal distribution of p(x,)is computed
by:

p(X,)= p(X2 /Xl)p(X2)+ p[lex_ljp()zlj(?s)

2.2. Transformation of fault tree into bayesian network
methodology

Currently, modern machines and installations are
becoming more complex and their failures can have severe
consequences on production, at the same time; the graph-
ical construction of bayesian network can be tedious and
difficult. We can then simplify based on fault tree to de-
termine causality between components. Fault tree construc-
tion allows building a bayesians network. This step allows
deriving the graphical structure of the bayesian network
that represents the causal relationship between the different
events of the system under study and exploits the mass of
existing data.

Building bayesian network from the fault tree is
to transform the graphical representation of the fault tree
into bayesian network. Events and logic Gates (AND, OR)
are the basic elements for the fault tree. However, the
bayesian network use as basic elements nodes that repre-
senting events and arcs that model the dependences be-
tween events and relations causes - effect.

There are several transformation methods of fault
tree into bayesian network that consist to transforming the
logical gates to nodes on the network, this methodes incre-
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ase the nodes number and make complicated calculation.
For this, the adopted method in this works consists to
transform the different kinds of events of the fault tree to

P(C)
OR Gate :

[ ]
Lr@ | | ee |

P(C)y=P(A) P(B) - [P(A) P(B)]

Conditional Probability Table

—

B=T |B=F |B=T | B=F T:oue
C=T 1 1] [1] [1]

| ©=F [ 1 1 1

Bavesian Network

P(C=T) = P(C=TiA=T, B=T) P(A=T) P(B=T) +
P(C=T/A=T, B=F) P (A=T) P(B=F) +
PF(C=TiA=F, B=T) P (A=F) P(B=T) +
P(C=T/A=F, B=F) P (A=F) P(B=F)

F : false

nodes in the associated bayesian networks, and the logic
gates (AND, OR) not participating in the form of the
graphical structure of the networks [3, 6].
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Fig. 1 Graphical and digital transformation of Fault tree into Bayesians network

Next, the construction of a bayesian network from
a fault tree lies in the estimation (quantification) of proba-
bilities, it consists in this step to assign probabilities of
occurrence of basic events (primaries) of fault tree to node
roots as probabilities a priori, but in case of induced events
(intermediate) and final events (dreaded) associated proba-
bilities will be estimated on the basis of calculation of con-
ditional probabilities. In addition, in the subject of the
transformation of fault tree into bayesian network multiple
works have-been performed (more details on this transfor-
mation steps shown in reference [3, 6]), the transformation
algorithm of fault tree into bayesians network is displayed
in Fig. 1.

3. Functional analysis of the motor-pump and
application result

3.1. Description and system modeling

Modeling by using BN is performed in two steps:

e Qualitative analysis of failures: construction of
the network or the graph.

e Quantitative analysis of failures: deriving or esti-
mating the probability distribution tables.
Qualitative step allows deriving the graphical

structure of the bayesian network that represents the causal
relations ship between the different events in the motor
pump G18A.

As part of preventive maintenance, the motor-
pump G18A plays a strategic role in the cooling of the iron
rods getting out from the electric oven; its failures influ-
ence directly the continuity of service.

After the functional decomposition of defects
which affect the proper functioning of the motor pump
(qualitative phase), the failure modes are classified into
three main types (M: Mechanical, E: Electric, H: Hydrau-
lic), this qualitative analysis allows identifying failure
modes and construction fault tree as shown in Fig (1), by
transforming the fault tree into bayesian network. Each
variable corresponds to a node. Model of Cause-effect and

its generic structure are shown in Fig (2), and it is split into

three levels:

e Top Event (S) is the motor-pump is in field state (un-
desired event).

e Basic undesirable events are (H111, H112, H113.
H114, H21, H22, H23, H24, E41 E42, E11, M11,
M12, M221, M222, M51, M52).

e Intermediate events are the remaining nodes (conse-
guences).

The hypothesis used in our modeling concerns quanti-
tative analysis of  fault tree analysis is to assume that
components corresponding to basic events follow adjusted
Weibull law. This means that:
t=t;,...tn; Times between failures following Weibull model,
and the probability of having component (X) faulty at time
t (alternatively the probability of occurrence of the basic
event X= faulty) is:

[ V8]
P(x:faulty,t):F(t)_l_exp|_[—] . 4)
)|

L

Where:t represent time between failures.

The shape parameter g and the scale parameter,
n , of the Weibull pdf are obtained by maximizing the fol-
lowing log-verisimilitude:

L(ti.ﬂ,n)=ln{ﬁl£[%‘]ﬁlexp{—[;—i]ﬁﬂ (5)

3.2. Inference and conditional probabilities

Bayesian inference is the process or the logic to
calculate or revise the probability of belief (hypostasis).

After describing the bayesian network, which will
be used in the follow-up diagnosis of the motor pump, the
failure probabilities of components are normalized to be-
come prior failure probabilities and reported in Tablel.



894

When the BN structure is defined, the probabili-  nent or event) by taking into account the interactions be-
ties are assigned (prior probabilities for the root nodes  tween the nodes of the network.
from Eq. (4), and conditional probabilities tables “CPTs” The estimation of the Weibull parameters with the

for their child node are given according to the gate types), =~ MATLAB function “wblfit” gives B =3.21 and
the bayesian inference can then be conducted. It allows the ;2681 22.
computation of the marginal probability of a node (compo-

Mo tor- pump failed state
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Fig 2 Qualitative analysis by fault tree for the motor-pump system
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Fig. 3 Bayesian network of the motor-pump used in fault diagnosis
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Tablel
Events and their priors and posteriors probability
Nodes F(t) Priori Posteriori
Events of motor pump G18 A t,h probability orobability
undesirable motor-pump failed state S Gate OR 18.9
events
Mechanical defects M Gate OR 99.20
Out of balance M5 Gate OR 11.30
Bending rotor M51 4464 0.9941 99.41 99.41
Break of vanes M52 3552 0.9151 91.51 91.51
Heating M1 Gate OR 84.00
Landing axial trust M11 1896 0.2802 28.02 28.02
Wear of motor bearings M12 2520 0.5593 55.93 55.93
Defect on the sealing ring M3 2016 0.3299 32.99 32.99
Change of the mechanical seal M4 1776 0.2339 23.39 23.39
Vibration M2 Gate OR 97.90
Mechanical noise M22 Gate OR 85.10
Change of valve M221 1728 0.2165 21.65 21.65
Rolling fault at the pump side M222 | 2808 0.6864 68.64 68.64
Passage to the vibration limited value M21 792 0.0197 197 1.97
Hydraulic defects H Gate OR 83.00
Leakage H1 Gate OR 83.2
Leakage at the pump H11l Gate OR 95.2
Leakage at the mechanical seal H111 | 2760 0.6662 66.62 66.62
Leakage at the Volute H112 1752 0.2252 22.52 22.52
Leakage at the sealing ring H113 | 3696 0.9393 93.93 93.93
Leakage at the seal H114 | 2040 0.3402 34.02 34.02
Leakage at the pipe H12 1608 0.1761 17.61 17.61
Increase of temperature H2 GATEOR 81.4
Degraded lubrication oil H21 3048 0.7789 77.89 77.89
Oil change H22 2328 0.4703 47.03 47.03
Valve service defeat H23 2640 0.6138 61.38 61.38
Filter filling in H24 3192 0.8262 82.62 82.62
Loss of lubrication H3 1824 0.2520 25.20 25.20
Electrical defects E GATE OR 98.3
Short circuit E5 3168 0.8188 81.88 81.88
Overloads E4 GATE AND 49.1
Activated contactor relay E41 1944 0.2297 22.97 22.97
Expansion of bimetallic elements E42 2064 0.3506 35.06 35.06
at the relay
Electrical over-speed E3 2304 0.4591 45.91 45.91
Grounding fault E2 1512 0.1470 14.70 14.70
Overvoltage El 2664 0.6245 62.45 62.45
Beating at the rotor Ell 2664 0.6245 62.45 62.45
The model for characterizing the defects of the P(M /)= P(S/M)P(M) ®)
motor pump according to the principle of total probability P(S)
theorem and bays law is given by:
P(S/H)P(H
P(S)=P(M UEUH), (6) P(H /5)=F! P(S))( ) ®)
P(S,M.E,H)=P(S/M,E.H)P(M,EH), (7) pE/s)= PS/EPE), (10)

P(S)



We start by building a probability space on the in-
itiative knowledge, and we will see how beliefs vary.

Subsystems probabilities of failures are normal-
ized to become prior probabilities and tow modalities will
be kept:
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e  Presence of defects (T : true)

Absence of defects (F: false)

Different questions arise: example, what is the
probability that the motor-pump still works knowing that
there is a mechanical fault?

Table2

Conditional probabilities of variables M, E, H,
express the knowledge that the presence of different defaults in the motor-pump

M=T M=F
E=T E=F E=T E=F
H=T | H=F | H=T | H=F | H=T | H=F | H=T | H=F
S=T 1 1 1 1 1 1 1 0
S=F 0 0 0 0 0 0 0 1
The achieved calculations from the equations (7),  following scenarios.
(8), (9) and (10) are presented in Fig. 4. Scenarios 1: this scenario is related to the

We proceed firstly, that the inference makes it
possible to propagate any probability instantiated or a pri-
ori on the belief of the other nodes. A new table of beliefs
(probabilities) is obtained on each node, a kind of new
state of the premises. In reality a model of probabilistic
behavior is realized by the bayesian networks on the mo-
tor-pump.

M

tru 99.4

false  0.58
E H
tru 98.3 tru 83.0
false 1.73 false 17.0

18.9
81.1

s

tru
false

Fig. 4 Bayesian network of the motor-pump

Fig. 4 shows the inference permit to obtain a new
table of beliefs on each node.

The high probabilities of failures of the motor-
pump (Top event) are in the order of 18.9%.

The probabilities of failures of the motor-pump
respectively mechanical, electrical and hydraulic knowing
that there is a malfunction in the motor-pump equal to
99.4, 98.3 and 83%); these allow us to update the beliefs to
priori probability.

3.3. Fault diagnosis

According to the values of the posterior probabil-
ity in Table 1, the presence of defects in the motor-pump is
mainly caused by event M51.which summarizes the out of
balance (M51) defect is the most likely source to stop the
motor-pump.

The objective of this application is to make a di-
agnosis on the out of balance defect of the motor-pump
(we will be interested on the presence or absence of the
defect of bending rotor).

The diagnosis in this application consists to com-
puting probabilities of new observations described in the

system’s nominal operating condition. In this step, given
the fact that there is no observed fault on the motor pump,
the joint probability is equal to one. The BN corresponding
to this scenario is given in Fig. 5.

M222 M52
tru 68.6 | tru 91.5
false 31.4 m i false 8.50
M221 M51
tru 21.6 |— tru 99.4 |
false 78.4 false 0.60
M21 M5
tru 2.50 | tru 9.03 P
false 97.5 false 91.0
M22 M3
tru 85.1 tru 33.0 |—|-
false 14.9 false 67.0
M2 M4
tru 97.9 tru 23.4 |—
false 2.13 false 76.6
M11 M
tru 28.0 P tru 99.4
false 72.0 false 0.58
M12 H
tru 55.0 i tru 83.0
false 44.1 _—i false 17.0
M1 E
tru 84.3 tru 98.3
false 15.7 false 1.73
S
tru 18.9
false 81.1 P

Fig. 5 Scenario 1: nominal operating condition

Fig. 5 Shows that the probability of occurrence of
the top event P (motor-pump failed state) = P(S) = 0.189,
which are worth 18.9%and that the bending rotor, the
break of vanes and the Out of balance remain in their
respective nominal case (presence state defect),( with
probabilities equal to 99.4, 91.5 and 9.03% respectively.
These probabilities are quantitatively unacceptable, also
since the machine is strategic and in order to optimize the
operation security, it is mandatory to seek for identification
of the faults’ root causes of the system to better plan the
maintenance actions and to identify the preventive
solutions to minimize this percentage.

The high probability 99.4% means that the
bending rotor (M51) is the most likely event to stop the
motor-pump and should be treated as a priority.

Scenario 2: (Absence of fault on the out of bal-
ance) one tends then to believe that the presence of the out



of balance could have been caused by a fault on the bend-
ing rotor or break of vanes and this scenario will lead to:
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(a) Absence a fault on the bending rotor

M222 M52
tru 68.6 | tru 0 |
false 31.4 jmm false 100 jm

M221 M51
tru 21.6 P tru 0 |
false 78.4 false 100 jm

M21 M5
tru 2.50 | tru 0 |
false 97.5 false 100 jm

M22 M3
tru 75.4 tru 33.0 '—-
false 24.6 false 67.0

M2
tru 76.0 tru 23.4 '—
false 24.0 false 76.6

M11 M
tru 28.0 |— tru 96.1
false 72.0 false 3.90

M12 H
tru 55.9 tru 83.0
false 44.1 false 17.0

M1 E
tru 68.2 p—— i tru 98.3
false 31.8 mmm : false  1.73
S
tru .012
false 100

(b) Absence a fault on the break of vanes
Fig. 6 Scenario 2: Absence a fault on the out of balance

e We suppose that the fault on the bending rotor
(P(S = false) = 1). With a probability value of P(S = true
[M51 = false) =0.022).

Fig. 6, a illustrates the probability of the event P(M5=
false/ M51=true) = 8.50%.

o We suppose that the fault on the bending rotor and
break of vanes (P(S = false) = 1). With a probability value
of P(S = true |M51 = false, M52 = false) =0.012).

Fig. 6, b illustrates the probability of the event
P(Mb5= false/ M51=true, M52=true) = 0%.

897

According to this scenario the probability of
occurrence of the top event P (motor-pump failed state)
(P(S) is equal to 0.012). The result justifies the decrease in
the probability value (from 18 to 1.2%) that the out of
balance would be the cause of the unreliability of the
motor pump, and this result is practically more credible
giving the number of elements and components that are
participated in its function and which can produce this
faulty situation (motor-pump failed state).

To improve the results analysis, uncertainties on
the parameters " g " and " n " have been taken into account.
The associated 95 % confidence intervals for g and 7
obtained using the Matlab function “wblfit” are [2.3984,
4.3015] and [2356.4, 3050.8], respectively. We considered
five values, uniformly generated, for each parameter:
[Bi:By, B3, B4y Bs]1=1[2.398,2.874, 3.349, 3.825, 4.301];
[71:7,.m5, 14,715 ] = [2356.42, 2530, 2703.58, 2877.17,
3050.75].

The results obtained for both scenarios 1 and 2 are
summarized in Table 3, 4 and 5 respectively.

Table3

Posterior probability of the top event for

the first scenario with uncertainty on g and 7

K m 5 s 4 s

B
B, 0.267 0.231 0.196 0.178 0.156
B, 0.248 0.219 0.191 0.167 0.146
B 0.237 0.260 0.178 0.152 0.131
Ba 0.227 0.191 0.161 0.135 0.113
Bs 0.206 0.175 0.144 0.116 0.095

Table4

Posterior probability of the top event for the absence a
fault on the bending rotor with uncertainty on g and 7

n m 2 73 4 s
i 0.01 0.08 0.012 0.015 0.013
B 0.044 0.038 0.032 0.018 0.017
B 0.005 0.04 0.024 0.016 0.015
Ba 0.026 0.03 0.021 0.015 0.014
Bs 0.017 0.009 0.017 0.013 0.012
Table5

Posterior probability of the top event for the absence a
fault on the break of vanes with uncertainty on g and

K m 7, N3 4 s
B
By 0.009 0.005 0.002 0.004 0.003
B, 0.012 0.011 0.009 0.006 0.005
B 0.002 0.015 0.009 0.006 0.004
Ba 0.014 0.01 0.007 0.004 0.003
5. | 0013 | 0008 | 0.005 | 0.002 | 0.001




We should notice that bending rotor (M51) is still
the most likely event to stop the motor-pump for each
couple (8 ,7n).

In order to characterize the uncertainty related to
the posterior probabilities, we give hereafter the mean (u)
and the standard deviation (o) for each scenario.

- Scenario 1: u = 0.1808, o = 0.0474.
- Scenario 2 (a): 4 =0.0221, o = 0.0157.
- Scenario 2 (b): u = 0.0068, ¢ =0.0041.

4. Conclusion

This paper presents the application of bayesians
networks and fault tree to diagnose motor- pump defects.

The construction of the graphical model of the
motor-pump (variable identification and their modes, caus-
al relationship, quantification of probabilities, etc.) was
performed according to historical data.

According to the fault tree results and the values
of conditional probability, the presence of defects in the
motor-pump are mainly caused by the event M51, which
indicates that the defect of unbalance (M5) is the most
likely source to stop the motor-pump.

Fault tree method allows thanks to its qualitative
and quantitative aspects, an event scenario leading to top
undesirable events (motor-pump failed state). For diagno-
sis or to model multi-state variable system, bayesian net-
work is well adapted.

Bayesian inferences permit to calculate the joint
posterior probability of the different variables which can
overcome the limitations of fault tree regarding the diagno-
sis.

According to the scenarios modeled in this work
the probability of occurrence of the top event P (motor-
pump failed state) = P(S) = 1.2%. This result is practically
credible giving the number of elements and components
that participate in its function and which can produce this
faulty situation (motor-pump failed state).

The Analysis of the obtained results by the meth-
odology of converting the fault tree into bayesian networks
allowed to identify the undesirable and critical compo-
nents, and contributed in using the targeted preventive
maintenance in order to increase the system’s reliability
and availability. Thus, in order to optimize the availability
of this motor pump rigorous monitoring of its behavior and
an effective supervision must be carried out.
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Summary

In this article, we have shown an application of a
decision support tool which is the FTBN. The combination
of bayesian network (BN) with fault tree (FT) is an inter-
esting approach to diagnose mechanical systems. Bayesian
networks provide robust probabilistic methods of reason-
ing under uncertainty, widely used in the field of reliability
and fault diagnosis. Fault tree is a method of deductive
analysis based on the realization of an arborescence used to
identify combinations of failures. Since both tools have a
probabilistic aspect, the main purpose of this work is to
give a methodological approach based on the transfor-
mation method of fault tree into bayesian network to model
a mechanical system, more specifically the fault diagnosis.

Fault tree construction allows building a bayesi-
ans network. Deriving the graphical structure of the bayes-
ian network will represent the causal relationship between
the different events, and exploits the mass of existing data
(experience feedback database) of the system under study.



In this paper a methodology approach is used to
conduct quantification of conditionals probabilities of this
network, and performed a diagnosis on the out of balance
trough modeled scenarios. The proposed methodology in
our paper is centred on the presence or absence of the out
of balance of the motor-pump. Knowing that the source of
this unbalance is caused by tows essentially events in the
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fault tree: bending rotor and break of vanes. This statement
remains valid when uncertainties are taken into account.

Keywords: bayesians network; fault tree; Probability;
inference; modeling; diagnosis; maintenance.
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