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1. Introduction 

Because of their severe operational conditions, 

many industrial components are subject to complex combi-

nations of mechanical constraint. These combinations are at 

the origin of initiation and propagation of cracks in these 

parts, which contributes to the ruin of the structure [1]. 

Thus, the knowledge of the maintenance of these 

parts under such conditions becomes essential because it en-

ables us to predict their lifetime. The purpose of this study 

is, first of all, to determine the concentration of the con-

straints in the vicinities of the defects by the stress intensity 

factor FIC in a part submitted to a loading of traction. 

Linear fracture mechanics is based on an analytical 

procedure that connects the stress field in the vicinity of the 

crack, the nominal stress applied in the distance to the crack 

size and orientation and finally to the mechanical character-

istics of the material. Various analytical methods are used to 

study the fields of displacements, strains and stresses in the 

vicinity of a crack [2, 3]. 

The adopted Approach is the energy approach 

which is based on the energy analysis of the continuous me-

dium containing a crack. It is about a total energy assess-

ment integrating the rate of refund of energy due to a virtual 

increase in the crack by the determination of J-integral. 

2. Study design 

In this study, three types of specimens were used. 

The first was a perforated specimen subjected to uniaxial 

tensile stress. Stress concentration factor Kt due to the pres-

ence of the hole was determined numerically by the finite 

element method. The second and third structures are speci-

mens of the same geometry as the first and respectively with 

a notch and double notches starting from the hole, subjected 

to uniaxial tensile loading (6 N). Following the study was 

devoted to the numerical determination of the stress inten-

sity factor SIF. 

The dimensions of the developed geometrical 

model are 160x40x5 mm. The hole diameter is 20 mm for 

the notches having a length of 1 mm (Fig. 1).  

Numerical simulation was made by ABAQUS 

computer code. The specimen is meshed with S3 type of tri-

angular elements with a total number of elements equal to 

12312. A mesh refinement is also set in the neighborhood of 

the default (hole), to detect the concentration of local 

stresses in this area, and give more relevance to results 

(Fig. 2). 

 
 

Fig. 1 Specimen dimensions 

 

 
 

Fig. 2 Representation of a meshed specimen 

 

The specimen is a transparent polymer considered 

elastic Young's modulus of E = 2.7 N/mm2 and Poisson's 

ratio ν = 0.48. 

3. Results and discussions 

3.1. Stress distribution 

The results shown in the Fig. 3 below shows the 

distribution of stresses in specimen with hole under a tensile 

loading.  

 

 
 

Fig. 3 The distribution of stresses in specimen with hole un-

der a tensile loading 

 

It is clear that the loading Applied to the structure 

generated the maximum stresses in the vicinity of the hole. 

Fig. 4 illustrates the stress distribution along a predefined 

path.  
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Fig. 4 The stress distribution along a predefined path 

 

3.2. Effect of single and double a notch on the specimen 

damage 

 

In this part we are interested in modeling the struc-

ture with single and double notch to highlight the influence 

of the crack on the behavior of specimens. Figs. 5 and 6 il-

lustrate the distribution of equivalent stresses induced lo-

cally around defects. 

 

 
 

a 
 

 
 

b 
 

Fig. 5 The distribution of stresses induced locally around 

defects in single notched specimen (a). The stress 

distribution along a predefined path (b) 

 

Disturbance of the shape of the test piece by per-

forming notch causes a discontinuity in the material and 

consequently a stress distribution compared to that of a 

healthy breakthrough test. This is called stress concentra-

tions are highest at the bottom of the notch. We also noted 

that the presence of a single notch generates higher stress 

concentration than the double notch. 

 

 
 

a 
 

 
 

b 
 

Fig. 6 The distribution of stresses induced locally around 

defects in double notched specimen (a). The stress 

distribution along a predefined path (b) 

 

3.3. Stress intensity factor 

 
This part of the manuscript we are interested to 

evaluating the stress intensity factor by the method of finite 

elements integrated in Abaqus computer code. Calculating 

the FIC based on the determination of the energy J required 

for the crack can propagate. The method used is that contour 

integrals. 

The J-integral represents a way to calculate the 

strain energy release rate, l [4]. The theoretical concept of J-

integral was developed in 1967 by Cherepanov [5] and in 

1968 by Jim Rice [6] independently, who showed that an 

energetic contour path integral (called J) was independent 

of the path around a crack. 

The SIF are defined from the energy release rate J. 

The J-integral around a crack tip is frequently expressed in 

a more general form as: 

 

= - ,
v

J Wdy T ds
x






 
(1) 

 

where:  is closed contour surrounding the crack; ds is con-

tour element; W is strain energy density: T is surface stress 

vector; ν is displacement vector. 

The stress intensity factor, under the assumption of 

plane stresses and in the presence of a homogeneous iso-

tropic material and in mode I is connected to J by the fol-

lowing relationship: 

 
2

,I
K

J
E

  (2) 

 

https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Strain_energy_release_rate
https://en.wikipedia.org/wiki/J-integral#cite_note-VanVliet-1
https://en.wikipedia.org/wiki/J-integral#cite_note-2
https://en.wikipedia.org/wiki/J-integral#cite_note-Rice68-3
https://en.wikipedia.org/wiki/Contour_integral
https://en.wikipedia.org/wiki/Fracture
https://en.wikipedia.org/w/index.php?title=Strain_energy_density&action=edit&redlink=1
https://en.wikipedia.org/wiki/Stress_(physics)
https://en.wikipedia.org/wiki/Displacement_vector
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where: KI is SIF under mode I; E is Young modulus.  

A refinement of mesh was carried out in the neigh-

borhoods of the crack tip in order to give more precision to 

the results. 

The values of the J-integral on different contours 

are presented in the following Figs.7 and 8. 

 

 
Fig. 7 Value of the J-integral in the specimen doubly 

notched 
 

 
Fig. 8 Value of the J-integral in the specimen simply 

notched 

 

In theory, the J-integral is independent of the se-

lected contour. However, the calculation results obtained for 

the case of simply and doubly notched specimen show that 

from the second contour, the value of J converges to a some-

what constant value nearly all contours. 

 

3.3.1. SIF calculation 

 

The stress intensity factor of simply and doubly 

notched specimens is determined from energies (J-integral) 

previously determined using the following formula: 

 

.
I

K JE  (2') 

 

 
 

Fig. 9 Value of the SIF in the specimen simply notched 

 
Fig. 10 Value of the J-integral in the specimen doubly 

notched 

 

4. Photoelasticity technique 

 

4.1. Introduction 

 

Photoelasticity is a well-established technique for 

stress analysis, and it has a wide range of industrial and re-

search applications [7]. Several methods of analyzing photo 

elastic fringe patterns by means of phase-measuring tech-

niques have been presented [8-10]. The principal stress dif-

ference can be easily obtained by phase extraction algo-

rithm. There are many methods [11] to extract phases from 

fringe patterns such as Phase shifting technique, Wavelets 

demodulation [12], Spiral transform [13] and Monogenic 

signal [14]. 

The monogenic signal is two-dimensional general-

ization of the analytic signal proposed by Felsberg and Som-

mer [15]. The monogenic signal for an image is defined as 

the combination of the image and its Riesz transform com-

ponents. The Riesz Transform [16] is a generalization of 

Hilbert Transform. The monogenic signal is characterized 

by its three independent local sizes as amplitude, phase vec-

tor, and orientation. 

 

4.1.1. Photoelastic fringe pattern intensity 

 

The experimental set up called polariscope is com-

posed by polarizer P, analyzer A and two quarter wave 

plates Q. R stand for stressed model (retarder). Therefore, 

by P90Q45Rα, ϕQβAγ, we mean; the polarizer at 90°, the 

first quarter-wave plate with fast axis at 45°, the specimen 

as retardation ϕ and whose fast axis is at an angle ϕ with the 

x-axis, the second quarter-wave plate with fast axis at β, and 

the analyzer at γ (Fig. 11). 
 

 
 

Fig. 11 Optical arrangement of a circular polariscope 
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The obtained intensity distribution is: 
 

( 2( )

2( ) 2( ) ),

m
I i i sin cos

sin cos sin

   

    

   

  
 

(3)
 

 

where: im is the bias (stray light term), iv is visibility function 

(the constant of proportionality). When the wave is circu-

larly polarized, the quarter wave plates are positioned after 

the polarizer and the fast and slow axes of the plates are at 

45o with respect to polarizer axis, and the two quarter wave 

plates are crossed followed by the analyzer. The fringe pat-

tern intensity for circular configuration P90Q45Rα, ϕQ0A45 

is: 
 

.
m

I i i cos    (4) 

 

The phase is related to the variation of the path dif-

ference by: 
 

2 ( )
2 ,

e n
 

 


   (5) 

 

where: λ is the wavelength; δ is the path difference; e is the 

thickness of the material and ∆n is the refractive index var-

iation. The phase distribution can be expressed using the 

principal stress difference ∆σ and the photoelastic constant 

C which characterize the specimen as: 

 

( )
2 .

Ce 
 




  (6) 

 

We easily obtain the principal stress difference by 

phase extraction algorithm. In this work, the phase is ex-

tracted from phase vector of the monogenic signal. 

The phase vector can be interpreted as a rotation 

vector, which magnitude corresponds to the phase angle be-

tween the image and the monogenic signal. When the mon-

ogenic signal is applied to a fringe pattern, the phase vector 

gives the optical phase distribution of fringes. 
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 (7) 

 

In order to get continuous phase distribution, the 

values at the phase jump are connected by means of unwrap-

ping procedure [17]. 

 

4. 2. Experimental results 

 

In Fig. 12, we present the experimental set up. 

Fig. 13, a illustrate photoelasticimetry fringe pattern. 

Fig. 13, b shows the wrapped phase distribution obtained 

from the monogenic signal. Fig. 13, c shows the unwrapped 

phase by PUMA algorithm. 

Note that the distribution of the equivalent stress in 

the specimen marks a maximum stresses concentration in 

the vicinity of the defect (hole), while away from defect 

there are low stress values. Far from the discontinuity spec-

imen is relaxed. 

These results are in good agreement with those 

found by the numerical method. 

 
 

Fig. 2  Experimental set up 

 

 
 

Fig. 13 Isochromatic fringe pattern (gray scale) (a), 

wrapped phase distribution obtained using the mon-

ogenic signal (b), continuous phase distribution (c) 

 

 
 

Fig. 14 Intensity distribution along the path in continuous 

phase distribution 

 

5. Conclusion  

 
This communication was like to study using the fi-

nite element method the distribution of stresses induced in 

structures with discontinuities. These structures are speci-

mens with hole and respectively with single notch and dou-

ble notch. The results obtained in the light of this first part 

of study are: 

- Distribution of the equivalent stress in the specimen 

mark maximum stress concentration in the vicinity of de-

fects (hole and notches), while away from the default there 
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is low stress values. Stress concentration is sensitive to the 

type of default. 

- Comparing the maximum values of equivalent stress 

for three simulated specimens is noted that the test hole with 

a simple notch is the one with the highest value. On the basis 

of this study we conclude that the simple cut is the most crit-

ical defect which gives the shorter life time structure relative 

to other structures and consequently will lead quickly to the 

brutal destruction of the specimen. 

The second part of this work was devoted to the 

determination of the stress intensity factor by the energy ap-

proach adopted by the Abaqus computer code. The SIF was 

calculated in the mode I, a contour number five, the J-inte-

gral approach in both samples which led to obtaining value 

pretty constant meadows. 

Finally, the principal stress distributions are deter-

mined from the optical phase distribution by using bidimen-

sional photoelasticimetry technique. The experimental re-

sults are compared to numerical finite element study. 

The good concordance of the results allows us to 

hope the application of this technique to more complex con-

figurations. 
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NUMERICAL STRESS INTENSITY FACTOR  

IN POLYMER STRUCTURES 

 

S u m m a r y 

 

The purpose of this study was to determine the SIF 

stress intensity factor by numerical modeling of a structure 

containing a hole playing the role of a discontinuity "crack" 

subjected to a tensile load by the J- integral approach. The 

energy release rate was defined by modeling the crack by a 

notch and a double notch starting from the hole. The results 

were validated experimentally by testing a transparent ma-

terial using the photoelasticity technology. 
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monogenic signal. 

 

 

Received January 23, 2017 

Accepted April 18, 2018

 

 

http://www.stellar.mit.edu/S/course/3/fa06/3.032/index.html
http://www.stellar.mit.edu/S/course/3/fa06/3.032/index.html
http://dx.doi.org/10.1016/0021-8928(67)90034-2
http://dx.doi.org/10.1088/0957-0233/6/9/001
http://dx.doi.org/10.1016/S0030-4018(02)01828-X
http://dx.doi.org/10.1016/S0079-6638(08)70178-1
https://doi.org/10.1364/AO.36.008397
https://doi.org/10.1364/JOSAA.18.001862
http://eudml.org/doc/167977
https://doi.org/10.1364/OL.28.001194

