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1. Introduction 

To develop novel materials such as graphene 

sheets and carbon nanotubes (CNTs) too many studies are 

in progress in this modern field of research [1]. The single-

layer graphene sheet (SLGS) is comprised of a monolayer 

of carbon atoms arranged periodically and uniformly in a 

hexagonal honeycomb mode. The hexagonal nanostructure 

of SLGS with the high strength of the carbon-carbon cova-

lent bond creates a strong material, two hundred times 

harder than steel [2]. 

SLGS shows several desirable physical properties, 

such as small size, low density, high strength and excellent 

electrical and thermal properties. These exceptional me-

chanical and physical properties along with recent advances 

in synthesis methods and their purification make graphene 

sheet becomes an excellent candidate for use in composite 

reinforcement. To find out the potential of SLGS as rein-

forcement in composite materials, a proper understanding of 

their mechanical properties is essential. Since the 

experimental measurement of mechanical properties of gra-

phene-based materials is a troublesome task, there are a few 

distinctive reported works in the literature. For example, 

Lee et al. [2] obtained Young’s modulus of 1 TPa for mon-

olayer defect-free graphene, by nanoindentation using an 

atomic force microscope. Frank et al. [3] measured Young’s 

modulus of suspended graphene sheets equal to 0.5 TPa.  

Theoretical studies on the effective properties of 

SLGSs are essentially based on two different approaches: 

the continuum mechanics approach and atomistic modeling 

methods [4-9]. Atomistic modeling is computationally in-

tensive, hence the application is limited to small numbers of 

atoms. On the other hand, substitution of a network molec-

ular structure with a continuum media was a challenging 

task.  

Lu et al. [4] proposed a new formula for elastic 

flexural modulus of single-layer graphene sheet based on an 

empirical potential for carbon atoms in the solid state. Tsai 

and Tu [5] estimated the mechanical properties of graphite 

in the forms of single graphene layer and graphite flakes us-

ing molecular dynamics (MD) simulation. Sakhaee-Pour [6] 

proposed a beam based atomistic simulation method to com-

pute the elastic characteristics of defect-free SLGS. Scarpa 

et al. [7] used beam type models to describe the in-plane 

linear elastic properties of SLGSs. Georgantzinos et al. [8] 

studied single- and multi-layer graphene structures using 

structural mechanics atomistic modeling with spring-like fi-

nite elements. Mir at al. [9] established, a nanoscale analyt-

ical continuum theory for determination of stiffness and 

Young’s modulus of carbon nanotubes. They observed no 

diameter dependence for Young’s modulus of CNTs. They 

obtained the value of Young’s modulus of CNT as 1.42 TPa 

and 1.30 TPa for zigzag and armchair CNTs, respectively. 

This paper studies the effective mechanical prop-

erties of single-layered graphene sheets by analytical as-

ymptotic homogenization method which is focused on the 

linear elasticity. Because of heavy atomistic simulation on 

the nanostructures, many researchers have been interested 

in the connection between nano/microstructures and the 

classical continuum mechanics. This paper is also in this 

category. Grafting the asymptotic homogenization approach 

onto the single-layered graphene sheets problem is a new 

try. The merit of using asymptotic homogenization model is 

that single-layered graphene sheet as a periodic nanostruc-

ture could be modeled by asymptotic homogenization 

method with low computational cost regardless of dimen-

sions of the model. The approach is an analytical one and 

makes use of asymptotic homogenization techniques and 

goes around atomistic simulations to develop constitutive 

relations for predicting the effective elastic properties of the 

single-layer graphene sheet. These effective properties are 

estimated from the solution of the proper local problem on 

the unit cell. 

Here we employ both interatomic interactions 

based on bond stretching and bond bending forces in the as-

ymptotic homogenization model. The influence of force 

field constants on the elastic properties of SLGSs and the 

importance of choosing them for C-C bonds are examined 

in three different types of models which are purposed for 

atomic potentials. It is found that the force field constants 

significantly affect the effective elastic properties and rigid-

ities of the graphene sheet.  

2. Asymptotic homogenization method (AHM) 

2.1. A brief review of asymptotic homogenization 

The most capable, viable and graceful technique 

for linking the macroscopic fields in periodic nanofield 

models is based on a mathematical theoretical account re-

ferred to as asymptotic homogenization, asymptotic expan-

sion homogenization, or homogenization theory. In mathe-

matics, we have a limitation in applying the theory of ho-

mogenization which uses the asymptotic expansion and as-

sumes periodicity. Up to now, Kalamkarov et al. [10, 11] 

and some other researchers [12, 13] have used homogeniza-

tion techniques to derive effective elastic, piezoelectric and 

thermal expansion coefficients in materials.  
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Here, from a nano-mechanical point of view, we 

assume that the covalent bond between carbon atoms can be 

represented by reinforcements. The discrete periodic ar-

rangements of the SLGS which is modeled by a honeycomb 

network sheet with a hexagonal unit cell structure convinces 

us to use asymptotic homogenization method. The sheet, in 

turn, can be used as a thin homogeneous layer of reinforced 

composite with matrix around the circumference of the re-

inforcements (Fig. 1). The reinforcements (covalent bonds) 

are much stronger than their matrix, so the circumference of 

the reinforcements is discounted in the analysis. It means 

that the surrounding matrix is modeled by assuming zero 

stiffness.  

 
Fig. 1 A model of a discrete periodic lattice structure of 

SLGS with the equilateral hexagonal unit cell. 

2.2. Governing equations of the asymptotic homogeniza-

tion for composite structure 

A heterogeneous composite structure is said to 

have a regular periodicity while a composite tissued by re-

inforcements that arranged in a particular kind with a peri-

odically repeating cell Υ  (Fig. 2). In the theory of homog-

enization, in comparison to the dimensions of the overall 

domain, Υ  is assumed to be quite little. In the asymptotic 

homogenization method double scales for studying of all 

quantities are considered: one on the global level x  and the 

other on the local level y  which are so-called slow and fast 

variables, respectively. A small parameter   defines the ra-

tio of the real length of a unit vector 
1 2 3

( )x x ,x ,x  in the 

global coordinates to the real length of a unit vector 

1 2 3
( )y y , y , y  in the local coordinates, so y x   or 

y x /   [10-12].  

 

                      a                                            b 

Fig. 2 (a) A heterogeneous composite structure and (b) pe-

riodicity (unit) cell 

The governing equation, in the form of equilibrium 

equation in the absence of body forces is [14]: 

0  in   ( ) 0  on    
ij
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σ
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where in the above equations 
ijkl

C  is the tensor of elastic 

coefficients and i
u  is the component of displacement field. 

As a result, if ( ) ( )x, y x, x /    is a general function then 

according to rules of differentiation we have: 

 

1i

i i i i i

yd
.

dx x x y x y

    



   
   
    

 (4) 

 

The displacement and stress fields are expanded 

using the scale asymptotic expansion in terms of the small 

parameter   as: 
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 (5) 

 

where  
( )

i
u x, y  and  

( )
i

x, y  are periodic on y . Using 

the latter fact in Eq. (4), by separating i
x  and i

y  and after-

ward, by substituting Eqs. (5) into Eqs. (1) and (2), with 

equating the terms with the zero power of   we get: 

 

 
       
1 0

0
k k

ijkl

j l l

u x, y u x
C y ,

y y x
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      

 (6) 

 

and by comparing other terms with the same power of   it 

can easily be shown that  0
u  and  0

  are independent of 

the local variable y  and only depend on x . By separating 

i
x  and i

y  in Eq. (6) we decide that  1
u  has the following 

form: 

 

   
   

   
0

1 k kl

n n n

l

u x
u x, y y x ,

x
 


 


 (7) 

 

where: ( )y  is a function that is periodic in y  and satisfies: 

 

 
 

1 0

kl

m

ijkl

j n

y
C y ,

y y

  
   

     

 (8) 

 

and ( )x  is a function of x  which is constant of integration 

from y . Eq. (8) depends only on the rapid variable y  and 

therefore this equation is called the unit cell of the problem. 

By integrating Eq. (8) over the range of the unit cell Υ  (by 

volume |Υ |) which defines according to: 
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 1 2 3 1 2 3

1
  

Υ
f f y , y , y dy dy dy ,   (9) 

 

and the following result is achieved: 

 

   
kl

m

ijkl ijkl ijmn

n

C C y C y ,
y


 


 (10) 

 

where: ijkl
C ’s are the effective elastic coefficients. The ef-

fective elastic coefficients are found when the unit cell prob-

lem in (8) is solved and the functions kl

m
  are determined 

[10,11]. 

Now, a general macroscopically composite struc-

ture with a number of components as reinforcements is as-

sumed. The effective elastic coefficients for composite 

structures with several groups of reinforcements are calcu-

lated by using the principle of superposition [10,11]. Each 

reinforcement or bar is oriented with its local orthogonal co-

ordinates 1
 , 2

  and 3
 . Before doing anything with the 

data, the original coordinates 1
y , 2

y  and 3
y  should be 

transformed to local orthogonal coordinates 1
 , 2

  and 3
  

(Fig. 3). The new coordinates are recounted as the 1
  coor-

dinate axis coincides with the direction of the reinforcement 

axis and 2
  and 3

  are perpendicular to it and perpendicular 

to each other. Thus, the derivatives transform according to 

i ji j
/ y Q /       where the components of the matrix 

ji
Q ’s are direction cosines characterizing the rotation axis.  

 
 

Fig. 3 The unit cell of composite reinforced with single re-

inforcement in original and rotated coordinates 

From Eq. (9), the function 
kl

ij
B  for the unit cell 

problem is introduced by the following equation: 

 

 kl

mkl

ij ijmn ijkl

n

y
B C C .

y


 


 (11) 

 

From interfacial continuity conditions that exist 

between the matrix and the reinforcements, both conditions 

for the function ( )
kl

m
y  are  ( )

kl kl

n ns s
r m   and 

   kl kl

ij j ij js s
B n r B n m where the indices s, r and m 

show the fiber matrix interface, reinforcement and matrix, 

respectively and 
j

n  are the components of the unit normal 

vector at the interface [10,11]. 

2.3. Asymptotic homogenization for a SLGS 

As mentioned earlier since SLGS can be consid-

ered as a thin homogeneous layer of the matrix in the hole, 

here we assume the matrix is “soft” and take   0
kl

ij
B m  . 

Covalent bonds between carbon atoms can be represented 

by reinforcements, where the fibers are much stiffer than 

matrix in the graphene sheet, so in the simplest model for 

SLGS, the condition becomes   0
kl

ij j
s

B n r  . Finally, from 

Eq. (8) with continuity conditions, the problem that must be 

solved for a single isotropic bar becomes: 

 

 0 0

kl

ij kl

ij j
s

j

B
, B n r .

y


 


 (12) 

 

Supposing the length, the cross-sectional area of 

the reinforcement and volume of the unit cell are L, A and 

V, respectively, then the effective elastic homogenized co-

efficients which are obtained through integration of 
kl

ij
B  

over the volume of the entire unit cell are: 

 

1

Y

kl kl kl kl

ij ij ij f ij

Y

AL
B B dv B V B ,

V
    (13) 

 

where 
f

V  is the volume fraction of the reinforcement in the 

unit cell. The effective coefficients of SLGS with several 

groups of bars can be represented by: 

 

   

1

N
n n klkl

ij f ij

n

B V B .


  (14) 

 

Therefore, in general homogenization of SLGS 

model the constitutive relations of the equivalent anisotropic 

homogeneous shell are given as: 

 
2kl kl

ij ij kl ij kl
N B B ,   


   (15) 

 
2 3kl kl

ij ij kl ij kl
M zB zB ,   


   (16) 

 

where ij
N , ij

M , kl
  and kl

  are the stress resultants, mo-

ment resultants, mid-surface strains and curvatures, respec-

tively. A plane stress problem is assumed for the homoge-

neous shell which is a thin planar structure with constant 

thickness and loading within the plane of the structure. Thus 

the indices such as i, j, k and l could take values 1 and 2, 

whereas   is defined as the thickness of shell which is quite 

thin in comparing with the two other dimensions of the 

sheet. For the purposes of SLGS, we investigate our model 

for the case of 2D network honeycomb shell whereas the 

reinforcements lie in the 1 2
   plane. Fig. 4 shows the 

pertinent hexagonal unit cell for such a structure. Here for 

each bond as a reinforcement z= 3
  is perpendicular to the 

1 2
   plane where 1

  and 2
  are in the 1 2

   plane, 
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where 1
  and 2

  indicate zigzag and armchair directions, 

respectively. The quantities 
kl

ij
B , 

kl

ij
B


, 

kl

ij
zB  and 

kl

ij
zB


 are called the effective elastic coefficients and are 

integrated over the unit cell volume. Moreover, in Eqs. (15) 

and (16), 
kl

ij
B


, 

kl

ij
zB  and 

kl

ij
zB


 are defined as: 
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y
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where ( )
kl

m
y  and  kl

m
y are arbitrary linear functions of (

2
 , 3

 ) which should satisfy Eq. (12) for 
kl

ij
B  and 

kl

ij
B


, 

respectively. 

Here we use both harmonic potential energy terms 

that are represented as 
2

0 5 ( )
r r

U . k r  and 

2
0 5 ( )U . k    where kr and kθ are the bond stretching 

and bond bending stiffness, respectively, while ∆r and ∆θ 

represent bond stretching incrementation and bond angle 

variation, respectively [15]. The a elements simulate the 

stretching with stiffness a r
k k EA /   for C-C bond in-

teraction, while the b elements represent the angle bending 

interaction with stiffness 
b

k E A /    (Fig. 5). 

 
 

Fig. 4 Periodicity cell of SLGS considering both intera-

tomic interactions due to bond stretching and bond 

bending 

It should be noted that to simplify the model and 

make it more manageable, bending stiffness kθ is replaced 

by a spring directly connected the opposite atoms with stiff-

ness kb which is obtained by equalizing both energies of the 

straight and the torsion springs (Fig. 5). Giannopoulos et al. 

[15] stated that  
2

2
b

k / k . The stiffness values of a
k  

and b
k  are used in the effective coefficients to the homoge-

nization model of a hexagonal lattice structure. The length 

of bars or fibers which are simulated by elements a and b 

are represented by  and  , respectively. It is assumed 

that the close carbon atoms are joined by a bar of the circular 

cross-section of diameter   (Fig. 4). As shown in Fig. 4 this 

diameter   could be assigned to the thickness of the hexag-

onal unit cell, it means that t   where t  is the thickness 

of the monolayer graphene sheet. 

 
 

Fig. 5 Element a is an extension spring and element b is 

spring for bending resistance of a C–C–C 

 

Solving Eq. (12) for these elements by following 

the procedure from Eqs. (12)-(17) for the case of a SLGS 

gives the following expressions for the all nonzero effective 

elastic coefficients: 
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where 
j

  is Poisson's ratio of each bar and 
j

  is the volume 

fraction of reinforcement in the unit cell. The functions 

j


 and j


 depend on the index combination  ,  ,

  and   which are given as: 

 

1111 4 2222 4

1212 1122 2211 2 2

1111 2222 1122 2 2

1212 2 2 2

1112 3 3

 ,

 ,

 ,

1
(  - )

4

1
( - ) ,

2

j j j j

j j j j j

j j j j j

j j j

j j j j j

cos , sin
A A

cos sin
A

cos sin
A

cos sin ,
A

cos sin cos sin
A

   

    

    

  

    


 


   




   










 (19) 

 

where 2211 1122

j j
  , 2212 1222

j j
  , 1211 1112

 
j j

  , 

1222 1112

j j
   and 

j
  is the angle between the direction of 

1
  for the jth element of the unit cell and the 1

  axis (see 

Figs. 3 and 4). Hence, by substituting 
kl

ij
B , 

kl

ij
B


, 

kl

ij
zB  and 

kl

ij
zB


from Eqs. (18)-(19) into Eqs. (15)-(16), 

the stress resultants for SLGS are determined as: 

 

11 11

22 222

12 12

3 1 0
1

2 1 3 0
4 3 3

0 0 1 2

r

N
k

N k .

N









     
     
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 (20) 

 

The results relevant to an armchair or zigzag direc-

tion in the unit cell can be obtained by interchanging indices 

1 for 2 in Eq. (20) (Fig. 4). The elastic properties of homog-

enized SLGSs are gained from Eq. (20). It is noteworthy to 
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highlight that in this work we employ both interatomic in-

teractions due to bond stretching and bond bending forces 

and their stiffnesses kr and kθ are applied in asymptotic ho-

mogenization model. 

3. Results and discussion 

To check the accuracy of the present asymptotic 

homogenization technique, some numerical results are pre-

sented for elastic properties of SLGSs. It should be pointed 

out that a carbon nanotube with a large diameter and high 

aspect ratio acts locally such as graphene. Therefore, if we 

ignore the effect of the curvature of CNTs, their unit cell 

problem will be comparable. Therefore, we could use simi-

lar models in which carbon nanotubes have been used in 

them. The plane stress constitutive relation from Eq. (15) for 

an orthotropic problem such as the graphene layer structures 

can be written as: 

 

11 11 12 11

22 21 22 22

12 66 12

0

0

0 0

C C

C C ,

C

 
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 
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 (21) 

 

where Cij’s are the elements of the stiffness matrix for plane 

stress problem. In Eq. (21) 
ij

  and 
ij
  are the stresses and 

strains, respectively, where stresses define as 

11 11 22 22
N / , N /      and 

12 12
N /  . Inverting 

Eq. (21) gives the strain–stress relations as: 
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where: Sij’s are the compliance coefficients, which are re-

lated to the engineering elastic constants. To obtain four in-

dependent compliance elements in the matrix, first, the val-

ues of Cij are determined by homogenization method. Then, 

the elastic modulus in the 1
  direction can be calculated by 

applying a pure tensile load in direction 1
 . By definition, 

if the only nonzero stress is 11
 , then from Eq. (22), the ef-

fective modulus in 1
  direction (zigzag direction, see 

Fig. 4) and Poisson's ratio 12
  are obtained as 

11 11 11 11
1E / / S    and 

12 22 11 21 11
/ S / S       re-

spectively. Similarly, the effective modulus towards 2
  

(armchair direction, see Fig. 4) and Poisson's ratio 21
  can 

be calculated by applying only nonzero stress 22
  as 

22 22 22 22
1E / / S    and 

21 11 22 12 11
/ S / S       re-

spectively. Also, by applying a pure shear stress in the plane 

1–2, the effective shear modulus G12 can be obtained as 

12 12 12 66
1G / / S   . For SLGS, the strain-stress relation 

can be written as: 

 
1

11 11

22 22

212 12

3 1 0

1 3 0
1

2 0 0 1
4 3 3

r

.
k

k 

 


 

 



     
    

    
          

 (23) 

3.1. Effects of force field constants on elastic properties of 

SLGS 

 

In this paper, a term U𝜃 is also added to consider 

the bond energy due to angle variation of bond bending ∆θ, 

which was neglected in earlier studies for homogenization 

model of CNT [14]. However, this term may play a more 

important role in mechanical properties of SLGS. Eqs. (20)- 

(23) represent explicit relationships for the elastic properties 

of SLGS which depend only on force field constants r
k  and 

k  of C-C bonds from their atomic potentials and geometric 

parameters such as , the length of C-C bonds and  , the 

diameter of C-C bonds or thickness of SLGS. Carbon-car-

bon bond length is considered to be =0.142 nm and we 

assume 0 34 nmt .    in the calculations.  

There are different functions available for describ-

ing the potential of C–C bond interaction [16]. Force field 

constants r
k  and k  are found here by different atomic po-

tentials in three types of models. By substituting r
k  and k  

in Eq. (23) for three different types of force field constants 

from the different atomic potentials, the elastic properties of 

SLGS are obtained which are presented in Table 1. In the 

model of type, I, we take the force field constants of 

Eqs. (23) equal to 
7

6 52 10 N/nm
r

k .


   and 

10 2
8 67 10 Nnm/radk .


   from experimental data and em-

pirical harmonic potential [15]. In type II, we use
7

7 42 10 N/nm
r

k .


   and 
10 2

14 2 10 Nnm/radk .


   

which Xiao et al. [17] applied them. At last, in the model of 

type III, it is noted that the Morse potential can be repre-

sented by an interatomic harmonic potential similar to Eqs. 

(15)-(16) where the parameters r
k  and k  are obtained as 

7
8 31 10 N/nm

r
k .


   and 

10 2
9 10 Nnm/radk


   [18].  

 

Table 1 

The Young and shear modulus of SLGS with correspond-

ing force field constants 

Type of 

model 

Elastic properties Force field constants 
E11, 

TPa 
E22, 

TPa 
G12, 

TPa 
kr, 

N/m 
k𝜃, 

nNnm/rad2 
Type I 1.131 1.131 0.424 652 0.867 
Type II 1.477 1.477 0.554 742 1.42 
Type III 1.345 1.345 0.504 831 0.9 

 

Table 2 shows the values of the stiffness coeffi-

cients of the matrix [C] with respect to the force field con-

stants. It is shown that the force field constants r
k and k  

perform a significant role in the mechanical properties of 

SLGS.  It is seen that the stiffness coefficients depend on 

force field constants. The results presented in Table 2 are 

compared with those obtained by Tsai and Tu [5] from MD 

simulation and are in close agreements with them. It is seen 

that 
12 21

0 333.   . Also from Tables 1 and 2, it can be 

remarked that the effective properties of the structure in both 

1
  and 2

  directions are the same (i.e., 
11 22

E E  and 

12 21
G G ) and, therefore, a SLGS can be treated as a trans-

versely isotropic material [19]. 
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Table 2 

The stiffness matrix of SLGS calculated based on force field constants 

Researcher C11=C22, TPa C12=C21, TPa C66, TPa E11=E22, TPa G12=G21, TPa 
Present, kr (type I) 0.830 0.277 0.277 0.738 0.277 

Present, kr & k𝜃 (type I) 1.272 0.424 0.424 1.131 0.424 
Tsai and Tu [5] 0.978 0.254 - 0.912 0.358 

 

3.2. Bending and twisting rigidities of SLGS 

From the presented homogenization model, ben-

ding and twisting rigidities can be obtained for single-

layered graphene sheet. Upon substitution of the effective 

elastic coefficients from Eqs. (18)-(19) in Eq. (16) we have: 

 

11 11 12 11

22 21 22 22

12 66 12

0

0

0 0

M D D

M D D .

M D







    
    

    
        

 (24) 

 

From the obtained results the bending rigidity 

11 11
M /   and twisting rigidity 12 12

M /   can be defined in 

terms of the bending stiffness matrix [D]. These rigidities 

are presented for single-layered graphene sheet as shown in 

Table 3. In this table, the present results are compared with 

those reported in the literature. 

 

Table 3 

Comparison of the present bending and twisting  

rigidities with the ones reported in the literature 

Researcher Method 
Bending D11= 

D22, nNnm 

Twisting 

D66, nNnm 

Present AHM 0.402 0.167 

Kudin et al. 

[20] 
Ab initio 0.238 - 

Lu et al. [21] MM 0.225 - 

Kordkheili et 

al. [22] 
FEM 0.350 - 

3.3. Effect of thickness on elastic properties of SLGS 

The variations of E11 and G12 as functions of the 

thickness of SLGS are presented for 0.066 nm ≤ t ≤ 0.7 nm 

in Figs. 6 and 7. The values of t within these limits can be 

found throughout the literature [15,17]. The values of E11 

and G12, which are obtained for a single-layer graphene 

sheet are sensitive to varying wall thickness. It is shown in 

Figs. 6 and 7 that increase in wall thickness of the sheet re-

sults in a decrease of the elastic modulus. We know that in 

general, the thickness of a graphene sheet is considered as 

the distance between two adjacent graphene sheets in multi-

layered graphene sheets. However, a review of the literature 

shows that different researchers have reported different val-

ues for Young’s modulus of nanotubes or the graphene sheet 

and their thicknesses. Therefore, the obtained Young’s mod-

ulus in the literature is not comparable. Further calculations 

are done from different sources; all of the numerical value 

of Et is close. We intend to look at the reason for this dis-

crepancy here. 

In some cases, it does not need to know E. How-

ever, if it is necessary to calculate the exact amount of E the 

estimated t is desired. Thus, the value of Et can be used as a 

new parameter based on which the mechanical properties of 

different nanotubes or the graphene sheets can be compared. 

Now, if Et is divided by a thickness equal to the thickness 

of a graphene monolayer which is assumed (i.e. 0.34 nm), 

the final values are about the same for all studied cases 

which are around 1 TPa. This procedure is shown in Table 4. 

This table summarizes and normalizes the results obtained 

and compares them with available results in the literature. 

There is not a sensible difference between the present results 

and those available in the literature. Such trends are in good 

agreement with predictions made by Scarpa et al. [7] and 

Georgantzinos et al. [8]. Thus, the obtained results from a 

viable analytical asymptotic homogenization model are rea-

sonable, because of that, it could be applied to the other 

nanostructures. 

 

Fig. 6 Elastic modulus of SLGS to the wall thickness 

                                                                                                                                                                               Table 4 

Comparison values for the reported elastic properties of the graphene sheet and their thicknesses in the literature 

 

Researcher t, nm ν G, TPa E, TPa Et/0.34, TPa 
Present 0.34 0.33 0.42 1.13 1.13 

Lee et al. [2] 0.34 - - 1.00 1.00 
Frank et al. [3] 0.68 - - 0.5 1.00 
Tsai and Tu [5] 0.34 0.26 0.36 0.91 0.91 

Sakhaee-Pour [6] 0.34 1.29 0.23 1.03 1.03 
Scarpa et al. [7] - Amber 0.34 0.57 0.21 1.31 1.31 
Scarpa et al. [7] - Morse 0.34 0.57 0.21 1.67 1.67 
Georgantzinos et al. [8] 0.34 0.60 0.28 1.37 1.37 

Mir et al. [9] 0.34 - - 1.30 (Arm)-1.42 (Zig) 1.30 (Arm)-1.42 (Zig) 
Kalamkarov et al. [14] 0.14 0.33 0.32 1.71 0.74 
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Fig. 7 The shear modulus of SLGS to the wall thickness 

4. Conclusions 

The main goal of present study is to analytically 

obtain the tension, bending and twisting rigidities of gra-

phene sheet from asymptotic homogenization model. Also, 

Young’s modulus, shear modulus and Poisson's ratio are 

calculated as well as rigidities of a homogenized model of 

SLGS. The homogenized model of SLGS consists of a hon-

eycomb network sheet with the hexagonal unit cell, so from 

the analytical solution of the proper local problem in the unit 

cell, the effective properties of SLGS are determined. The 

derived formulae make easy understanding of the depend-

encies of SLGS mechanical properties to thickness and 

force field constants. It is found that the choice of covalent 

bond stiffnesses which are applied for stretching and bend-

ing of C-C bonds, significantly affect elastic properties of 

the SLGS. The predictions obtained by this model for SLGS 

are compared with previous theoretical and experimental re-

sults available in the literature. It is shown that the present 

asymptotic homogenization model not only can predict elas-

tic properties and rigidities for SLGS but also this model can 

remove the difficulty of applying both stretching and bend-

ing of C-C bonds in FE models and MD simulations. Fi-

nally, the proposed analytical method is straightforward for 

modeling other nanostructures with periodic structures. 
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S. Safarian, M. Tahani 

EVALUATION OF TENSION, BENDING AND 

TWISTING RIGIDITIES OF SINGLE-LAYER 

GRAPHENE SHEETS BY AN ANALYTICAL 

ASYMPTOTIC HOMOGENIZATION MODEL 

S u m m a r y 

In the present study, the method of asymptotic ho-

mogenization is used to estimate elastic properties as well 

as tension, bending and twisting rigidities of single-layer 

graphene sheets (SLGSs). To this end, asymptotic homoge-

nization of a reinforced composite is developed for 

modeling of SLGS by assuming that the covalent bond be-

tween carbon atoms can be represented by reinforcements. 

Applicable formulas are obtained for the elastic properties 

and rigidities of SLGS directly from the interatomic interac-

tions through three types of potentials. It is proved that force 

field constants significantly affect the elastic properties of 

SLGS. Herein, the elastic moduli are obtained based on dif-

ferent types of atomic force constants. The results of the 

present analytical model are in close agreements with the 

similar theoretical results and experimental measurements. 

This approach can be developed to represent mechanical 

properties of nanocomposites and other nanostructures. 

Keywords: Asymptotic homogenization method, Mechani-

cal properties, Tension, bending and twisting rigidities, Sin-

gle-layer graphene sheet. 
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