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1. Introduction 

For the first time, piezoelectric effect was de-

scribed by authors of paper [1]. They developed constitutive 

equations describing the relation between deflection and 

electric field occurring in a piezoelectric element. Practical 

use of this effect is attributed to Paul Langevin. In 1917, he 

designed a piezoelectric ultrasonic generator which then 

was used for submarine location. Today, many devices us-

ing this piezoelectric effect are manufactured. They are used 

in such branches as medicine, industry or transport [2, 3].  

In most piezoelectric transducers measuring/con-

trol system usually has a layer structure what to some extent 

makes it difficult to determine their electromechanical char-

acteristics and strength. Both the former and the latter aspect 

was dealt with by many scientists.  

In order to determine electromechanical character-

istics of a piezoelectric transducer (relation between defor-

mation and applied load) adequate simultaneous equations 

should be defined and solved. These equations bound to-

gether geometrical properties, materials properties and 

physical parameters, such as force, deflection and electric 

field.  

Formulation of such simultaneous equations is 

considerably difficult. Material and geometrical inhomoge-

neity of the transducer global structure and anisotropy of pi-

ezoelectric materials force the use of some simplifications. 

Electromechanical characteristics of piezoelectric transduc-

ers were dealt with by authors of papers [4–14]. Smits et al. 

[4] as first formed and solved physical equations for a trans-

ducer made of two layers of even thickness and length. 

Adopting similar assumptions – the same length of all layers 

in a transducer – authors of the paper [5] provided solutions 

for a three-layer transducer, and [6–9] – a multi-layer trans-

ducer. Electromechanical characteristics of transducers with 

layers of different length were dealt with in papers [10–14].  

For strength aspects of piezoelectric transducers, 

when regarding transducer as a global layered (composite) 

structure, in design calculations it is necessary to include a 

presence of geometrical-material notches occurring at the 

interface. Such structural notches locally generate stress 

fields with large gradients, what in consequence initiates a 

fracture process in the plane of bonding particular layers. 

Description of stress fields occurring around the structural 

notch-tip area located on the interface of bi-material struc-

ture was dealt with by authors of papers [15–17]. However, 

in papers [18–20] qualitative and quantitative nature of sin-

gular stress fields generated by structural notches occurring 

in piezoelectric transducers was analysed.  

In literature, it is rare to find test results that bring 

together the strength and usable characteristics of piezoelec-

tric transducers. Therefore the main purpose of the this pa-

per was to develop procedures for determination of such ge-

ometrical-material characteristics of piezoelectric transduc-

ers, for which both its strength and deformation conditions 

are optimal. 

2. Analytical and numerical solutions 

2.1. Subject of research 

The paper deals with three-layer bender as pre-

sented in Fig. 1. In the transducer structure two piezoelectric 

components 1 and 3 and a non-piezoelectric element 2 can 

be distinguished. 
 

 
 

Fig. 1 Three-layer piezoelectric transducer:1-upper piezoe-

lectric element, 2-non-piezoelectric element, 3-lower 

piezoelectric element, 4-structural notch 

It is assumed that upper piezoelectric layer 1 has 

the same length as element 2. Length of component 3 (di-

mension L3) is smaller than lengths of other layers dimen-

sion L). Layers have a different height ti and uniform thick-

ness b. What is more, component 3 is located exactly in the 

middle of the transducer – x0= (L–L3)/2. In analyses carried 

out it was assumed that Young's module for both piezoelec-

tric elements is Ep, and for non-piezoelectric element – Eb. 

Moreover, it was assumed that all components have the 

same Poisson's ratio υ. Left side of the transducer is fixed, 

while the right side is freely movable (support conditions of 

a cantilever beam). The load comes from the applied electric 

voltage V generating bending moment induced by a piezoe-

lectric effect (occurring in piezoelectric components). 

Purpose of tests carried out was to determine an 

optimum relation between stiffness and geometric charac-

teristics of individual components of piezoelectric trans-

ducer, for which deflection of the right end of the transducer 

w would be the greatest at the greatest resistance to fracture 

at the same time. As mentioned earlier, the point of fracture 
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process initiation is at the tip of the structural notch 4 that is 

formed by lower piezoelectric layer and non-piezoelectric 

element. 

For testing three optimization parameters were as-

sumed, including: 

1) b

p

E
e

E
  - relative stiffness; 

2) 3

1

t
t

t
  - relative height; 

3) 
3

L
l

L
  - relative length. 

Table 1 

Cases of variability of optimization parameters  

obtained based on Box-Behnken plan 
 

Case no. e t l 

1 1.00 0.50 0.50 

2 1.00 1.25 0.20 

3 1.00 1.25 0.80 

4 1.00 2.00 0.50 

5 10.50 0.50 0.20 

6 10.50 0.50 0.80 

7 10.50 1.25 0.50 

8 10.50 2.00 0.20 

9 10.50 2.00 0.80 

10 20.00 0.50 0.50 

11 20.00 1.25 0.20 

12 20.00 1.25 0.80 

13 20.00 2.00 0.50 

 

For each of the above parameters variability range 

was established arbitrarily and using three-level fractional 

plan 3(k-p) - Box-Behnken plan - number and cases of var-

iability were determined, as given in Table 1.  

Method for determination of bending of transducer 

w, procedures related to description of fracture process and 

selected method of multi-object optimization are presented 

in the further part of this paper. 

 

2.2. Electromechanical characteristics of transducer 

Consecutive Eq. (1), used to determine electrome-

chanical characteristics of transducer was developed using 

method (described in detail in papers [13, 14, 21]) involving 

implementation of two types of piezoelectric modules to a 

homogeneous beam: PBS (piezoelectric bimorph segment) 

and PTS (piezoelectric triple segment), respectively. Taking 

into account structural variability, as described in chapter 

2.1, and load conditions, general differential equation for 

strain of transducer can be noted as follows: 
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(1)

 

 

where:  iH x x  is Heaviside's function; JoB, JoT are aver-

aged moments of inertia for piezoelectric segments; MeB, 

MeT are bending moments generated by piezoelectric seg-

ments. 

Bending moment and averaged moment of inertia 

for PBS segments is calculated from Eqs. (2) and (3):  
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Equations (4) and (5) describe bending moment 

and averaged moment of inertia for PTS segment, respec-

tively: 
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where d31 is piezoelectric constant: 
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3 3 3
2 1 2

1 2, ,
12 12 12

b p p

bt bt bt
J J J   is moments of inertia for the individual layers. 

By integrating the equation (1), in order to deter-

mine constants of integration using boundary conditions as 

follows: 

 

 0 0, (0) 0,
y

y
x


 


 (6) 

 

electromechanical characteristics of transducer (7) was ob-

tained:  
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where: 
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Relative deflection of the transducer right end was 

calculated based on the following equation: 

 

( )
.

y L
w

L
  (8) 

2.3. Conditions for fracture process initiation 

In order to define conditions, at the presence of 

which fracture process initiation will occur, it is necessary 

to develop a qualitative and quantitative description of sin-

gular stress fields occurring around structural notch-tip area 

(Fig. 2) with notch angle β=90o, formed between lower pie-

zoelectric element 3 (Fig. 1) and non-piezoelectric layer 2 

(Fig. 1). 

The nature of such stress fields is considerably dif-

ferent from those generated by notch located in a homoge-

neous material. Eigenvalue 𝜆, determining the nature of sin-

gular stress fields, can have both complex and real values 

[15, 17, 20]. This creates difficulties in both analytical de-

scription of stress fields and formulation of adequate 

strength criteria [17]. Because stresses can be described by 

complex exponent λ= λr+i generalized stress intensity fac-

tors Kj were defined as follows [17]: 
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Fig. 2 Structural notch located on interface between non-pi-

ezoelectric element and lower piezoelectric layer 

By using the eigenfunction expansion method [22, 

17], relation (9) and below boundary conditions: 

- of upper surface of structural notch, for φ = π; 

2 2
0

r
;     

- of lower surface of structural notch, for φ = - π/2; 

3 3
0

r
;     

- along the interface, for φ = 0; 

2 3 2 3 2 3 2 3r r r r
u u u u   ; ; ;            , 

analytical relations describing singular stress fields (10) in 

the interface plane and characteristic equation (11) can be 

determined [17]. 
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 -shear modulus    3 / 1
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i i

  - a plane strain, 
i

 -Poisson's ratio, 

i=2,3. 

With obtained characteristic equation (11) it is pos-

sible to determine enginevalues λ (λr=Re[λ], Im[λ]=).  

Analytical description of stress fields for any angu-

lar coordinate φ can be found, e.g. in paper [17]. 

For a quantitative description of stress fields it is 

necessary to determine generalized stress intensity factors 

Kj. They were determined based on a comparison of analyt-
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ical solutions to numerical solution FEM. Based on analyti-

cal description of stress fields Eq. (10) the following linear 

functions of coordinate r Eq. (12) were formulated [17]: 
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    (12) 

 

Then, using data obtained from FEM solution -

ri ri
,  , set of function values Eq. (12) (for selected points - 

with coordinates r is located around corner-tip area) was 

determined. This enabled, using linear regression Eq.  13), 

to determine generalized stress intensity factors for r=0. 
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As mentioned, to determine the Kj factors it was 

required to carry out numerical calculations. Therefore, us-

ing FEM (ANSYS) [23], the transducer was modelled as a 

plane strain problem. Layers of the transducer were circum-

scribed with quadrangle, eight-node finite elements with in-

creased refinement around the notch-tip area, with triangu-

lar special elements surrounding the singular point [24]. 

Two types of finite elements were used: PLANE223-piezo-

electric material, PLANE82-beam. In simulations carried 

out, geometrical and material parameters were changed – in 

accordance with Table 1.  

For determination of conditions for fracture pro-

cess initiation, it is required to develop an adequate crite-

rion. This criterion should include accurately determined 

equation with defined criterion parameters, on basis of 

which it is possible to predict the moment of fracture pro-

cess initiation. Paper [17] shows that selection of the crite-

rion should be dependant on exponent λ. If the enginevalue 

λ takes complex values (between 0÷1), satisfactory results 

of bi-material structure with structural notch strength pre-

diction are obtained using the Novozhilov hypothesis. This 

hypothesis assumes that the fracture process will be initiated 

when damage function -  
0 0 02 3 2 3 2, r , r

f , ,
     
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- 

reaches the criterion value. If the enginevalue is a real num-

ber, the best results of the prediction are obtained using a 

criterion based on stress intensity factor.  

Therefore, based on the characteristic Eq. (11) 

value of exponent λ was determined  at first. Based on ob-

tained solution, it can be claimed that parameter λ for inves-

tigated structural notch always takes real values between 

0÷1 (Im[λ]=). Thus to determine the moment of fracture 

process initiation, criterion Eq. (14) was used, based on gen-

eralized stress intensity factor: 
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K is fracture toughness, n
K  is normalized, gener-

alized stress intensity factor. 

It follows that fracture process will be initiated 

when factor n
K reaches the criterion value 
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K  (material 

constant). It is obvious that susceptibility of piezoelectric 

transducer to fracture will be lower if the calculated factor 
n

K takes as low values as possible. Normalized, generalized 

stress intensity factor can be calculated from the following 

equation [25]: 
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where: KI is generalized stress intensity factor Eq. (13), λr is 

enginevalue determined from characteristic Eq. (11), 
o

 is 

stress at which factor KI was calculated. 

Stress 
o

 , induced by the applied voltage V, can 

be calculated from Eq. (16): 
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  is the coordi-

nate of s the centre of gravity of the cross-section area.
 

2.4. Grey relational analysis method 

To determine optimal parameters related to geom-

etry and stiffness of individual components of piezoelectric 

transducer under analysis, a method of multi-object optimi-

zation – GRA (Grey Relational Analysis) was selected. This 
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method is used to determine a relation between selected fac-

tors which in overall influence qualitative and quantitative 

characteristics of the process under research. With this, it is 

possible to select, from experimental data, the best combi-

nations of these factors and formulate a prognostic function. 

The use of this approach has been positively verified in 

many areas, such as agriculture, economy or arms industry 

[26, 27]. Detailed description of this method can be found, 

e.g. in paper [28]. In GRA analysis three main stages can be 

distinguished: 

I. standardization of experimental data SD; 

II. determination of the Grey Relational Coefficient 

(GRC); 

III. determination of the Grey Relational Grade (GRG). 

Purpose of the stage I is to standardize the input 

data. Standardization is used when data under analysis is ex-

pressed in various units and large range of their variability 

occurs. If the expectancy is the lower – the-better, then the 

standardizing function can be expressed by Eq. (17). If the 

expectancy is, however, the higher – the-better, then it can 

be expressed by Eq. (18) [28]: 
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( ) (
( )

)

o o
i i

o o
i

i
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max x k x k

max x k min x
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  (17) 

 

* ( ) ( )
,

( ) (
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)
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i
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x k min x k

max x k min x
x k

k




  (18) 

 

where: i= 1,...m; k = 1,...n, m is number of experimental data 

items, n is the number of parameters; 

( )
o
ix k  is original experimental data, 

*
( )ix k  is the experimental data after data standardization, 

max ( ), min ( )
o o
i ix k x k  are the largest and the smallest val-

ues of ( )
o
ix k . 

In the issue under analysis (1)
o
ix = wi (relative de-

flection) and (2)
o
ix =

n

i
K  (normalized, generalized stress 

intensity factor). According to the assumption that the larg-

est deflection is expected, data standardization (1)
o
ix  was 

carried out by Eq. (18). Equation (17) was applied for data 

(2)
o
ix  – expected lowest values of normalized stress inten-

sity factor.  

The Grey Relational Coefficient (GRC) [28] is cal-

culated by Eq. (19): 

 

*

0.5
.

1.
( )

( )5
i

i

k
x k

 


     (19) 

 

After GRC calculation the Grey Relational Grade 

GRG Eq. (20) is calculated: 

 

1

1
( ).

n

i i
k

k
n

 


   (20) 

 

The GRG coefficient defines compatibility of the 

tested parameter (in the analysed issue for parameters wi and 

n

i
K ) with factors affecting the quantity value of this param-

eter (relative stiffness –e, relative height – t, relative length-

l). The GRG Eq. (20) coefficient takes values between 0 and 

1. The highest the value the biggest the compatibility, and 

factors affecting the wi and n

i
K more optimal (desired). It is 

assumed that for 0.6i  , influence of factors on parameter 

under investigation is significant [28]. 

3. Test results 

As already mentioned purpose of tests carried out 

was to determine an optimum relation between stiffness and 

geometric characteristics of individual components of pie-

zoelectric transducer, for which deflection of the right end 

of the transducer would be greatest at the greatest resistance 

to fracture at the same time. Therefore, for the below data:  

 piezoelectric strain coefficients: d31 = 2.2’10-11 

C/N, d32 = 0.3’10-11 C/N, d33 = -3.0’10-11C/N; 

 relative permittivity at constant stress: (ε33)T = 12; 

 Poisson's ratio: υp = υb,=0.29; 

 Young's modulus: Ep = 2.0’109, 
b p

E e E , N/m2; 

 layers thickness: t1= 0.002, t2= 0.001, 
3 p

t t t , m; 

 beams length L = 0.06,

 

3
L l L , m; 

 electrode voltage V = -100 Volts. 

The relative deflection Eq. (8), normalized, gener-

alized stress intensity factor Eq. (15) were determined, and, 

according to method described in chapter 2.4, optimization 

procedures were carried out. 

The obtained results are given in Table 2. Optimi-

zation parameters – e, t, l – were determined for 13 tests 

based on Table 1. 

For the constructional variant, if lower piezoelec-

tric element is located in the centre, within transducer struc-

ture two notches will occur - on both sides of lower piezoe-

lectric layer. Therefore coefficients 
n

i
K  were calculated for 

both notches. As should be expected the obtained values 

were virtually identical. Thus in Table 2 data for only one 

notch (left one) are given. 

As already mentioned in chapter 2.4 the GRA 

method enables: 

- selection from among the data obtained from experi-

mental testing, the most optimal cases [29]; 

- formulation of prognostic function. 

To select the most favourable geometrical and ma-

terial parameters for transducer it is necessary to calculate 

average values GRG for all levels of optimized parameters 

- e,t,l. As an optimal case variant corresponding to maxi-

mum value of averaged GRG for a given level is assumed. 

In experimental tests carried out, three levels of each partic-

ular parameter were used, as shown in Table 3. 

Averaged values GRG for particular levels were 

calculated from the equation below: 

 

, ,
1

1
,

j

n

e l t i
n

    (21) 

 

where: j=1,2,3 is level of parameter, n is number of experi-

mental data for level j.  
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Table 2  

Optimized parameters and optimization results 

Case no.  wi= (1)
o
ix

 
(2),

o
i

n
iK x  Pa m0.5

 

*
(1)ix  

SD 

*
(2)ix  

SD 

(1)i  

GRC 

(2)i  

GRC 

i  

GRG 

1 1.884’ 10-5 62.09 0.777778 0.932239 0.692308 0.880652 0.78648 

2 1.385’ 10-5 4.69 0.417749 1 0.462 1 0.731000 

3 1.154’ 10-5 5.08 0.251082 0.99954 0.400347 0.99908 0.699713 

4 1.113’ 10-5 17.16 0.221501 0.985279 0.391084 0.9714 0.681242 

5 1.727’ 10-5 607.2 0.664502 0.28873 0.598446 0.41279 0.505618 

6 2.192’ 10-5 605.10 1 0.291209 1 0.413636 0.706818 

7 1.351’ 10-5 56.83 0.393218 0.938448 0.45176 0.89039 0.671075 

8 1.365’ 10-5 36.15 0.403319 0.962861 0.455921 0.930858 0.693389 

9 0.806’ 10-5 32.47 0 0.967205 0.333333 0.938448 0.635891 

10 2.166’ 10-5 851.78 0.981241 0 0.963839 0.333333 0.648586 

11 1.372’ 10-5 8.31 0.408369 0.995727 0.45803 0.991526 0.724778 

12 1.289’ 10-5 91.63 0.348485 0.897366 0.434211 0.829691 0.631951 

13 1.006’ 10-5 53.11 0.1443 0.94284 0.368813 0.897408 0.63311 

 

Table 3  

Applied levels of optimized parameters 

Parameter level 1 level 2 level 3 

e 1 10.5 20 

t 0.5 1.25 2 

l 0.2 0.5 0.8 

 

Apart from selection of optimal geometrical and 

material parameters, also it is possible to determine which 

optimized parameter has the greatest influence on GRG 

value. The greatest influence has the parameter for which 

the difference between minimum and maximum value GRG 

is the greatest Eq. (22): 

 

, , , , , ,( ) ( ).e l t e l t e l tGRG max min     (22) 

 

Table 4 and Fig. 3 show averaged GRG values for 

individual levels calculated from Eq. (21).  

Table 4 

Average GRG values Eq. (21) for individual levels  

Param-

eter 

, , je l t  

, ,e l tGRG
 level 1 level 2 level 3 

e 0.724609* 0.642558 0.659606 0.082051** 

t 0.661875 0.691703* 0.660908 0.030795 

l 0.663696 0.684099* 0.668593 0.020402 

*-max GRG (the optimal variant) 

**-max ΔGRGe,j,t (parameter with the greatest influence) 

 

Example calculation of average GRG value (for 

level of the first parameter e) and eGRG  is given below:  

 
1

0.78648 0.73100 0.69971 0.68124 0.724609,
1

4
e     

0.724609 0.642558 0.082051   eGRG . 

 

 
 

Fig. 3 Average GRG values Eq. (21) for individual levels 

Through analysis of data given in Table 4 and 

Fig. 3 it can be claimed that among experimental tests car-

ried out, the best constructional variants of the analysed 

transducer were achieved for the following levels of opti-

mized parameters: e=1, t=1.25, l=0.5. 
Moreover, when comparing parameters , ,e l tGRG , it 

is evident that factor that has the greatest influence on GRG, 

and thus on the strength and deflection of the transducer, is 

relative stiffness  e.  

Apart from selection of optimal parameters ob-

tained from experimental tests, as already mentioned, the 

GRA method also allows for prediction. The sought prog-

nostic function GRG(e, t, l) can be formulated as Eq. (22): 

 

  2

0 1 2

2

1 2 2 1

2

1 3 2

GRG ,

.

,e t l A A e A e

C l D e l C l B t

D e t D l t B t

   

    

  

  

(22)

 

0,6
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0,64

0,66
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Parameter Level

G
re

y
 R

el
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n
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0.082051eGRG  0.030795tGRG  0.020402lGRG 
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Constants Ai, Bi, Ci, Di were determined by non-

linear regression method (estimation method – Gauss-New-

ton, loss function-method of least squares, level of confi-

dence p=95%). In statistical analyses the used arguments -

e,t,l - given in Table 1 and dependent variable GRG – Ta-

ble 2. Obteined constants Ai, Bi, Ci, Di are given bellow: 

A0=0.485517, A1=-0.013700, A2= 0.000431, 

B1=0.210344, B2=-0.040135, C1=0.569369, 

C2=-0.145221, D1= 0.0031495, D2=-0.005398,  

D3= -0.287444, R2= 0.9970. 

Fig. 4 provides comparison of limit values of GRG 

parameters obtained from experimental (simulated) tests 

carried out and values calculated from Eq. (22) (predicted). 

 

 
 

Fig. 4 Values of GRG coefficients - determined (Table 2) 

and predicted Eq. (22) 

By Eq. (22) it is possible to determine such geo-

metrical-material parameters so as to obtain the desired 

value of GRG parameter (best if near to 1). Fig. 5 depicts 

the range of variability of optimized parameters -e,t,l – for 

which the GRG value is greater than arbitrarily selected 

value - 0.71.  

 

 

Fig. 5 Values of coefficient GRG (e,t,l) ≥0.71 calculated 

from Eq. (22) 

Through analysis of the above figure it can be 

claimed that the transducer in a design where piezoelectric 

element is located in the centre, is characterized by the 

greatest flexibility in selection of geometrical and material 

parameters. 

3. Conclusions 

Using the GRA method the optimization of the 

three-layer piezoelectric transducer was made. The best de-

sign variants were selected – e=1 (relative stiffness), t=1.25 

(relative height), l=0.5 (relative length). What is more, it 

was claimed that the factor having the greatest influence on 

deflection and strength of transducer is relative stiffness e. 

In addition, the prognostic function, allowing to determine 

the optimal parameters related to the geometry and stiffness 

of individual components of the piezoelectric converter, for 

which the Kn function assumes the smallest values with the 

highest relative deflection simultaneously, was proposed. 

Based on this function, it can be concluded that there is a 

great flexibility in a selection of geometrical and material 

parameters which will assure optimal strength and utility 

features.  
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G. Mieczkowski 

OPTIMIZATION AND PREDICTION OF DURABILITY 

AND UTILITY FEATURES OF THREE-LAYER PIEZO-

ELECTRIC TRANSDUCERS 

S u m m a r y 

The paper presents the results of research related to 

the optimization and predicting of durability and utility fea-

tures of three-layer piezoelectric transducers (two piezoe-

lectric and one non-electric piezoelectric layers). The con-

verter, in which one of the piezoelectric layers had a shorter 

length than the other two and was located in the middle of 

the transducer, has been analyzed (Fig.1). For such a con-

struction of the transducer, the structural notch occurs at the 

ends of the shorter layer. In the notch tip area, there is a local 

stress concentration, which causes initiating of fracture pro-

cess. Therefore, in the presented paper examined the impact 

of such factors as the relative stiffness (e) and thickness (t) 

of individual components and the dimensionless length (l) 

of the shorter piezoelectric layer on: 

- value of the proposed Kn function specifying the con-

ditions for initiating the cracking process; 

- value of the relative deflection of the end of the trans-

ducer. 

What is more, using Gray Relational Analysis 

Method, special functions -f(e,t,l) also were developed and 

these enable prediction of functional and strength parame-

ters for such transducer. 

 

Keywords: piezoelectric transducer, deflection, electrome-

chanical characteristics, fracture toughness. 
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