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1. Introduction 

Blood is a multiphase fluid that is primarily made 

of red blood cells (RBCs), white blood cells, and platelets 

suspended in plasma. Under normal, healthy conditions, a 

freely suspended RBC is a biconcave discoid with 8 µm di-

ameter and 2 µm thickness. RBCs constitute; 40–45% of the 

total blood volume. Being highly deformable particles, 

RBCs can easily squeeze through the smallest capillaries 

having internal diameter less than their characteristic size. 

The particulate nature of the blood and the deformability of 

the RBCs determine the overall rheological behavior of the 

blood [1]. The lattice Boltzmann method (LBM) in combi-

nation with IBM has been used for simulating the motion 

and deformation of elastic bodies immersed in fluid flow in-

cluding red blood cells (RBCs). Zhang et al. [2, 3] studied 

the dynamic behavior of RBC in shear flow and channel 

flow and investigated several hemodynamic and rheological 

properties, using a combination of LBM and IBM. Cheng et 

al. [4] have proposed a proper model to simulate the fast 

boundary movements and a high pressure gradient occurred 

in the fluid-solid interaction. In their research mitral valve 

jet flow considering the interaction of leaflets and fluid has 

been simulated. Alizadeh et al. [5, 6] investigated numeri-

cally the motion and deformation of a RBC in a viscous 

shear flow utilizing a combined LBM-IBM. Several recent 

numerical studies have focused on the behavior of deform-

able RBCs in microvascular flows [7-13]. RBC motions are 

well described by existing numerical techniques. Li et al. 

[14] applied the lattice Boltzmann method (LBM) to simu-

late two-dimensional rigid particle suspensions through a 

stenosed microvessel. Hyakutake et al. [15] conducted a 

two-dimensional simulation of the stenosed microvascular 

flow with rigid RBCs assuming primary pulmonary hyper-

tension due to the stenosis of lung arteriole. Xu et al. [16] 

performed a two-dimensional simulation of RBC aggrega-

tion flow through a stenosed microvessel. There are few 

studies that focus on the time variation of RBC shape and 

the flow resistance in stenosed microvessels that have diam-

eter less than 10 μm [10]. Pozrikidis [17] have used bound-

ary integral method to study motion and deformation of 

RBCs in the shear flow and the flow in the channel. Zhao et 

al. [18] have studied the time variations of RBCs defor-

mation and flow resistance in the stenosed microvessels 

having a diameter less than 10μm, using boundary integral 

method. Eggleton and Popel [19] combined immersed 

boundary method (IBM) with finite element method to sim-

ulate three-dimensional deformation of a RBC in a shear 

flow. Bagchi [1] has simulated a suspension containing mul-

tiple cells in the range of vessel size 20-30 μm and discharge 

hematocrit 10-60%, using IBM. Sun and Munn [20, 21] 

have studied RBC deformation in a 20-40μm channel using 

lattice Boltzmann method (LBM). They modeled the RBCs 

as two-dimensional solid particles. Li et al. [22] have used 

LBM for two-dimensional simulating of rigid particle sus-

pensions in a stenosed microvessel. IBM is one of the meth-

ods that have been used successfully in recent decades to 

simulate the dynamics of flexible bodies in the fluid flow. 

This method was introduced for the first time in 1972 by 

Peskin [23] to study the flow around heart valves and devel-

oped as an efficient method to solve problems involving 

fluid-solid interactions. It is a combination of both the math-

ematical formulation and numerical scheme [24-26]. In this 

research, moving and deformation of Red Blood Cell(RBC) 

in microchannel with stenosis curve is investigated by Lat-

tice Boltzmann method and immersed boundary. The results 

of this paper were compared to the available results and 

good agreements were observed. 

 

2. Governing equations 

 

The equations governing the combination of fluid 

and solid motions are as following: 
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The velocity of any point on the solid surface must 

be equal to that of the adjacent fluid particle, i.e., 
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In the above equations, ρ and η are the mass density 

and dynamic viscosity of the fluid, respectively. In addition, 

u  and ρ indicate the velocity and pressure fields, respec-

tively. The term ( , )f x t  on the right-side of Eq. (1) denotes 

the RBC(Red Blood Cell) forces (tensile and bending) due 

to the elastic boundary immersed in the fluid. 

Eq. (2) indicates that the force density of the fluid 

( , )f x t  is obtained from the force density of the RBC 

( , )F s t . Equation (3) represents the no-slip condition at the 
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fluid-solid interface, as the solid boundary moves with the 

same velocity as that of the surrounding fluid.  

Mathematically the Dirac delta function ( )x  is 

discontinuous and has to be smoothed for numerical imple-

mentation: 
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where: h is the distance between two Eulerian grid points 

and r denotes the distance between any two Eulerian and 

Lagrangian points. 

In the IBM, to calculate the momentum exchange, 

the following collision function is used: 
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where: ( , )
i

f x t  is the density distribution function of parti-

cles with the velocity 
i

e  located at position x  at time t. t  

is time step, ( , )
eq

i
f x t  is the equilibrium distribution func-

tion, τ indicates the dimensionless relaxation time and i
k  

denotes the body force associated with the immersed body. 

In the present research, the LBM with two-dimensional 

model of D2Q9 has been used.  

The particle velocity in the corresponding nine di-

rections can be written as follows: 
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where: / .c x t    Here, x is the distance between two 

successive nodes in the Euler grid. In the present research it 

is assumed that 1x t    . The equilibrium density distri-

bution function is written as follow: 
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The fluid pressure ρ is calculated via an isothermal 

equation of state  2

S
p C , where 

3
/ 3C c  is the 

speed of sound and ρ is density. In addition, wi are weight 

coefficients with the following values: 
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The elastic force in the lattice Boltzmann equation 

ki is defined as: 
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In addition, the density and microscopic fluid ve-

locity are calculated from the following relations, 
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The Lagrangian force density F comprises two 

parts of tension-compression 
S

F  and bending 
b

F  forces, 

i.e.[27]: 
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This force is related to the elastic potential energy 

density 𝜔 as follows (thanks to the virtual work theorem) : 
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Here: S
E  and b

E  are elastic modulus (ten-

sion/compression constant) and bending modulus, respec-

tively. 

The discretized form of Lagrangian force density 

�⃗�, and elastic potential energy density will become: 
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In Eqs. (16–17) k=1, 2,…, N. (N is the total number 

of Lagrangian nodes on the RBC),  S
k

F and  b
k

F are elas-

tic Lagrangian forces associated with the node k on the RBC 

and 
,j k

  is the Kronecker delta function. 

When the Lagrangian forces on the RBC are calcu-

lated, all the translational and rotational speeds are updated 

explicitly. It should be noted that the solid RBC moves con-

tinuously based on Newtonian dynamics and finally the new 

position of the membrane is obtained. 

In the present work, the blood is considered as 

Newtonian fluids. The Newtonian nature of these fluids has 

been well estimated [28]. The non-Newtonian behaviour of 

blood is mainly due to the deformation of RBCs [1]. The Re 

number and other dimensionless parameters are defined as 

follows: 
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Where x and y  denote respectively the dimension-

less vertical coordinate and horizontal coordinate. In addi-

tion, D and umax  are the height of microchannel and the max-

imum velocity of the Poiseuille flow, respectively. The pur-

pose of this study is to investigate the ability of the Lattice-

Boltzmann and the immersed boundary method to model the 

deformation of flexible membranes, red blood cells, and etc, 

inside the flow. 

Innovation of present work is investigating of the 

hardness of the red blood cell membrane on its deformation 

and the flow velocity of a microchannel with curved stenosis 

using the Lattice-Boltzmann and the immersed boundary 

method Also, in this work.  

3. Validation 

In order to compare the present results with other 

works, the results are presented in the forms of average drag 

coefficient, maximum lift coefficient and Struhall number 

for Re = 100 in Table 1. 

Table1  

The comparison of average drag coefficient,  

maximum lift coefficient and Struhall number for  

one cylinder for Re = 100 

 average 

drag coef-

ficient 

maximum lift 

coefficient 
Strouhal  

number 

present work 1.34 0.35 0.165 
Kang [29] 1.33 0.32 0.165 

Liu et al. [30] 1.37 0.33 0.165 

Considering the data in Table 1, one can see that 

the present results are in good agreement with the other re-

sults. In these references, the governing equations (Navier-

Stokes equation) are resolved with an unstructured Spectral 

Element Method. In the present work. The circular cylinder 

has been considered in the form of an immersed boundary 

with a large elastic property in the flow. The Bounce back 

boundary condition has been used in order to satisfy no-slip 

boundary condition on the cylinder surface. 

4.Results and discussion 

 

As can be seen from Fig. 1, a RBC at a specific 

distance from the entrance of microchannel is in the 

poiseuille flow, stenosis of microchannel in this problem has 

curved shape which help the problem to be real. In this re-

search, the effects of flexibility of cells is examined. First, 

deformation of healthy cells with a coefficient of tensile and 

bending 6×10-6 N/m and 2×10-19 N. m, respectively and then 

behaviour of sick RBC with a coefficient of tensile and 

bending6×10-2 N/m and 5×10-18 N. m, respectively. Healthy 

RBC has more flexibility, thereby it easily passed the steno-

sis which is important in some blood diseases. In Figs. 2 and 

3 since the velocity of blood flow is increased in the stenosis 

part, more deformations of the RBC would take place at this 

section and the Reynolds number is considered to be  

Re = 0.35. 

 

 
 

Fig. 1 Geometry and nomenclature of the microchannel 

with stenosis 

 

As can be seen(Fig.4), healthy RBC due to more 

flexibilty has more deformation and it stretch more in the 

longitudinal direction of microchannel and more shear force 

from the fluid exerted on the surface of the cell. Healthy 

RBC needs more time to return to its original shape and need 

less energy to pass the stenosis. However, when the sick 

RBC reaches the stenosis, slightly reduces the effective 

cross-sectional area of the flow behind it due to its high 

hardness. In fact, it blocks the flow path more than the nor-

mal RBC. This would cause a decrease in the flow velocity 

and hence an increase in the flow pressure behind the RBC. 

In Fig. 5, flow velocity profile at x=2.5 can be observed (d 

is height of stensios). In flow without RBC, velocity profile 

is parabolic. The more the flexibility of RBC reduced, the 

velocity profile will be more flat. The sick RBC has less in-

teraction with its surrounding fluid and the velocity of the 

plasma flow is low compared to the other cases [1]. This 

deceleration is with increase of pressure around the RBC. 

This pressure increase due to stiffness of RBC membrane 

can be seen in anemia and heart diseases. The translational 

speed of a RBC decreases as its elasticity modulus increases 

[31]. 
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a        b 

 

 

c        d 

 

 

e 

Fig. 2 Motion and deformation of a healthy (high deformable) RBC through a microchannel with stenosis, at the moment of 

time: a - 0.1 ms, b - 0.2 ms, c - 0.3 ms, d - 0.4 ms and e - 0.5 ms 

 

 

 

a        b 

 

 

c        d 

 

 

e 

Fig. 3 Motion and deformation of a sick (low deformable) RBC through a microchannel with stenosis, at the moment of 

time: a - 0.15 ms, b - 0.25 ms, c - 0.35 ms, d - 0.45 ms and e - 0.55 ms  
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a 

 

b 

Fig. 4 Variations of parameter characterizing the defor-

mation of a RBC. Parameter Lx –(a), variations of 

2
x

L R – (b) versus the microchannel length 

 

 
 

Fig. 5 x-component velocity profile 

5. Conclusions 

 

A hybrid LBM-IBM is used to simulate the hydro-

dynamic interaction of RBCs  having different elastic mod-

uli in a stenosed microchannel. The RBCs are considered as 

elastic boundaries immersed in the fluid flow and are repre-

sented in Lagrangian coordinates. The coupling method be-

tween the fluid and solid membranes is based on the IBM, 

which uses a uniform and fixed Eulerian mesh and removes 

the burden of expensive mesh updating in the traditional Ar-

bitrary Lagrangian Eulerian approach. The results were 

found to be in good agreement with available data. It was 

shown that healthy RBC moves faster than the sick one. Ve-

locity decrease due to existance of RBC with low flexibility 

results in increase of pressure around the RBC. This pres-

sure increase due to stiffness of RBC membrane can be seen 

in anemia and heart diseases. 

In many pathological conditions such as heart dis-

ease, blood pressure, anemia, malaria and ... flexibility of 

red blood cells reduced. Changes in the mechanical proper-

ties of red blood cells with disorders happened in the mi-

croscale system, such as capillaries and small veins, and se-

quently, it disorders the functioning of vital organs such as 

the brain and the kidneys. The determination of hemody-

namic changes is a major step in the development of new 

methods for the diagnosis and treatment of these diseases. 

Understanding the biological system and examining various 

parameters affecting the flow of fluid caused by the im-

mersed object can lead to the design of medical devices. 
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R. Esmaily, N. Pourmahmoud, I. Mirzaee 

 

AN IMMERSED BOUNDARY METHOD FOR 

COMPUTATIONAL SIMULATION OF RED BLOOD 

CELL IN POISEUILLE FLOW 

S u m m a r y 

In this paper, the effects of RBC hardness in a vis-

cous incompressible flow is investigated. The effects of 

hardness changes on the membrane behavior and its around 

flow is studied. In the Immersed Boundary method the elas-

tic membrane is modeled in Lagrangian coordinate but the 

flow field is discretized using a uniform and fixed Eulerian 

grid. When RBCs have less elastic properties; they pass the 

obstacle hardly and increase the pressure of around flow. 

Velocity decrease due to existance of RBC with low flexi-

bility results in increase of pressure around the RBC. This 

pressure increase due to stiffness of RBC membrane can be 

seen in anemia and heart diseases. The translational speed 

of a RBC decreases as its elasticity modulus increases The 

comparison between the present results and other available 

results show that the Lattice Boltzmann and Immersed 

Boundary methods have good capability for modeling of 

immersed objects motions. 

Keywords: red blood cell, Poiseuille flow, immersed 

boundary method, lattice Boltzmann method, elasticity 

modulus. 
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