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1. Introduction 

Rubber-like materials have been applied in a wide 

variety of different industrial areas, such as seals, vehicles 

tire, hydraulic hoses, shock and vibration absorbers and so 

on [1-2], which can undergo large deformation and exhibit 

large nonlinear elastic behaviour. The dominating mechan-

ical behaviour of rubber like materials is its extreme de-

formation and almost full recovery in unloading. Being 

subjected to large deformations, rubber like materials 

demonstrates nonlinear features inherently. Therefore, the 

selection of strain-energy density function is a vital for 

theoretical research. Many attempts have been made to 

develop a theoretical stress–strain relation. Mooney [3] 

proposed a phenomenological model with two parameters 

based on the assumption of a linear relation between the 

stress and strain during simple shear deformation. In 1948, 

Rivlin put forward the strain energy function model to the 

isotropic hyperelastic materials [4]. Later, Treloar [5] pub-

lished a model based on the statistical theory, the so-called 

neo-Hookean material model with only one material pa-

rameter. Mooney and neo-Hookean strain energy function 

have played an important role in the development of the 

nonlinear hyperelastic theory and its applications. In 1972, 

Ogden [6-7] proposed a strain energy function expressed in 

terms of principal stretches, which is probably the best-

known example for the principal stretch-based constitutive 

formulations consistent with the Valanis–Landel hypothe-

sis. 

In 1996 Alan Gent [8] proposed a new strain en-

ergy function for the non-linear elastic behaviour of rubber 

like materials. Because of its formal simplicity, this model 

has been widely applied large elastic deformations of sol-

ids [9-10]. The Gent model belongs to the class of the gen-

eralized neo-Hookean materials. 

In 1997, according to the tensile and compression 

properties of rubber like materials, Gao proposed the fol-

lowing strain energy function [11]. 
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The calculation indicates that the greater the tensile strain, 

the larger the 1
I ; the greater the compressive strain, the 

larger the 1
I . The two complement each other, which can 

describe the finite deformation features of the materials. 

From Eq. (2), we can see that strain energy func-

tion can’t meet the conditions of strain energy function 

0W apparently when 321  II and 1
3
I . In other 

words, it should meet there is no strain energy function at 

initial spontaneous configuration. For the incompressible 

material, when 1n , the expression Eq. (2) can’t be sim-

plified to Neo-Hookean material, nor to Mooney-Rivlin 

material. 

Based on Gao’s constitutive model, A modified 

strain energy function for the incompressible rubber like 

materials has been proposed by Sang [12] as: 
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where:  ( 10   ) is the material parameter reflecting 

2
I ’s influence on stress distribution. From the new consti-

tutive model Eq. (2), it can be seen that when 

1n and 0 , the modified strain energy function can be 

transformed to Neo-Hookean model; when 1n , it can be 

transformed to Mooney-Rivlin model. Based on strain en-

ergy function Eq. (2), the expression of Cuachy stress ten-

sor can be achieved as follow: 
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where: I is unit tensor. p is the undetermined scalar func-

tion that justifies the incompressible internal constraint 

conditions.  

2. Analysis of uniaxial tension of rubber like materials 

For uniaxial tension of rubber like materials, we 

take 32
  . For incompressibility, the following expres-

sion can be achieved as: 
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Based on the modified strain energy function, the 

tension Cauchy stress can be expressed as: 
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Based on Eq. (5), the relations between Cauchy 

stress and principal stretch have been plotted with different 

material parameters. When the parameter  is given 

( 0.1)  , as illustrated in Fig. 1. As the constitutive pa-

rameter n increases, the Cauchy stress becomes much 

greater and it has the reinforcement feature apparently. The 

stress-strain curve becomes sharp lifting in large defor-

mation when 61.n  . As is shown in Fig. 2, for the given 

21.n  , the larger the α is, the greater the stress is, howev-

er, its influence is smaller than that of reinforcement pa-

rameter n. 

 

Fig. 1 Theoretical Solution of Cauchy stress versus princi-

pal stretch for different material parameter n  (uni-

axial tension) 

 

Fig. 2 Theoretical Solution of Cauchy stress versus princi-

pal stretch for different material parameter   (uni-

axial tension) 

According to the standard uniaxial specimen of 

rubber like materials, the narrow part of the standard spec-

imen thickness is 2.0 mm ± 0.2 mm, and the length of it is 

25.0 mm±0.5 mm. Based on the finite element software 

ABAQUS, three-dimensional finite element model of rub-

ber specimen is set up.  In the model, there are 1872 ele-

ments and 3081.nodes. Due to the incompressibility of the 

rubber material, the entity hybridizational element C3D8H 

was used and it analyzed in ABAQUS/Standard. A fixed 

displacement is applied to the nodes belonging to the left 

widest part of the specimen and the summation of reactions 

along the axial direction at nodes on the right widest part 

of the specimen gives the entity of the load. In order to 

implement the modified strain energy function Eq. (2) into 

the finite element procedure ABAQUS，non-linear finite 

element analysis was performed by a user subroutine  

when defining the material properties of rubber like mate-

rials, which allows the users to define the derivatives of the 

strain energy functions with respect to either the strain in-

variants or the principal stretches.  

In order to compare the finite element results and 

theoretical results, the relation curves between Cauchy 

stress and principal stretch   have been also plotted with 

different material parameters as shown in Figs. 3 and 4. 

We can also see when the parameter  is given ( 0.1)  , 

as the constitutive parameter n increases, the Cauchy stress 

becomes greater. Therefore, n is considered as the materi-

al’s reinforcement parameter. As is shown in Fig. 4, for the 

given 21.n  , the larger the  is, the greater the stress is, 

however, its influence is smaller than that of reinforcement 

parameter n. We can see the finite element results is excel-

lent reasonable agreement with the theoretical results, 

which verify the theoretical analysis is reasonable. 

 

Fig. 3 Numerical Solution of Cauchy stress versus princi-

pal stretch for different material parameter n  (uni-

axial tension) 

 

Fig. 4 Numerical Solution of Cauchy stress versus princi-

pal stretch for different material parameter   (uni-

axial tension) 

3. Analysis of biaxial tension of rubber like materials 

For biaxial tension of rubber like materials, we 

take  
32 . For incompressibility, the following ex-

pression can be achieved as: 
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Based on the modified strain energy function, the 

tension Cauchy stress can be expressed as:   
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For biaxial tension, the relations between Cauchy 

stress and principal stretch have been plotted with different 

material parameters as shown in Figs. 5 and 6. From Fig. 5 

we can see the stiffness of rubber like materials increase as 

the increasing of material parameter n , which verify the 

material parameter n  can be considered as the material’s 

reinforcement parameter. As shown in Fig. 6, for the given 

0 , the second principal strain invariant has no effect 

on the rubber like materials. The mechanical property of 

rubber like materials has been changed apparently as in-

creasing of material parameter   which is not same as 

uniaxial tension. 

 

Fig. 5 Theoretical Solution of Cauchy stress versus princi-

pal stretch for different material parameter n  (bi-

axial tension) 

 

Fig. 6 Theoretical Solution of Cauchy stress versus princi-

pal stretch for different material parameter   (bi-

axial tension) 

In order to in comparison with the theoretical re-

sults, the finite element analysis of biaxial rubber specimen 

has been proposed. The finite element model length is 

100 mm, and there are 5000 elements and 7803 nodes. Due 

to the incompressibility of the rubber material, the entity 

hybridization element C3D8H was also used and analyzed 

in ABAQUS / Standard. The rubber specimen was fixed at 

the left side and top side. On the right side and down side 

of the specimen gives the entity of the load. Non-linear 

finite element analysis was also performed by utilizing the 

user subroutine.  

In order to compare the finite element results and 

theoretical results, the relation curves between Cauchy 

stress and principal stretch   have been also plotted with 

different material parameters as shown in Figs. 7 and 8. 

We can also see when the parameter is given ( 10. ), 

as the constitutive parameter n increases, the Cauchy stress 

becomes greater. Therefore, n  is considered as the mate-

rial’s reinforcement parameter. For the given 21.n  , the 

larger the is, the greater the stress is, however, its influ-

ence on the mechanical property of rubber like materials is 

apparently, which is not same as uniaxial tension. We can 

also see the finite element results are excellent reasonable 

agreement with the theoretical results, which verify the 

theoretical analysis is reasonable. 

 

Fig. 7 Numerical Solution of Cauchy stress versus princi-

pal stretch for different material parameter n  (bi-

axial tension) 

 

Fig. 8 Numerical Solution of Cauchy stress versus princi-

pal stretch for different material parameter   (bi-

axial tension) 

4. Analysis of cylindrical rubber membrane under  

internal pressure 

For cylindrical rubber membrane under uniform 

pressure, if  Z,,R   and  z,,r  are the coordinate of 

rubber membrane before deformation and after defor-

mation respectively, then the deformation pattern of the 

rubber tube can be expressed as: 
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Define r


`  and z
 are the principal stretch of 

radial direction, circumferential direction and axial direc-

tion of cylindrical membrane，which can be expressed as: 
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The Cuachy-Green deformation tensor B can be 

expressed as follows: 

 

 

    

 
22

T 2 2

2 2

0 0 0 0

0 0 0 0 .

0 0 0 0

r z

z z

B F F


 

 

 

  
  

     
  

   

      (10) 

 

Substitute Eq. (10) into Eq. (3) and utilize the modified strain energy function Eq. (2), the Cauchy stress can be 

shown as:  
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Based on the hypothesis of membrane 0
rr

 , we 

can get:  
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 The Eq. (11) can be transformed as: 
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If R and r are the radius of cylindrical polymer 

membrane according to before deformation and after de-

formation. And H and h is the thickness of cylindrical rub-

ber membrane according to before deformation and after 

deformation. We can get: 
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Substitute the first equation Eq. (9) into Eq. (14), 

we can get. .Hh
z

1
  

Based on the longitudinal balance and circumfer-

ential balance of cylindrical rubber membrane, the follow-

ing expression can be achieved as: 
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By utilizing the Eq. (15) and Eq. (13), we can get: 
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When constitutive parameter 0 , from Eq. 

(16), we can get: 
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Substitute Eq. (17) into the first Eq. (18) and non-

dimensional pressure is introduced we can get: 
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Fig. 9 The relation between
Z

#
p  ( 0 ) 

 

Fig. 10 The relation between 
#

p  ( 0 ) 

In order to have a research on the cylindrical rub-

ber membrane under internal pressure by the constitutive 

parameter n , the following circumstances is considered. 

When   is fixed, the distribution between internal pres-

sure and circumferential principal stretch with the change 

of n has been researched and the distribution between in-

ternal pressure and longitudinal principal stretch with the 

change of n  has also been researched. As shown in Fig. 9 

and Fig. 10, for fixed material parameters 0 , as the 

material parameter n  increases, circumferential and longi-

tudinal principal stretch increases in accordance with inter-

nal pressure. The effect of constitutive parameter n  has a 

major impact on the mechanical properties of the cylindri-

cal rubber membrane. When the material parameter n  

takes higher value, the range of circumferential and longi-

tudinal principal stretch is larger, which means the cylin-

drical rubber membrane has strong inflation capability and 

well elasticity. On the other hand, when the material pa-

rameter n takes lesser value, the range of circumferential 

and longitudinal principal stretch is smaller, which means 

rubber the inflation capability tube is weak. Especially 

instability of cylindrical rubber membrane will be occur-

ring as the circumferential or longitudinal principal stretch 

increases, which means the stability analysis is necessary. 

5. Conclusion 

Based on the finite deformation theory, analysis 

of uniaxial tension and biaxial tension of rubber like mate-

rials has been proposed based on the constitutive model 

from Gao. In order to verify the correctness of theoretical 

results, the proposed strain energy function implemented in 

general-purpose FEA software. And then the nonlinear 

finite element procedure is presented for the analysis of 

rubber-like materials. From that we can get when the pa-

rameter is given ( 0.1)  , as the constitutive parame-

ter n increases, the Cauchy stress becomes greater. There-

fore, n  is considered as the material’s reinforcement pa-

rameter. For the given 21.n  , the larger the  is, the 

greater the stress is, however, its influence is smaller than 

that of reinforcement parameter n  for uniaxial tension 

and is apparently for biaxial tension, which mean the theo-

retical analysis is reasonable. Analysis of cylindrical rub-

ber membrane has been proposed based on the proposed 

strain energy function. The results show that the constitu-

tive parameter n  has a strengthening effect on the rubber 

membrane material and instability of cylindrical rubber 

membrane will be occur as the circumferential or longitu-

dinal principal stretch increases. 
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MECHANICAL PROPERTY ANALYSIS OF RUBBER-

LIKE MATERIALS UNDER LARGE DEFORMATION 

IN UNIAXIAL TENSION, BIAXIAL TENSION AND 

EXPANSION OF CYLINDRICAL MEMBRANE 

S u m m a r y 

By utilizing the modified strain energy function 

from Gao, uniaxial tension and biaxial tension of rubber 

like materials has been researched. For verification pur-

poses, the proposed constitutive model from Gao has been 

implemented in a general-purpose FEA software. And then 

the nonlinear finite element procedure is presented for the 

analysis of rubber-like materials. The volumetric incom-

pressibility condition of the deformation from rubber like 

materials is included in the formulation by using the penal-

ty method. By utilizing the FEA software ABAQUS, uni-

axial tension and biaxial tension model from rubber like 

materials have been established. In order to compare the 

FEA results with theoretical results, curve stress-principal 

stretch has been plotted with different material parameters, 

which indicate the correctness and rationality of theoretical 

analysis. In the end, analysis of cylindrical rubber mem-

brane has been proposed based on the proposed strain en-

ergy function. The results show that the constitutive pa-

rameter n has a strengthening effect on the rubber mem-

brane material and instability of cylindrical rubber mem-

brane will be occur as the circumferential or longitudinal 

principal stretch increases. This research has revealed the 

deformational mechanism and provided reasonable refer-

ence for the design of rubber like materials. 

Key words: rubber like materials, uniaxial tension, biaxial 

tension, cylindrical membrane. 
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