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1. Introduction 

 

Piezoelectrics are new groups of material which 

can be used as a sensor or actuator in electromechanical 

systems. These materials can exchange the mechanical 

deformations into electric potential. Conversely, the elec-

tric potential can be exchanged to the mechanical defor-

mation. The piezoelectric sensors or actuators may be de-

signed as many structural elements such as beam, plate or 

cylindrical shell. The piezoelectric analysis of a functional-

ly graded piezoelectric (FGP) cylindrical pressure vessel is 

studied in the present paper. A brief review of functionally 

graded material (FGM) and functionally graded piezoelec-

tric material (FGPM) are performed in introduction. 

One of the most applicable structures in the me-

chanical engineering is the shells. In this study, the cylin-

drical shell structure is considered. Lame [1] studied the 

exact solution of a thick walled cylinder under inner and 

outer pressures. It was supposed the cylinder to be ax-

isymmetric and isotropic. Piezoelectric property has been 

discovered by Pierre and Jacques Curie in Paris (1888). 

Shear deformation theory has been proposed by Naghdi 

and Cooper [2]. The application of first order shear defor-

mation theory for an isotropic cylinder has been proposed 

by Mirsky and Hermann [3]. In the 1980's one Japanese 

group of material scientists created new class of materials. 

Properties of this material are varying continuously and 

gradually in terms of coordinate system components. 

The researches on the thermal and vibration ana-

lysis of functionally graded materials have been started in 

the first years of decade 1990 [4]. Displacement and stress 

analysis of a functionally graded cylinder under the ther-

mal and mechanical loads is performed analytically by 

Jabbari et al [5]. It was supposed the material properties 

are varying as a power function in terms of radial coordi-

nate system. Chen et al [6] investigated the mechanical and 

electrical analyses of a spherical shell. Liu et al [7] pro-

posed an analytical model for free vibration analysis of a 

cylindrical shell under mechanical and electrical loads. 

Mindlin’s theory is investigated for this analysis and a si-

nusoidal function is used for simulation of the electric po-

tential distribution. Wu, Jiang and Liu [8] investigated the 

elastic stability of a FG cylinder. They employed the shell 

Donnell's theory to derive the strain-deformation relations. 

Exact solution of a FGP clamped beam is investigated by 

Shi and Chen [9]. Peng-Fei and Andrew [10] studied the 

piezoelectric analysis of a cylindrical shell. Lu et al [11] 

studied the exact solution of a FGP cylinder under bend-

ing. Dai et al [12] analyzed the electromagnetoelastic be-

havior of FGP cylindrical and spherical pressure vessels. 

Babaei and Chen [13] presented exact solution of an infi-

nitely long magneto elastic hollow cylinder and solid rotat-

ing cylinder that is polarized and magnetized radially. 

They supposed the cylinder to be orthotropic and investi-

gated the effect of angular velocity on the hoop and radial 

stresses. Jabbari et al [14] investigated the thermoelastic 

behavior of a FG cylinder under the thermal and mechani-

cal loads. Khoshgoftar et al [15] investigated the thermoe-

lastic analysis of a FGP cylindrical pressure vessel. They 

supposed that all mechanical and electrical properties are 

varying as a power function. This mentioned work was the 

last comprehensive thermoelastic analysis of a FGP cylin-

drical shell using the plane elasticity theory. The present 

paper develops the previous paper significantly using the 

shear deformation theory and proposes an analytical for-

mulation for a comprehensive analysis of a FGP cylinder. 

The proposed formulation is validated at the regions that 

are adequate far from two ends of the cylinder with the 

previous plane elasticity theory. Thermo-elastic analysis of 

a functionally graded cylinder is investigated analytically 

by Arefi and Rahimi [16]. They used the first order shear 

deformation theory (FSDT) for thermoelastic analysis of a 

FG structure. The achieved results are compared with those 

results that have been derived using the plane elasticity 

theory. Thermoelastic vibration and buckling characteris-

tics of a functionally graded piezoelectric cylindrical shell 

is investigated analytically by Sheng and Wang [17, 18]. 

First order shear deformation theory is investigated for 

simulation of the deformations in structure. Electric poten-

tial is considered as a quadratic function along the thick-

ness. The Hamilton’s principle and Maxwell’s equation are 

considered for solution of the problem. The critical values 

of axial load, temperature and voltage are investigated for 

different boundary conditions. Analytical solution for elec-

tromagneto thermoelastic behaviors of a functionally gra-

ded piezoelectric hollow cylinder under a uniform magnet-

ic field and subjected to thermoelectromechanical loads is 

investigated by Dai et al [19]. They presented advanta-

geous of material non homogeneity for design optimization 

of electro mechanical structures and systems. 

As mentioned in the literature, there is not report-

ed a comprehensive analysis about electroelastic analysis 

of a FGP structure by considering the whole nonzero pie-

zoelectric coefficient and in the general state (last study 

devoted to Dai et al [19] that the cylinder is analyzed using 

one dimensional method. The proposed method in that 

paper has not ability to consider other components of strain 

and piezoelectric coefficients). Therefore, the present pa-

per employs the comprehensive electroelastic formulation 

for the analysis of a FGP cylinder under inner pressure as 
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an applied problem. The whole elastic, piezoelectric and 

dielectric coefficients in constitutive and Maxwell’s equa-

tions are considered to be nonzero. This subject has been 

disregarded in the previous papers [15, 19]. Although the 

mentioned problem at the end of the paper can be consid-

ered as a plane strain problem, the present method of solu-

tion has enough capability to solve the problem in the gen-

eral state with considering the whole piezoelectric coeffi-

cients. This advantageous condition can not be understood 

in the plane strain method. 

 

2. Formulation 

 

In the present paper, the FSDT is employed to 

simulate the deformations. Based on this theory, defor-

mation of every layer of the cylinder is decomposed into 

deformation of the middle surface and rotation about out-

ward axis of the middle surface [3]. In order to better un-

derstand this theory, it is necessary to expand Lame's solu-

tion for a cylindrical pressure vessel. Based on the Lame's 

theory, symmetrical distribution of the radial displacement 

u may be obtained as follows [16, 20-24] 

2
1

c
u c r

r
   (1) 

where r is the radius of every layer of the cylinder. In the 

general state, this distance can be obtained in terms of the 

radius of middle surface R and distance of every layer with 

respect to middle surface  . By substitution of r into 

Lame's solution (Eq. (1)) and applying the Taylor expan-

sion, Eq. (1) may be obtained as a function of  as follows 

[16] 
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This formulation (Eq. (2)) is known as the shear 

deformation theory (SDT). By setting m = 1, the first order 

shear deformation theory is employed for the analysis. 

Based on this theory, every deformation component can be 

stated by two variables including the rotation and dis-

placement. For a symmetric cylindrical shell, the radial and 

axial components of deformation may be considered as 

follows [16] 

z z ru u w      (3) 

where zu , rw  are the axial and radial components of de-

formation, respectively, , , ,z ru w   are only functions of 

the axial component of coordinate system (z). By consider-

ing Eq. (3), the strain components are 
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The previous papers did not consider the piezoe-

lectric structure in comprehensive condition and by con-

sidering the whole piezoelectric coefficients. The present 

paper improves the previous incompleteness and considers 

a FGP cylindrical shell in complete conditions. Therefore, 

stress-strain relations are [15] 
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where ,ijkl ijkC e are elastic stiffness and piezoelectric coeffi-

cients, kE is electric field component. Based on Eq. (5), the 

electric field has no effect on the shear stress. By having 

the components of the electric field, Eq. (5) can be com-

pleted. Electric field is equal to negative divergence of the 

electric potential. The electric field vector is in accordance 

with direction of decreasing of the electric potential. 


1

, , , ,r zE E E E
r r z
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  



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 (6) 

where   is the electric potential function. Due to the 

symmetric condition of the problem (symmetric loading, 

boundary conditions and material properties), Eq. (6) can 

be reduced using 
r 

 


 
 as follows 

, 0,r zE E E
z



 


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 
 (7)  

Based on the results of the previous papers 

[15, 17, 18] the electric potential function may be supposed 

as a quadratic function in the radial direction and an un-

known function in the longitudinal direction 

       2

0 1 2,z z z z         (8) 

By substitution of Eq. (8) into Eq. (7), the electric 

field (Eq. (6)) can be reduced to 
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 (9) 

The electric displacement may be obtained as a 

linear combination of the strain and electric field as fol-

lows [17, 18] 
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where ik are dielectric coefficient. By having the compo-

nents of the stresses, strains, electric field and electric dis-

placements (Eqs. (4), (5), (9) and (10)), the energy equa-

tion per unit volume may be obtained. Total energy in-

cludes the mechanical and electrical energy. Mechanical 

energy is equal to one half of multiplying the stress tensor 

in the corresponding strain tensor. Electrical energy is 

equal to one half of multiplying the electric displacement 

tensor in the corresponding electric field tensor. Therefore, 

energy per unit volume (u ) may be obtained as follows 
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The total energy must be evaluated by integration 

of Eq. (11) on the volume of the cylinder. The volume ele-

ment of the cylinder is  2 R z dzdx  . Therefore, the 

total energy of the system is 

2

0

2

1 0 1 2

0

2 ( )

( , , , , , , , )

h

L

h

L

z r

U R ud dz

F u w z dz

  

    



  



 



 

(12)

 

where  1 0 1 2, , , , , , ,z rF u w z      is the appropriate 

functional of the system which can be obtained as follows 
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0 1 2( , , , , , , , )z rF u w z      can be decomposed to 

three types of sentences as follows 

       0 1 2 Piezo, , , , , , , +z r S DieF u w z U z U z U z       (14) 

These sentences include strain energy  SU z , pi-

ezoelectric energy  PiezoU z and dielectric energy ( )DieU z . 

 

2.1. Calculation of the external works 

 

External works such as pressure [16] or rotational 

loads [25] can be considered in this section. Energy of in-

ternal pressure is equals to multiplying the pressure in the 

radial deformation of the inner surface of the cylinder. In-

ner pressure applies in the same direction of the defor-

mation. Eq. (15) indicates work is done by the internal 

pressure. Fig. 1 shows the schematic figure of the cylindri-

cal pressure vessel. 
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Fig. 1 Schematic figure of a FGP cylinder under internal 

pressure 

 

2.2. Variation of the energy equation 

 

Total energy of the system is obtained by subtrac-

tion of Eq. (15) from Eq. (14) as follows 
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Every terms of above functional  SU z , 

 PiezoU z ,  DieU z  are demonstrated as follows 
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Eq. (16) includes seven functions. By using Euler 

equation, variation of Eq. (16) can be expressed as follows 
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Using the Euler equation, final governing differ-

ential equation of the system in matrix form is 
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where matrices ,iG F are functions of , ,i i iA C D  that are 

demonstrated earlier in Eq. (17). The complete set of par-

tial differential equations for a functionally graded piezoe-

lectric shell of revolution with variable thickness and cur-

vature can be studied in future work of authors [26]. The 

functions of , ,i i iA C D are demonstrated as follows 
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Matrix F has two nonzero components as follows 
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3. Solution of the problem 

 

For analysis of the problem and comparing the re-

sults of the present method with plane elasticity theory 

(PET), the solution of the problem must be evaluated at the 

regions that are adequate far from two ends of the cylinder. 

This solution is evaluated using Eq. (19) as follows 

        3 0 1 2,        
T

x zG X F X u w       (20) 

The above formulation is used to evaluate the va-

lidity of the present method (first order shear deformation 

theory). 

The numerical value of the physical parameters is 

selected as follows [15] 
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 (21) 

The cylinder is made of functionally graded mate-

rial that is graded in the radial direction. Therefore the en-

tire properties must be represented as a power function in 

terms of the radial coordinate. 
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where ) , ) , )
i i iijkl r klm r kl rC e  are the values of the elastic, 

piezoelectric and dielectric coefficient, respectively, at 

inner radius of the cylinder. 

4. Results 

 

As mentioned earlier, this paper deals with the 

analysis of a FGP cylinder at regions that are adequate far 

from two ends of the cylinder. By setting 1 2 3n n n n   , 

Fig. 2 shows the radial distribution of the radial displace-

ment along the thickness for five values of nonhomoge-

nous index ( 0, 1, 2n    ). 

Fig. 3 shows the radial distribution of the electric 

potential along the thickness direction for five values of 

nonhomogenous index under 80 MPa internal pressure. 

The calculations indicate that the circumferential 

and axial stresses are two main components of the stress 

tensor. The circumferential stress is maximum component 

of stress tensor. The previous formulation has not ability to 

evaluate the axial stress [15]. Evaluation of the axial stress 

indicates that the value of the axial stress is significant and 

must be considered in design calculations. 

 

 

Fig. 2 Radial distribution of the radial displacement along 

the thickness 

 

Figs. 4 and 5 show the radial distribution of the 

circumferentialand axial stresses along the thickness direc-

tion for five values of nonhomogenous indexes 

( 0, 1, 2n    ). 

Fig. 4 indicates that the maximum hoop stress is lo-

cated at inner radius and the minimum of that at outer radi-

us. The decreasing of the stress from inner to outer radii is 

maximum for n = -2 and this value decreases with increas-

ing the values of nonhomogenous index. n = 2 presents a 

uniform distribution of stress along the thickness. Fig. 5 is 

similar to Fig. 4, behaviorally. 
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Fig. 3 Radial distribution of the electric potential along the 

thickness 

Figs. 4, 5 indicate that the inner pressure impress-

es significantly the values of stress at the inner radius ra-

ther than the outer radius that pressure is zero. In the other 

word, the value of stress at the inner radius extremely de-

pends on the value of non homogenous index, while the 

value of stress at the outer radius weakly depends on the 

value of nonhomogenous index. 
 

 

Fig. 4 Radial distribution of the circumferential stress 

along the thickness 
 

 

Fig. 5 Radial distribution of the axial stress along the 

thickness 
 

For validation, it is appropriate to compare these 

results with whose results that is obtained using the finite 

element method. Fig. 6 shows comparison between the 

obtained results using three methods (PET, FSDT and 

FEM). 

 
Fig. 6 Comparison between the obtained results with finite 

element method results 

The main objective of this paper is verification of 

the FSDT results for electro elastic analysis of a FGP cyl-

inder. Figs. 7, 8 show the radial distribution of the radial 

displacement and electric potential along the thickness 

direction for five values of nonhomogenous indexes 

( 0, 1, 2n    ) based on two theories FSDT and PET. 

Thick lines represent the value of components based on the 

plane elasticity theory (PET) and thin lines represent the 

value of component based on FSDT. The numerical differ-

ence between two theories is presented in Tables 1, 2 for 

radial displacement and electric potential, respectively. 
 

 

Fig. 7 Comparison between the radial displacement of a 

FGP cylinder under internal pressure 80 MPa based 

on two theories (FSDT and PET) 
 

 
Fig. 8 Comparison between the electric potential of a FGP 

cylinder under internal pressure 80 MPa based on 

two theories (FSDT and PET) 
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Minor difference between two theories arises 

from the first assumption of the problem. The radial dis-

placement based on the FSDT is considered as a linear 

function of thickness, while the plane elasticity theory 

solves the problem using the analytical method and calcu-

lation of characteristic equation [15]. In spite of plane elas-

ticity theory, the FSDT has an ability to solve the problem 

in the two dimensional coordinate systems with appropri-

ate boundary conditions. The plane elasticity theory can 

present two dimensional responses of a FG cylinder only 

with simply supported end conditions [14]. 

Fig. 9 shows the radial distribution of percentage 

of the difference between radial displacements using two 

theories. It is observed that the maximum difference is 

located  at the surface of applied pressure. This difference 

decreases uniformly from the inner radius to the middle of 

the cylinder, approximately. From the middle surface to 

the outer surface, the difference increases uniformly. 

 

 

Fig. 9 Percentage of difference between radial displace-

ment using PET and FSDT 

5. Discussion and conclusion 
 

Thermoelastic analysis of a FGP cylinder was in-

vestigated using the FSDT and energy method in this 

work. The main results that are concluded from the present 

paper are classified as follows. 

1. The distribution of the radial displacement in-

dicates that the maximum value of the radial displacement 

is located at the inner radius and the minimum value of the 

radial displacement is located at the outer radius. This re-

sult is accordance with the results of the literature [15]. 

2. The radial distribution of hoop and axial stress-

es indicates that the inner pressure impresses significantly 

the stress at inner radius. This distribution indicates that 

the value of stress at the inner surface of the cylinder de-

pends strongly on the values of nonhomogenous index. 

This phenomenon is not repeated at outer surface because 

of zero outer pressure. 

3. The comparison between the PET and FSDT 

indicates that the present results using FSDT have not sig-

nificant difference with the results using PET [15]. Espe-

cially the radial displacement is strongly in accordance 

with the results of the plane elasticity theory. This accord-

ance indicates that the first order shear deformation theory 

has sufficient capability to simulate the displacement with 

well precision. Therefore the first order shear deformation 

theory (FSDT) can be employed for the analysis of a func-

tionally graded piezoelectric structure as an excellent theo-

ry. 

4. Finite element modeling has been performed 

for simulation of the results that is obtained using the first 

order shear deformation and plane elasticity theories. The 

obtained results using FEM justified acceptability of the 

results using the FSDT and PET. 

5. The distribution of the axial stress indicates 

that this component of stress must be regarded in the de-

sign calculation. The value of the axial stress is significant 

in contrast with the order of the circumferential stress. 
 

Table 1 

Comparison between the radial displacements based on two theories 
 

r   Theories n = 0 n = 1 n = -1 n = 2 n = -2 

0.6 -0.2 
FSDT 0.00203 0.00157 0.00256 0.00119 0.00316 
PET 0.00223 0.00176 0.00276 0.00137 0.00336 

 
0.64 -0.16 

FSDT 0.00198 0.00153 0.00249 0.00116 0.00307 
PET 0.00213 0.00168 0.00264 0.00130 0.00322 

 
0.68 -0.12 

FSDT 0.00192 0.00149 0.00242 0.00113 0.00299 
PET 0.00204 0.00160 0.00254 0.00124 0.00310 

 
0.72 -0.08 

FSDT 0.00187 0.00145 0.00236 0.00110 0.00291 
PET 0.00196 0.00154 0.00245 0.00119 0.00300 

 
0.76 -0.04 

FSDT 0.00182 0.00141 0.00229 0.00107 0.00282 
PET 0.00190 0.00149 0.00237 0.00114 0.00290 

 
0.8 0 

FSDT 0.00177 0.00137 0.00222 0.00104 0.00274 

PET 0.00184 0.00144 0.00230 0.00110 0.00281 

 
0.84 0.04 

FSDT 0.00172 0.00133 0.00216 0.00101 0.00266 

PET 0.00179 0.00140 0.00223 0.00107 0.00274 

 
0.88 0.08 

FSDT 0.00166 0.00130 0.00209 0.00098 0.00257 

PET 0.00174 0.00136 0.00218 0.00104 0.00267 

 
0.92 0.12 

FSDT 0.00161 0.00126 0.00203 0.00096 0.00249 

PET 0.00170 0.00133 0.00213 0.00102 0.00261 

 
0.96 0.16 

FSDT 0.00156 0.00122 0.00196 0.00093 0.00240 

PET 0.00166 0.00130 0.00208 0.00100 0.00255 

 
1 0.2 

FSDT 0.00151 0.00118 0.00189 0.00090 0.00232 

PET 0.00163 0.00128 0.00204 0.00098 0.00250 
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Table 2 

Comparison between the electric potentials based on two theories 
 

r   Theories n = 0 n = 1 n = -1 n = 2 n = -2 

0.6 -0.2 
FSDT 0 0 0 0 0 

PET 0 0 0 0 0 

 
0.64 -0.16 

FSDT -5.7E+04 -4.4E+04 -7.2E+04 -3.3E+04 -9.0E+04 

PET -6.2E+04 -5.0E+04 -7.6E+04 -3.8E+04 -8.9E+04 

 
0.68 -0.12 

FSDT -1.0E+05 -7.8E+04 -1.3E+05 -5.9E+04 -1.6E+05 

PET -1.0E+05 -8.1E+04 -1.3E+05 -6.1E+04 -1.5E+05 

 
0.72 -0.08 

FSDT -1.3E+05 -1.0E+05 -1.7E+05 -7.7E+04 -2.1E+05 

PET -1.3E+05 -9.8E+04 -1.6E+05 -7.3E+04 -2.0E+05 

 
0.76 -0.04 

FSDT -1.5E+05 -1.2E+05 -1.9E+05 -8.8E+04 -2.4E+05 

PET -1.4E+05 -1.0E+05 -1.8E+05 -7.6E+04 -2.2E+05 

 
0.8 0 

FSDT -1.6E+05 -1.2E+05 -2.0E+05 -9.2E+04 -2.5E+05 

PET -1.4E+05 -1.0E+05 -1.8E+05 -7.2E+04 -2.2E+05 

 
0.84 0.04 

FSDT -1.5E+05 -1.2E+05 -1.9E+05 -8.8E+04 -2.4E+05 

PET -1.2E+05 -9.1E+04 -1.6E+05 -6.4E+04 -2.1E+05 

 
0.88 0.08 

FSDT -1.3E+05 -1.0E+05 -1.7E+05 -7.7E+04 -2.1E+05 

PET -1.0E+05 -7.5E+04 -1.4E+05 -5.2E+04 -1.8E+05 

 
0.92 0.12 

FSDT -1.0E+05 -7.8E+04 -1.3E+05 -5.9E+04 -1.6E+05 

PET -7.5E+04 -5.3E+04 -1.0E+05 -3.7E+04 -1.3E+05 

 
0.96 0.16 

FSDT -5.7E+04 -4.4E+04 -7.2E+04 -3.3E+04 -9.0E+04 

PET -4.0E+04 -2.8E+04 -5.5E+04 -1.9E+04 -7.4E+04 

 
1 0.2 

FSDT 0 0 0 0 0 

PET 0 0 0 0 0 
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HERMETIŠKŲ STORASIENIŲ FUNKCIŠKAI 

KOKYBIŠKŲ PJEZOELEKTRINIŲ CILINDRŲ 

ELEKTRIŠKAI TAMPRI ANALIZĖ REMIANTIS 

PIRMOS EILĖS ŠLYTIES DEFORMACIJOS TEORIJA 

IR ENERGETINIU METODU 

R e z i u m ė 

Šlyties deformacijos teorija yra panaudota funk-

ciškai kokybiško pjezoelektrinio cilindro, kaip vidinio slė-

gio nustatymo ir kontrolės fizikinio jutiklio, elektriškai 

tampriai analizei. Išskyrus Puasono koeficientą, visos me-

chaninės ir elektrinės charakteristikos yra išdėstytos poli-

nėje koordinačių sistemoje. Preliminarus tyrimas atliktas 

remiantis šlyties deformacijos teorija kaip patikimesne ir 

pranašesne už plokščiąją tamprumo teoriją. Dvi radialinės 

ir ašinės deformacijos yra modeliuojamos remiantis pirmos 

eilės šlyties deformacijos teorija. Elektrinis potencialas yra 

pavaizduotas kvadratine funkcija sienelės storio kryptimi ir 

nežinoma funkcija – išilgine kryptimi. Nuo vamzdžio galų 

tolimų zonų tyrimo rezultatų palyginimas su remiantis 

plokščiąja  tamprumo teorija gautais rezultatais patvirtina 

šio metodo tikslumą ir galimybes. Pateikti kai kurie nau-

dingi grafiniais ir skaitiniais būdais gauti rezultatai. Apra-

šyta problema gali būti naudinga atliekant mechaninių ir 

elektrinių komponentų iš funkciškai kokybiškos medžia-

gos, naudojamos vietoj izotropinės, matavimus ir kontrolę. 
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ELECTRO ELASTIC ANALYSIS OF A  

PRESSURIZED THICK-WALLED FUNCTIONALLY 

GRADED PIEZOELECTRIC CYLINDER USING THE 

FIRST ORDER SHEAR DEFORMATION  

THEORY AND ENERGY METHOD 

 

S u m m a r y 

 

Shear deformation theory is employed for electro 

elastic analysis of a functionally graded piezoelectric cyl-

inder as a physical sensor for estimation and controlling 

the internal pressure. Except Poisson ratio, all mechanical 

and electrical properties are graded along the radial coor-

dinate system. The present paper develops the previous 

study using the shear deformation theory as a capable and 

advantageous theory instead of plane elasticity theory. 

Two radial and axial deformations are simulated using the 

first order shear deformation theory. Electric potential is 

supposed as a quadratic function along the thickness direc-

tion and as an unknown function along the longitudinal 

direction. Comparison between the present results at the 

regions that are adequate far from two ends of the cylinder 

with the results of plane elasticity theory justifies accuracy 

and capability of the present method. Some useful graph-

ical and numerical results are presented in this study. The 

discussed problem in this paper has many advantageous 

properties and application in measurement and controlling 

of the mechanical and electrical components because of 

using the functionally graded materials instead of an iso-

tropic material. 

 

Keywords: electro elastic analysis, functionally graded 

piezoelectric cylinder, first order shear deformation theory, 

energy method. 
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