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1. Introduction 

 

Fast and competitive manufacturing of high quali-

ty products remains the greatest task in contemporary 

global production background. However, in order to pro-

duce competitive and nonexpensive products, knowing 

manufacturing technology, know-how applications and 

manufacturing strategy are the main milestones of produc-

tivity. The use of manufacturing productivity evaluating 

technique is one way of checking efficiency of technolo-

gies used by a company and evaluating general corporate 

efficiency. However the problem of rapid evaluation of 

manufacturing productivity of mechanical products, espe-

cially in early development stage, persists. For this pur-

pose, it is necessary to have a technique which allows 

evaluating manufacturing costs, value, and manufacturing 

productivity taking into account parameters of a product 

already in early stage of its development. Thus, the appli-

cation of artificial intelligence and, in particular, neural 

network and mathematical formalization must reduce 

manufacturing time, allow checking several alternatives, 

and design the best technology taking into account manu-

facturing costs. Neural network has been considered as a 

powerful tool for function approximation. One advantage 

of neural networks is that they are capable of learning by 

examples. This implies that they can be trained to perform 

tasks by presenting them with examples rather than speci-

fying the procedure [1, 2]. Ideally, an effective data analy-

sis technique, such as artificial neural networks, must assist 

in enabling the constraints to the development of cost 

models to be overcome and in addition be capable of meet-

ing the user needs in terms of the required characteristics 

of the cost model [3]. Many researches are focused on 

finding the best combination of different types of artificial 

neural network (ANN) architecture and traditional process 

control methods to meet different manufacturing objectives 

like process improvement or process optimization to en-

sure quality assurance [4-6]. A.Smith et al. analyze the 

advantages and shortcomings of neural networks. Their 

conclusions say that neural networks can suitably replace 

regression used for estimating the manufacturing cost [7]. 

In the field of sheet metal working small and medium sized 

enterprises (SME) are normally supplier companies. They 

have to submit valid offers for manufacturing jobs within a 

short time. Within the investigated range of work pieces 

manufacturing cost calculation accuracies between 5% and 

15% can be achieved [8]. The maximum deviation of cost 

estimate from the actual cost is about 13% which is still 

considered acceptable by the company, considering this is 

achieved in the early product design stage [1]. The effec-

tiveness of any artificial intelligence (AI)-based tool de-

pends on the task purpose. Factors such as model quality, 

model development, data characteristics should be used in 

their selection process. In general neural networks have 

high accuracy but need comprehensive training data [9]. In 

this paper the ANN tool has been developed and applied 

for productivity forecasting in order handled manufactur-

ing companies that are suppliers of original components 

and parts for the end product producers. It is based on 

forecasting created value and incurred cost for this value. 

The product design and its process as a main factor have 

been used for the developed ANN tool. 

 

2. Development of neural network-based  

manufacturing productivity forecasting model 

 

Manufacturing productivity may be defined as the 

ratio of value created vs costs consumed in order to create 

it [10-12]. Mathematically, productivity may be defined as 

a function of various parameters. Manufacturing producti-

vity is a very important indicator in mechanical engineer-

ing. In most cases, it depends on technology, product, and 

some other factors; and may be defined as follows 

)z,z,z,z,z,z,z(fPl 7654321  (1) 

where Pl is manufacturing productivity, z1 is type of manu-

facturing technology chosen, z2 is type of equipment, z3 is 

manufacturing costs, z4 is labor costs, z5 is construction of 

a product, z6 is production volume, and z7 is other factors. 

The main components of manufacturing productivity may 

be classified even more detailed taking into account pro-

duction volume, product type, and technologies used. In 

order to create manufacturing productivity forecasting 

model for mechanical products it is necessary to know 

what factors influence manufacturing productivity and in 

how. However, the evaluation of manufacturing productiv-

ity is not limited only by the estimation of it. One-time 

estimation of productivity shows nothing unless we do not 

have data for comparison. Therefore, in order to evaluate 

manufacturing productivity, it is necessary choosing the 

initial point from which the manufacturing productivity 

should be calculated; in addition, it is necessary knowing 

which production division shall be evaluated [11, 12]. 

Aiming to evaluate the change of manufacturing 

productivity, the indicator must be calculated in time peri-

ods t and t+1; aiming to design the best technology manu-

facturing productivity may be calculated for the same time 

period but for different manufacturing technologies. Manu-

facturing productivity in time period t may be defined as 

follows 
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Manufacturing productivity in time period t+1 

should be defined analogically 
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where Pt is manufacturing productivity in time period t, 

Pt+1 is manufacturing productivity in time period t+1, Ot is 

product value created in time period t, Ot+1 is product value 

created in time period t+1, and, seemingly, It and It+1 are 

manufacturing costs in time periods t and t+1 used to cre-

ate values Ot and Ot+1. 

Thus, aiming to get manufacturing productivity 

ratio, i.e. the value that enables setting conclusion on in-

crease or decrease of manufacturing productivity, it is nec-

essary to calculate efficiency ratio. 
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As mentioned before, absolute manufacturing 

productivity consists of the sum of various efficiency indi-

cators [12]. Thus, manufacturing productivity index is ex-

pressed as follows 
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Product value is one of the main and the most im-

portant factors of manufacturing productivity. Thus, aim-

ing to evaluate manufacturing productivity, it is necessary 

to know the value of the product developed. Product value 

depends on various factors, thus it can be defined as an 

abstract function. 

 , , , , ,n u p pO f M F Q I S D  (6) 

where O is product value, Mn  is market demand, Fu is 

functional parameters, Q is quality parameters, I is manu-

facturing costs, Sp is strength parameters, and Dp is product 

design. However, product value does not depend on tech-

nology or other factors related to production. The paper 

analyses the influence of functional factors of a product on 

manufacturing productivity considering that other factors 

are set to 1. The created technique of defining product  

value assumes that necessary quality parameters are always 

met. In order to forecast the value created as accurate as 

possible, taking into account specifics and manufacturing 

processes of sheet metal products is necessary. It is obvi-

ous that functional parameters of sheet metal products 

mostly depend on the construction of a product, the com-

plexity of its shape, and the number of design features. 

 , , ,u c l t sF f F p DF DF  (7) 

where Fc is the complexity of product shape, pl is product 

perimeter, DFt is the type of construction elements, DFs is 

the amount of construction elements. Since sheet metal 

product components may have various shapes, we classify 

them into three groups according to the complexity of con-

tour: complex, medium, and noncomplex. Thus, the prod-

uct value will be defined as follows 
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where O is the value created, OF is the value which de-

pends on the shape of a product, Op is the value which de-

pends on perimeter, ODfs is the value which depends on the 

amount of design features, ME is the value of materials, n is 

the amount of components in a product. 

An important point of manufacturing productivity 

estimation is estimating manufacturing costs with respect 

to product characteristics and performed technological 

process. To estimate the manufacturing costs an intelligent 

model based on neural networks has been developed. In 

enterprises the time-span and parameters of standard parts 

produced by separate equipment are stored in the data 

base. This information is used when making the structure 

of a neural network. The advantage of an intelligent model 

based on neural networks lies in the fact that a network of 

a properly selected structure can approximate any continu-

ous function. The basic tasks involved in developing cost 

estimation models are data identification, data collection 

and data analysis. A network input layer is formed of the 

following part parameters: thickness, the number of design 

features, material type, and perimeter of a contour being 

cut. Table 1 depicts the parameters and their value ranges 

for all simulations. The input parameters may be obtained 

either from 3D CAD systems or the special software; in 

this case a 3D CAD system was used. 

 

Table 1 

Design parameters for the input layer of the ANN tested 
 

Design parameter Parameter range 

Contour perimeter, mm 100-5000 

Part thickness, mm 1-20 

Material type Steel, stainless steel, aluminum 

Laser power, kW 2-3 

Number of design features 0-70 

 

The following significant step is selection of a 

neural network structure. In general the network size af-

fects network complexity, learning time, but most im-

portantly it affects quality of the network results. Many 

researchers agree that the quality of a solution found by a 

neural network depends strongly on the network size used 

[13, 14]. Currently, there is no analytical way of defining 

the network structure as a function of the complexity of the 

problem. The structure must be manually selected using a 

trial-and-error process [15]. In a lot of research papers 

there are emphasized that neural network structure must be 

as less as possible and related with data quantity and input 

– output neurons number. Theoretically, a neural network 

with one hidden layer containing sufficient neurons of that 

layer can approximate any continuous function. In practice, 

neural networks with one or two hidden layers are most 

frequently used. To solve the task a two layer neural net-

work is sufficient. The structure of the neural network con-

sists of one hidden layer of neurons, an input layer and an 
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output layer. In the hidden layer a hyperbolic tangent trans-

fer function and in the output layer a linear transfer func-

tion was used. Learning of neural networks is based on the 

error minimization methods. Here the sum square error 

(SSE) minimization method was used. SSE is obtained by 

summing the errors in all network derivatives for the whole 

data sample set. Selecting a neural network, the following 

parameters have been used: tested network with one hid-

den layer, the number of neurons in the hidden layer varied 

from 3 to 12 neurons. 

Fig. 1 indicates that the best neural network struc-

ture for laser cutting equipment is 10 neurons in the hidden 

layer. In this case neural network of a moderate structure 

and the lowest mean of SSE is obtained. The neural net-

work of a smaller structure is chosen because it preferably 

generalizes the data. 

 

 

Fig. 1 Identification of neurons quantity in hidden layer 

 

In order to find the best threshold values, 10 neu-

ral networks of the same structure are to be generated 

changing their threshold values. Fig. 2 shows that the best 

selected threshold values are in the 66th network. 

 

 

Fig. 2 Selection of the best neural network structure for 

laser cutting equipment 

 

Some comparison between real and simulated da-

ta was performed. Fig. 3 plots the comparison between 

simulated and real values of the testing set. The correlation 

coefficient R is equal to 0.99. 

 

 

Fig. 3 Comparison between test data and output data 

 

When CNC punching machine is used then part 

manufacturing time depends on another parameters, as 

perimeter, thickness, material, design features number and 

geometrical form (Table 2). For simplicity of definition the 

mentioned parameters to manufacturing time, the design 

features number and geometrical form have been approxi-

mated by part contour perimeter. 

 

Table 2 

Design parameters for the input layer of the ANN tested 
 

Design parameter Parameter range 

Contour perimeter, mm 100-5000 

Part thickness, mm 1-4 

Material type Steel, stainless steel, aluminum 

 

On the net output the forecasted part manufactur-

ing time is defined. The two layers NN has been applied in 

this case. Fig. 4 illustrates that the best neural network for 

AMADA CNC punching equipment is with 5 neurons in 

the hidden layer. 

 

 

Fig 4 Identification of neurons quantity in hidden layer 
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3. Experimental investigations of neural network-based 

manufacturing costs forecasting model 

 

Next stage of the investigations represented test-

ing of neural network-based manufacturing costs forecast-

ing module. The module was tested in a few industrial 

companies of Lithuania using laser cutting and CNC 

punching technologies. In contrary to previously described 

testing of the parameter-based module [16], experimental 

components were taken from outside the company. This 

was decided aiming to broaden the variety of components 

tested and disassociating the research from traditional 

components processed by the companies. Thus, fifteen 

components of different geometric shapes, perimeters, and 

purposes were chosen. Fig. 5 illustrates the distribution of 

manufacturing costs using the forecasting module and the 

actual ones. It is important to mention, that this was the 

case of testing manufacturing costs forecasting module 

oriented to laser cutting operations. 

 

 

Fig. 5 Testing of neural network-based manufacturing cost 

forecasting module 

 

Components sketched on Fig. 5 were drawn in as-

cending order by perimeter. Thus, it is obvious that pe-

rimeter is not always the critical factor of the manufactur-

ing time. The deviation between total forecasted manufac-

turing time of the components tested and the actual ones 

does not exceed 10. However a few components cross the 

limit of 10. The analysis shows that the size of the devia-

tion is affected neither by perimeter nor by the amount of 

design features, nor by the weight of the component. Com-

ponent No. 11 encompasses 70 design features the devia-

tion of 3 only. Component No. 6 encompasses 36 design 

features the deviation of 5. Thus, it is possible to con-

clude that the manufacturing costs forecasting module rap-

idly adapts to changing environment in case of changing 

amount of design features. In addition, the analysis showed 

that the main factor for the deviation of the forecasted 

manufacturing time is complexity of a component. 

In parallel, manufacturing costs forecasting mod-

ule oriented to 3 kW Bystronic laser cutting device was 

tested. In this case, we have chosen completely different 

production company, but used the same 15 components. 

The results obtained are delivered in Fig. 6. 

As we can see from Fig. 6, the accuracy of the 

module changes when perimeters of the components are 

larger. This may be explained by the fact that the data grip 

used when the structure of neural network was being 

 

Fig. 6 Testing neural network-based manufacturing costs 

forecasting module 

 

formed and trained did not involve a lot of data with larger 

perimeter than 4000 mm. Thus in order to use the grid of 

the structure created for forecasting manufacturing costs of 

the components with larger perimeters it will be necessary 

to retrain it using new data grip. In addition, it is important 

to mention, that this module does not take into account the 

complexity of geometric shape of a component. General 

deviation between the forecasted manufacturing time of the 

components tested the actual one, using this model, is 

13.7, but, as Fig. 6 shows, the forecasted manufacturing 

time of component No. 11 is slightly greater that the actual 

one. It is obvious that the module lacks of testing results 

with the perimeters above 4000 mm. Thus, in order to im-

prove forecasting of the components manufacturing time 

with the perimeters smaller than 3000 mm, we can apply 

the correction coefficient. In order to reduce the deviation 

in components with the perimeters that exceed 4000 mm, 

new testing results shall be added. The next step of the 

experimental research was checking the accuracy of the 

neural network-based manufacturing costs forecasting 

module oriented to punching operations. The experiment 

involves 13 components since maximum punching thick-

ness in the company where the research took place is 

3 mm. Fig. 7 delivers the distribution of the forecasted and 

the actual manufacturing times. 

 

 
Fig. 7 Testing neural network-based manufacturing costs 

forecasting module on punching device 

 

In this case, the deviation between the forecasted 

and the actual manufacturing times is 14. This may be 

explained by the facts that the experiment was made using 

completely different components than those involved in 

creating manufacturing costs forecasting module. The main 

problem is such that punching technologies may employ a 
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lot of tools. The right choice of tools may significantly 

decrease manufacturing costs, and the wrong choice, on 

the contrary, may significantly increase manufacturing 

time. Special attention shall be paid to three experimental 

components, namely to their geometric shapes. The manu-

facturing of components No. 5, 9, and 10 was not possible 

to finish due to the complexity of their construction ele-

ments. Thus actual manufacturing time of such compo-

nents should be a bit larger than indicated on Fig. 7, and 

conditions less deviation. 

 

4. Evaluating manufacturing productivity of experi-

mental products 

 

The objective of the paper was to create the intel-

ligent manufacturing productivity forecasting model for 

sheet metal products. This section presents the results ob-

tained by the created model of manufacturing productivity 

forecasting. The results were obtained using manufacturing 

productivity evaluating technique for sheet metal products 

by Eq. (2), where the value is estimated by Eq. (8). Fig. 8 

shows the forecasted productivity. In this case, 3 kW By-

stron laser cutting machine was chosen as the initial point. 

 

 

Fig. 8 The efficiency of various manufacturing technologies 

 

Fig. 8 shows, that the manufacturing productivity 

of 2 kW laser device is lower than that of 3 kW laser de-

vice for most of the components. It would not be forgotten 

that power is not the only characteristic of the device, 

thickness of the material used and linear and curve driving 

speeds count too. In most cases, things like that may be 

known by experienced experts only, thus the model created 

will allow evaluating the potential of manufacturing tech-

nologies more rapidly. The biggest manufacturing produc-

tivity is gained in punching technology with a few excep-

tions in some components with more complex geometric 

shapes (in these cases it was smaller or equal to one). 

Manufacturing productivity of components No. 4 and 11 is 

shown as zero as it was not possible to manufacture these 

components with the punching equipment used for the ex-

periment. 

 

4. Discussion and conclusions 

 

The research in this paper presents an intelligent 

productivity forecasting model in manufacturing industry. 

The main factors of manufacturing productivity have been 

identified applying experimental investigations, as a creat-

ed value, functionality, quality, and the reliability of the 

product and manufacturing costs accumulated in manufac-

turing processes of the product. The manufacturing cost 

has been forecasted at the early stage of product develop-

ment taking into account the main properties, e.g. its value 

and quality. The created technique of forecasting value and 

manufacturing costs of mechanical components allows 

evaluation of manufacturing productivity and making cor-

rections by changing functionality, characteristics, and 

technology of a product in early stage of its development. 

Briefly it is concluded. 

1. The artificial neural network-based manufac-

turing costs forecasting module enables definition of man-

ufacturing costs up to 2 times faster that the parameter-

based module. Results are delivered with the deviation of 

2-10 in case of laser cutting using 2 kW device, 3-13 in 

case of 3 kW laser cutting device, and 5-14 percent in case 

of punching device. 

2. The proposed technique for created value defi-

nition of product components and parts allows to estimate 

conditional value by their number and form of design fea-

tures. 

3. The developed intelligent productivity forecast-

ing model defined productivity index can help make cor-

rections of new product and process design at the early 

stage. 
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M. Rimašauskas, A. Bargelis 

 

INTELEKTINIO GAMYBOS NAŠUMO 

PROGNOZAVIMO MODELIO SUKŪRIMAS 

 

R e z i u m ė 

 

Šiame straipsnyje tiriamas sukurtas intelektinis 

gamybos našumo prognozavimo modelis. Šis modelis su-

kurtas naudojant dirbtinio intelekto neuroninius tinklus 

(ANN). Gamybos našumas skaičiuojamas kaip sukurtos 

vertės ir patirtų gamybos sąnaudų jai gauti tarpusavio san-

tykis. Straipsnyje sukurta metodika vertei nustatyti gami-

nant detales ir komponentus gamybos organizacijose, dir-

bančiose pagal užsakymus. ANN metodas taikomas anks-

čiau minėtų gaminių gamybos sąnaudoms prognozuoti. 

Sukurtas gamybos našumo prognozavimo modelis patik-

rintas gamybos sąlygomis naudojant programinio valdymo, 

lazerinio pjovimo ir štampavimo procesus. 

 

 

M. Rimašauskas, A. Bargelis 

 

THE DEVELOPMENT OF THE INTELLIGENT 

FORECASTING MODEL FOR PRODUCTIVITY 

INDEX IN MANUFACTURING 

 

S u m m a r y 

 

This research deals with the development of the 

intelligent manufacturing productivity forecasting model. 

The development is based on artificial neural network 

(ANN). Manufacturing productivity as the ratio of value 

created vs cost incurred to create it has been applied in this 

paper. The methodology of value definition for order-

handled producers of components and parts is created. 

ANN is used for forecasting of manufacturing cost for the 

above mentioned parts. The developed productivity fore-

casting model is tested by industrial case study applying 

CNC laser cutting and CNC punching machines processes. 

 

Keywords: artificial intelligence, manufacturing cost fore-

casting, laser cutting. 

 

Received April 29, 2011 

Accepted June 13, 2012 

http://dx.doi.org/10.1080/00137919708903174
http://dx.doi.org/10.1108/09576060010326230
http://dx.doi.org/10.1108/17410400510571437
http://dx.doi.org/10.1109/45.329294
http://dx.doi.org/10.1016/j.ijthermalsci.2009.06.008

