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1. Introduction 

 

Computer-aided analysis of structures requires the 

development of their discrete model with the finite number 

of the degrees of freedom. Usually, the finite element 

method is used because it is universal, effective, and easy 

for evaluating the boundary conditions. There are three 

major modifications of the finite element method [1], in-

cluding the methods, when only the function of displace-

ment or the function of the internal forces (equilibrium 

elements) is approximated, and a composite method. In the 

equilibrium finite element method, equations of statics are 

satisfied completely or almost completely, while the geo-

metric equations of interrelations are satisfied approxi-

mately [2, 3]. The problem of calculating the internal for-

ces, displacements and strains under the given load is re-

duced to deriving the equations of the displacement 

method. These equations are derived by summing up the 

stiffness values of the elements according to the algorithm, 

regulated by equations of statics. 

In this paper, the discretization of a spherical shell 

is thoroughly investigated by the equilibrium circular finite 

elements, which enables the authors to apply the unified 

methodology to the analysis of the elastic and elastic-

plastic shells [2-6]. The equilibrium finite element is sym-

metrically loaded for flat spherical shells. The bending 

moments and axial forces are described by the second and 

first-degree polynomials. The element’s differential statics 

equations, describing the balance between the internal and 

external forces, are replaced with algebraic equilibrium 

equations presented in the Bubnov-Galerkin method. The 

mathematical model and the calculation algorithm of the 

internal forces and displacements in the shell analysis are 

developed and formulated, using the equations of statics 

and geometry. The analysis and description of the method 

of shell discretization by equilibrium finite elements are 

still lacking in the scientific literature. 

 

2. General data on the discrete shell model 

 

The schematic views of the spherical shell and the 

internal forces are given in Figs. 1 and 2. The stress state 

of the shell under the symmetrical load is defined by the 

vector of the internal forces 

( ) ( ) ( ) ( ) ( ), , ,

T

M M N N
ρ ϕ ρ ϕ

ρ ρ ρ ρ ρ⎡ ⎤≡ ⎣ ⎦S  

while the external distributed load vector is expressed as 

follows 

( ) ( ) ( ),

T

ρ np pρ ρ ρ⎡ ⎤≡ ⎣ ⎦P  

The bending moments Mρ(ρ), Mφ(ρ) and the axial 

forces of the intensity functions Nρ(ρ), Nφ(ρ),
 
are the stress 

vector’s components (their positive directions are shown in 

Fig. 2). 
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Fig. 1 The spherical shell Fig. 2 The internal forces of 

  the spherical shell 

 

The vectors-functions S(ρ) and p(ρ) are related by 

the differential equations of statics 

[ ] ( ) ( )ρ ρ=S pA  (1) 

where the differential operator is expressed as 

[ ]
2

2

0 0

1 1

2 1 1 1

d

d

d d d

d d R Rd

ρ ρ ρ

ρ ρ ρ ρρ

−

≡

− − − −

A  

where R0 is the radius of curvature of the shell. 

Each element of the circular shell is marked by 

the index k = 1, 2,…, r (r is the number of the elements). 

The nodal (calculation) points in the element are indexed 

by i = 1, 2, 3 as shown in Fig. 3. The shell is considered in 

the cylindrical (ρ, φ, z) coordinate system, while the ele-

ment is analysed in the local coordinate system ξ (Fig. 4). 

All the elements of the shell are connected by the 

boundary nodes in the main nodes 3, 5, 7 of the discrete 

model (Fig. 3). The second-order circular element is used 

for discretization, while the internal forces are approxi-

mated by the second-degree polynomials, which are cre-

ated in [2]. The discrete shell model is regular for circular 

elements of the same width. The load can be distributed 
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over the surface of the finite elements or concentrated in 

the main node. 
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Fig. 3 Discretization of the flat spherical shell by four fi-

nite circular elements 

 

The assumption is made that physical properties 

of the material (the elastic modulus E and Poisson's ratio 

ν), shell thickness t and the intensity of the distributed load 

in the element are constant. 

The functions of internal forces, defining the 

stress state, are approximated by all the vector-functions of 

the internal forces having a finite number of elements 

( ) ( )k k k
Hξ ξ⎡ ⎤= ⎣ ⎦S S , where 1,2, ,k ... r=  (2) 

where [Hk(ξ)] is the interpolation matrix of the element’s 

internal forces, developed in the local coordinate system ξ 

is presented in the second and fifth rows of Table 1. Sk is 

the vector of the internal forces of the element’s nodes. 

The interpolation points of the internal forces are the nodal 

points of the finite element. The unknown coefficients of 

the function are the components of the vector Sk. Thus, the 

stress state of the discrete model is defined by the internal 

forces’ vector S = (S1,
 
S2,…, Sk,…, Sr)

T. It is one of the 

unknowns of the computational shell problem. 

A generalized nodal force vector Pk and its dual 

displacement vector uk of the nodal point are constructed 

for the element k. The number of components of each vec-

tor mk defines the element’s degree of freedom. The work 

of the element’s internal forces Sk must be equal to the 

work of the external forces Pk. The local forces (distributed 

in the unit of area) or the concentrated forces acting in the 

main element’s nodes may be considered to be the genera-

lized forces. In the first case, the vector uk is composed of 

the integral displacements of the whole element, while, in 

the second case, these are the local node displacements. 

Thus, the global displacement vector u = (u1,
 u2,…, um)T 

describes the deformation state of the discrete model of the 

shell. Here, m is the degree of freedom of the discrete 

model. The relationship between the global displacements 

u and the local displacements uk and is expressed by the 

equation 

k k
B= ⎡ ⎤⎣ ⎦u u ,  1,2, ,k ... r=  (3) 

where [Bk] is displacement compatibility matrix of the  

k-th element of the shell. 

Generalized forces and displacements should be 

selected so that the equations of statics for the directions of 

the displacements u are valid for the internal and boundary 

nodes of all elements. 

Given the basic data on the equilibrium finite 

elements, we can obtain the main element’s dependences 

and develop a mathematical model for calculating the cir-

cular shell’s element. 

 

Table 1 

Interpolation matrix of internal forces 
 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1 2 2 3 3 3 3

2 2 2

2 2 2

1 1
1

2 2

1 1
1

2 2

1 1
1 1

2 2

1 1
1 1

2 2

k k

,k ,k ,k ,k ,k ,k ,k ,k ,k ,k

k k k k k

k k k k k

k k

k k

H

M M N N M M M M N Nρ φ ρ φ ρ φ ρ φ ρ φ

ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ

ξ ξ

⎡ ⎤ ≡⎣ ⎦

− − +

− − +
≡

− +

− +

 

 

3. The dependences and matrices of the finite circular 

element 
 

Bending moments of the shell are approximated 

by the second-degree polynomials, and the axial force – by 

the linear functions. The internal forces at the nodal points 

of the finite element are shown in Fig. 4. The vector Sk of 

the internal forces is presented in the first row of Table 1. 

The interpolation matrix of the internal forces [Hk(ξk)] is 

given elsewhere in the Table 1. The components 

( ), ,

T

ki ,ki ,ki ,ki
M N Q

ρ ρ ρ
=P  of the vector 

( )1 3
, ,

T

k k ek k
=P P P P  of the generalized forces are the con-

centrated forces of the k-th element’s nodes i = 1, 3 (the 

radial bending moment, axial and shear forces of the node). 

The equilibrium between the adjacent finite elements is 

described by the forces ( )1 1 2 3
, ,

T

k k k k
P P P=P  and 

( )3 8 9 10
, ,

T

k k k k
P P P=P , while the vector 

( )4 5 6 7
, , ,

T

ek k k k k
P P P P=P

 
consists of the element’s radius ρ 

at the nodes 1 and 3 and the forces applied in the direction 

of the element’s middle surface normal n, which match the 
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element’s inner balance. They are used to describe the 

differential equations of statics of the element (Eq. (5)). 

The components of the vector uk o are linear and angular 

displacements (in the directions ρ and n) at the element’s 

boundary nodes, corresponding to the boundary and inter-

nal statics equations. The degree of freedom of the element 

is mk = 10. 
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Fig. 4 The layout of the finite element of the shell 
 

The relationship between the global coordinate ρk 

and the local coordinate ξk is defined by the dependencies 

2

2
;

k k

k k k k k

k

b
b

ρ ρ
ξ ρ ρ ξ

−

= = +  

where ρk2 is the coordinate of the second node in the global 

coordinate system (ρ, φ, z); 2bk is the width of the finite 

element. Algebraic internal equilibrium equations of the 

finite element are obtained by inserting the interpolation 

functions of the internal forces Eq. (1) into the Eq. (2) and 

differentiating 

( )k k k k
A ξ⎡ ⎤ =⎣ ⎦ S p  (4) 

The operator of the algebraic equations [Ak(ξk)] is 

presented in Table 2. The operator [Ak(ξk)] depends on the 

coordinates ξk. Equations of statics of the element 

ek ek k k
A= =⎡ ⎤⎣ ⎦P S F  (5) 

are derived, using Bubnov-Galerkin method, which states 

that the equilibrium is guaranteed at some nodal points of 

linear independent statics equations. In the considered 

case, the element’s nodes are considered to be the colloca-

tion nodes. The same influence functions 

( ) ( )
kkk

.G ξξ −= 150
1

, ( ) ( )
kkk

.G ξξ += 150
3

 are taken for 

both equations and the matrix of the influence function is 

constructed 

( )[ ]

( )
( )

( )
( )

k

k

k

k

kk

ξ.

ξ.

ξ.

ξ.

ξG

+

+

−

−

≡

150

150

150

150

 

Equations of statics of the element Eq. (5) are ob-

tained by using the formula 

( ) ( )( )( )
1

2

1

2 0
k k k k k k k k k k k
b G A b dπ ξ ξ ρ ξ ξ

−

⎡ ⎤ ⎡ ⎤ − + =⎣ ⎦ ⎣ ⎦∫ S p  

The matrix [Aek] of the equations of statics of the 

element is given in the rows 4-7 in Table 3. It is argued 

that the intensity of the load distributed over the element’s 

surface is constant, while the surface area of the element is 

equal to the horizontal projection area because a flat shell 

is considered. 
 

Table 2 

The algebraic operator of the element’s equilibrium  

equations 
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The vector of the external node forces is equiva-

lent to the distributed element’s load 

2

2

2

2

3

32
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k k ,kk
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k k n,k
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F p  

Generalized forces 
ki

M
,ρ

,
ki

Q
,ρ

 and 
ki

N
,ρ

 are ex-

pressed by the dependencies 

2
,ki ki ,ki

M c M
ρ ρ

πρ= , 

ki,kiki,
QcQ

ρρ
πρ2−= , 

2
,ki ki ,ki

N c N
ρ ρ

πρ= − , 

where the coefficient of the first node (i = 1) is c = 1, while 

the coefficient of the third node (i = 3) is c = -1. 

Sub-matrices [Ak1], [Aek] and [Ak3] make the ma-

trix of equations of statics of the shell element 

k k k
A= ⎡ ⎤⎣ ⎦P S  (6) 

The matrices [Ak1] and [Ak3] define the relation-

ship between the internal forces of the element’s boundary 

nodes and the generalized forces Pk1 and Pk3. They are 

given in the first and the last three rows in Table 3. 
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Table 3 

Statics equation matrix of the spherical shell element 
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Table 4 

Flexibility matrix of the spherical shell element 

 

11 11 12 12 13 13

11 11 12 12 13 13

11 11 12 12

11 11 12 12

12 12 22 22 23 23

12 12 22 22 23 23

13 13 23 23 33 33

13 13 2

2

15

k k k

k k k

k k

k k

k k kk
k

k k kk k

k k k

k

d d d d d d

d d d d d d

b b b b

b b b b

d d d d d db
D

d d d d d dE t

d d d d d d

d d d

  

  

 

 

  

  

  



  

  

 

 

  
  

  

  

  3 23 33 33

12 12 22 22

12 12 22 22

k k

k k

k k

d d d

b b b b

b b b b

 

 

 



 

 

 

 kk

k

b
t

d 34
12

2211   ;      kk

k

b
t

d  2212

24
 ;      kk bb  211 25  ;     2222

192
k

kt
d  ;     212 5 kb  ; 

 kk

k

b
t

d 34
12

2233   ;      kk

k

b
t

d  2223

24
 ;     kk bb  222 25  ;     2213

12
k

kt
d  . 

 



270 

The expressions of the forces Pk3 and Pk10 are ob-

tained by using the dependence 

     

   

1
,k k ,k k ,k k

k

,k k k k

k k

Q M M

dM d

d d

  



  


  

 

    



 

(7)

 

Their coefficients are given in the rows 3 and 10 

in Table 3. 

The geometric equations of the element are as fol-

lows 

0
T

k k k kD A       S u  (8) 

where the flexibility matrix is obtained by the formula 
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The matrix of the infinitely small flexibility ele-

ment is 
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
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
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
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where Ek is the modulus of elasticity of the element k; k  

is the Poisson’s ratio; tk is the element thickness. Flexibil-

ity matrix of the shell element is presented in Table 4. 

The matrices [Ak] and [Dk] are used for develop-

ing the stiffness matrices of the spherical shell elements. It 

is clear that they depend on the position of the elements 

and, therefore, are constructed individually for each ele-

ment. For this purpose, only the values of the element’s 

width bk, the second node coordinate k2 and physical pa-

rameters should be inserted into the obtained expressions. 

 

4. The mathematical model of the problem of shell 

analysis 

 

The mathematical model of the problem of the 

analysis of the elastic shell’s displacements and internal 

forces 

 A S F  (9) 

    0
T

D A S u  (10) 

consists of m algebraic equations of statics and n geometric 

equations. The unknowns are the n-dimensional vector S of 

internal forces and the m-th dimensional displacement 

vector u. The system of Eqs. (9), (10) defines the stress 

and strain state of the construction. The main system of 

equations of equilibrium finite elements is a connecting-

link to the elastic-plastic shells calculation [7-10]. The 

development of the matrix [A] of the equilibrium equa-

tions’ coefficients and flexibility matrix [D] is briefly dis-

cussed below. 

Eqs. (5) of statics of the elements k = 1,
 
2,…,

 
r 

and the main shell’s nodes of the equilibrium equations 

make the discrete model of statics Eq. (9) of the shell. 

Equations of statics of the discrete model’s node j, 

where the elements k and l meet (Fig. 5), consist of the 

equilibrium equations of the bending moments and axial 

and shear forces 

  02 1,3,3  lkk MM   

  02 1,3,3  lkk NN   

  jnklkk FQQ ,31,3,3 22     

where Fn,j is the intensity of the normally distributed load 

in the circular element j. Equations of statics of the shear 

forces are derived, using the dependence (7). 
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j
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𝑁𝜌 ,𝑘3 

𝑄𝜌 ,𝑘3 

 

Fig. 5 Forces acting on the main node of the shell 

 

Statics equations matrix 

   
T

A B A     

where kA diag A        is a quasi-diagonal matrix, whose 

diagonal block is the matrix [Ak], while the matrix [B] is 

composed of the matrices [Bk], k = 1,
 
2,…,

 
r of the compat-

ibility Eq. (2) of displacements. 

Geometric Eq. (10) are formed by geometric 

Eq. (8) of all finite elements, formulated, taking into ac-

count the compatibility equations of displacements Eq. (3). 

The flexibility matrix   kD diag D    

The displacement equation 

 K u F  (11) 

obtained from the mathematical model Eqs. (9), (10) by 

eliminating the internal forces 

   
1 T

D A


S u  (12) 

where [K] is the global stiffness matrix of the construction. 

      
11

1

r
TT

k k k
k

K A D A A D A




            (13) 

Displacements are calculated by the formula 

 
1

K


u F . The internal forces in the elements’ nodes are 

calculated by the formula (12) or 

1 T

k k k kD A


       S u  
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Though stiffness matrix [K] can be calculated by 

the formulas (13), in the developed program, it is con-

structed in a usual way, based on the finite element stiff-

ness matrices and using the algorithm described in the 

article [3]. 

 

5. The analysis of the element accuracy and  

convergence 

 

A firmly fixed shell, subjected to normally dis-

tributed loading of the intensity p = 1 kN/m
2
, and having 

the radius of curvature R0 = 1 m is considered (Fig. 6). 

 

L = 0.6R0

t = 0.04R 0R
0

p

 

Fig. 6 A computational scheme of the spherical shell 

 

The shell is divided into four circular elements of 

the same width. A discrete model fragment is shown in 

Fig. 7. The values of nodal displacements are given up to 

the factor EpR /0 , while the values of the internal forces 

are given up to the factor 0pR . The functions of the internal 

forces Mφ and Nφ have small discontinuities at the main 

nodes of the elements, therefore, their values can be ap-

proximated as the arithmetic mean at these points. The 

bending moments Mφ and M appear to be very small com-

pared to the axial forces Nφ and N. 

When four finite elements are taken, normal dis-

placement of the central shell point (1st node) is 

.E/pR.un 01 22110 , while for the multiplex mesh, 

.E/pR.un 01 2110  The values of the bending moments of 

the multiplex mesh do not differ from the values obtained 

with 4 finite elements. The values of the axial forces (up to 

the factor 0pR ) are presented in Table 5. We can see that, 

when eight finite elements are taken, sufficiently accurate 

calculation results are obtained. 
 

Table 5 

The values of the axial forces 
 

Number of 

elements 

Node of 

the shell N , kN N , kN 

4 

central (1) -0.3412 -0.3412 

middle (5) -0.2904 -0.2198 (-0.1978) 

outside (9) -0.2010 -0.0298 

8 

central (1) -0.3373 -0.3373 

middle (5) -0.2904 -0.2148 (-0.2107) 

outside (9) -0.2009 -0.0401 

40 

central (1) -0.3349 -0.3349 

middle (5) -0.2904 -0.2096 (-0.2068) 

outside (9) -0.2099 -0.0553 

80 

central (1) -0.3348 -0.3348 

middle (5) -0.2904 -0.2089 (-0.2075) 

outside (9) -0.2009 -0.0577 

 

Two axial forces Nφ at the middle shell point 5 

(Fig. 7), corresponding to the nodes of two adjacent ele-

ments’ nodes are shown in column 4 of Table 5. We can 

see that, with the increase of the number of elements, the 

discontinuities are getting smaller. The discontinuities are 

quite small, when 8 elements are taken. 

Computational analysis allows the authors to con-

clude that the created shell element is sufficiently accurate. 

It also confirms the statement about the higher accuracy of 

the equilibrium finite elements compared to the displace-

ment elements [5]. Therefore, the created element can be 

effectively used in the elastic-plastic shell analysis and 

optimization [11-13]. 
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Fig. 7 Displacement and internal forces of shell (up to the 

factors EpR /0  and 0pR ) 

 

6. Conclusion 
 

1. The presented element dependencies allow the 

equations, describing nodal displacements of a discrete 

model, to be directly derived by using the stiffness matrix 

of the elements (similar to the method of the displacement 

elements). They are formulated according to the algorithm 

described in the paper [3] and using the flexibility matrix 

of the element presented in Table 4. 

2. The created element can be effectively used for 

the elastic-plastic spherical shell analysis as well as for 

formulating and solving the optimization problems. 

3. The performed computational analysis, using 

the mesh of the elements of various density, has shown that 

the accuracy and convergence of the calculation results are 

high. This is particularly important for the analysis of the 

elastic-plastic shells and for solving the optimization – 

nonlinear programming problems, whose solution success 

largely depends on their size (the number of elements). 
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S. Kalanta, J. Atkočiūnas, T. Ulitinas 

 

SFERINIO KEVALO DISKRETINIS MODELIS IR 

ANALIZĖ PUSIAUSVIRAIS BAIGTINIAIS  

ELEMENTAIS 

 

R e z i u m ė 

 

Darbe pateikiama metodika simetriškai apkrau-

tiems lėkštiems sferiniams kevalams diskretizuoti pusiaus-

virais baigtiniais elementais, pagrįstais Kastiljano principu. 

Pasiūlytas naujas antros eilės pusiausviras baigtinis ele-

mentas (sudarytos jo pusiausvyros bei fizikinės lygtys) 

taikant Bubnovo ir Galiorkino metodą. Remiantis šiomis 

lygtimis sudaromas tampraus kevalo skaičiavimo uždavi-

nio matematinis modelis. Metodika iliustruojama skaitiniu 

pavyzdžiu, kurio rezultatai gauti naudojantis autorių sukur-

ta kompiuterine programa. Skaičiavimai, atlikti naudojant 

įvairaus tankio elementų tinklą, rodo labai didelį pasiūlyto 

elemento tikslumą bei gerą rezultatų konvergenciją. 

 

 

S. Kalanta, J. Atkociunas, T. Ulitinas 

 

THE DISCRETE MODEL AND THE ANALYSIS OF A 

SPHERICAL SHELL BY FINITE EQUILIBRIUM  

ELEMENTS 

 

S u m m a r y 

 

The paper presents the equilibrium finite element 

discretization of symmetrically loaded spherical flat shells. 

It is based on Castigliano principle. A new second-order 

equilibrium finite element is suggested, and the equilibri-

um and physical equations, obtained for it by using the 

Bubnov-Galiorkin method, are presented. A mathematical 

model for solving the problem of the elastic shell computa-

tion is created, based on the above equations. The method-

ology is illustrated by a numerical example. The results are 

obtained, using a computer-aided program developed by 

the authors. The calculation results, obtained using the 

mesh of the elements of various density, show that the 

accuracy of the created element and the convergence of the 

results are high. 

 

Keywords: spherical flat shell, equilibrium finite element, 

mathematical model. 
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