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1. Introduction 

Most fracture mechanics problems in engineering 

are solved by numerical analysis method such as finite ele-

ment method (FEM) or boundary element method [1-2], be-

cause only few simple and special fracture mechanics prob-

lems can be solved analytically.  

Mesh free method is a new numerical method that 

appeared in recent years. Mesh free method discretizes the 

entire solution domain to independent nodes instead of con-

necting nodes into the elements, so that mesh free method 

overcomes the defects of the finite element method which 

need re-mesh the grid continuously when it is used to solve 

the dynamic discontinuous boundaries problem such as 

crack propagation. Without elements constraints, mesh free 

method can conveniently track the crack propagation by 

adding removable refinement nodes on the crack tip area [3]. 

However, the mesh free method still has some de-

fects such as the modeling of crack discontinuous interface 

in practical. In general, it is easy to model the crack discon-

tinuity line through the element boundary in FEM. But mesh 

free method only has node so that it can't model such crack 

element interface similar with FEM. At the same time, as a 

new method in development, its rigorous mathematical der-

ivation and computational efficiency is still behind the 

FEM. When it used to deal with discontinuous interface 

problems such as crack, its base function, weight function 

argument and approximate function etc. are not mature, 

which are mainly determined by experience [3]. At present, 

there are mainly three criterions to simulate the discontinu-

ity line in the mesh free method: visibility criterion, diffrac-

tion criterion and transparency attenuation criterion [4]. Ac-

cording to literatures, the most used method is diffraction 

method, but while visibility method and transparency atten-

uation method is less used. The diffraction criterion [5] is 

proposed by Belyschko, Organ, etc., that and this idea 

comes from the physical phenomenon which that the light 

occurs diffraction when it encounters a sharp point. In the 

diffraction phenomenon, discontinuous line is still regarded 

as opaque, but the “light” from the node can bypass the cusp 

of discontinuous lines. In order to simulate the diffraction 

effect including visibility method and transparency attenua-

tion in crack problem, the equivalent distance as weight 

function argument need to be calculated, which is also the 

main strategy of mesh free method to simulate the influence 

of crack. 

The paper firstly describes the basic principle of 

the mesh free method and process of the calculation process 

of weight function. Based on the original diffraction crite-

rion, a new function is derived and put forward, which the 

binary linear equation is used to calculate the equivalent dis-

tance for the weight function arguments to dispose of the 

crack’s discontinuous interface. The new method can simu-

late the displacement field around crack tip or crack closure 

line and also avoid the value overflow phenomenon which 

the node and a computation superposition occurs in the pre-

sent processing method. Finally, the stress intensity factors 

of three typical crack are calculated combining the displace-

ment extrapolation method as example. The comparison 

with the analytical solution shows that their stress intensity 

factors have a better precise based on the new function ac-

cording to the diffraction criterion, which also verified the 

method valid. 

2. The basic principles of the mesh free method 

Basic equation for solving domain Ω [6] 
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Where: Γu, Γt is the given displacement boundary 

condition; Γu, Γt is the given surface force boundary condi-

tion, f refers to the given volume force, is called differen-

tial operator, n is the cosine of the outer normal direction;

 t , u are the surface force and the displacement vector of 

the given boundary, u is the displacement vector of any 

point in the domain Ω, σ is the stress tensor corresponding 

to u, according to the linear elastic conditions: 
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In Eq. (2), ɛ is the strain: 
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By Eq. (1), the equivalent weak integral form can 

be got such as Eq. (4)[4]: 
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Where δ is non-variation operator, s
 is symmet-

ric gradient operator. Because it cannot be solved complex 

problems accurately, the targets of problem-solving is to get 

the nodal displacement that can satisfy the boundary condi-

tions. In the mesh free method, the function value of the 

nodes xI (I=1,2,..,N; N is the number of node) in the solving 

domain u*=u(xI) are assumed to be known, thus the global 

approximation function u(x) constructed in the solving do-

main is uh(x), for the calculation point x (usually Gaussian 

points), the unknown function u(x) is approximately as fol-

lows: 
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Where: [ , , ]  
T

x x y z is the spatial coordinates of 

all points in the neighborhood of the calculation point x, 

( ) [ ( ) ( ) ( )]
T

1 2 m
p x p x , p x ,..., p x= , ( )

i
p x  is the primary 

function, m is the number of the primary functions, which 

the generally used primary function include linear base and 

square base:  

( ) [1 , ]
T

p x ,x y= m =3 linear base, 

2 2
( ) [1 , , , , ]

T
p x ,x y x xy y= m =6 square base. 

In the mesh free method, the global displacement 

approximation function can be constructed by the moving 

least square approximation (Moving Least Square Approx-

imation MLSA) [5].  

For the Eq.(5): ( ) [ ( ) ( ) ( )] ,
T

1 2 m
a x a x ,a x ,...,a x=

( )
i

a x  is the undetermined coefficient, it ensures that the ap-

proximate function uh(x) is the best approximation in the 

neighborhood of calculation point x in the least-squares 

sense. So we define weighted quadratic sum of the approxi-

mate function's error in calculation point x is: 
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Where w(x-xI) is the weight function, it is a non-

negative function with compact supporting, w(x-xI)≠0 when 

the nodes are outside the influence domain, it has a great 

influence on the smoothness of field function and the con-

vergence speed of the calculation results etc. The selection 

of the weight function generally should have the following 

principles [7, 8]: 

The value of the weight function must be non-neg-

ative; 

The coefficient a(x) is unique, i.e. A-1 (x) exists; 

The value of the weight function is larger when the 

point close to x;  

Except for above conditions, there is no theoretical 

rules for the determination of the weight function's specific 

form. Currently commonly used weight function have 

Gaussian weight function, the quartic spline function [9],in 

the paper the exponential weight function [10] are adopted, 

that it is used to the crack problem usually. 
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Where: 0
( ) /

m
r s x r , 0

( )s x  is the distance be-

tween the node and the calculation point, rm is the radius of 

the rounded influence domain of the node, and the influence 

domain may also be rectangular. Through Eq. (7), the dis-

tance between the calculation point and node has a great in-

fluence on weight function. Therefore, the distance between 

the calculation point and a node is the key parameter of the 

weight function. 

The parameters aj(x) are found by minimizing the 

quadratic functional J(x): 
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Where: j=1,2,…,m, thus: 
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We can define that ( ) ( ) ( ) ( )
T -1

Φ x p x A x B x , ( )Φ x

is also called shape function [11]. 
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Eq. (13) eventually is deduced based on Eq. (4): 
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Eq. (13) can be solved to give the displacement fit-

ting parameters u*, where: 
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Where: BI is given by Eq. (19): 
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So the displacement value in the entire solution do-

main is given by Eq. (12), then we can obtain the function 

expression of the stress value in the whole solution domain. 

.
*

σ = DBu  (20) 

3. The analysis of mesh free crack based on diffraction 

criterion 

3.1. Diffraction criterion 

The finite element method is relatively simple to 

handle discontinuous problems such as crack, because it sets 

the element boundary directly at the discontinuity line, thus 

the displacement function interpolation, energy functional 

integral is restricted in the element. While the mesh free 

method is difficult, the shape function is based on the fit val-

ues of the node displace within the solution domain. When 

encounter discontinuous problems such as cracks, mesh free 

method usually reflects this discontinuity by three princi-

ples: visibility criterion, diffraction criterion, transparent at-

tenuation criterion.  

Visibility criterion [12] is the easiest way to intro-

duce discontinuities; it assumed that in the solution domain 

the connections line from the calculation point to the node 

can be seen as a bunch of light, and if this connection line 

intersects with discontinuous lines, then the calculation 

point is supposed to be excluded from the node influence of 

domain. This rule relatively is rough, it may lead to unreal 

intermittent of the shape function in the tip of discontinuous 

line, and is not a good analog for non-convex boundary. 

Transparent attenuation criterion [13-15] consider 

discontinuous line with a certain transparency, and the dis-

continuous cusp points is treated as completely transparent, 

thereby eliminating the discontinuity; the rest discontinuous 

lines transparency decreases with the Cusp distance, shown 

in Fig. 1, i.e. 

Due to the discontinuous line barrier, the distance 

parameter of the weight function can’t be directly defined as 

the distance 0
( )s x  between the node and the calculation 

point by conventional methods, but need to be modified to 

an equivalent distance ( )s x , which may affect the interac-

tion strength of the calculation point and node. In the Trans-

parent attenuation criterion, the equivalent distance ( )s x  is 

expressed as Eq. (21) witch substituting its value into the 

weight function expression can obtain the calculation nodes' 

weights. 
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Where: max
s  in the Eq. (21) is the radius of the in-

fluence domain of nodes. ( )
c

s x  is the distance from crack 

tip to intersection of the "light" and the crack. Define the 

parameters 
c

s  as 
c

s h , where the constant   is used to 

adjust the transparency (usually in the range between 0 and 

1), h is the average distance of nodes. 

In the transparency method, if the node is too close 

to the crack line, the angle between the node-crack tip con-

nection with the crack itself will be very small, that means 

c
s changes dramatically, which lead to the approximate 

function has a very steep gradient of. So the transparency 

method requires nodes not be too close to the crack. In gen-

eral the vertical distance between nodes and the crack 

should be greater than h [16]. 
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Fig. 1 The transparency attenuation method  

As mentioned, Belyschko, Organ, etc. proposed 

the diffraction criterion to describe the crack discontinuous 

lines. As shown in Fig. 2, the equivalent distance s(x) be-

tween node xI in weight function and point x is given by the 

following formula: 
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where: 0 ( ) ,
I

s x x x  1( ) ,
Ics x x x  2 ( ) cs x x x   

the specific definition of the distances is as shown in Fig. 2. 
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Fig. 2 Diffraction method  

xc is crack tip. λ is a constant, literature [17] studied 

its effect to s(x), who’s the conclusion consider that the λ 

value between 1 to 2 is more appropriate.  

According to the Eq.(22) when λ>1 and 1 2
( )s s x  

is a constant, the s(x) becomes larger with the decrease of 

0
s , that means if other conditions remain unchanged, the 

equivalent distance will be longer. 

3.2. New function based on diffraction criterion  

According to the criterion of crack simulation, it 

can be found that the equivalent distance mainly reflects the 

length relation between s1 (from calculation point to the 

crack tip), s2 (from the node to the crack tip), s0 (calculation 

point and the node). Intuitively, the longer s1+s2 is, the 

longer the distance of the light goes around the tip is, so that 

the weaker the influence between the calculation point and 

node. Therefore, this paper argues that as long as the law is 

satisfied, its function type should be varied. 

In addition, according to the current criterion, the 

refinement nodes perhaps are arranged on the cracked inter-

face and the crack tip. If the calculated point x and the node 

xI coincides, then the denominator in Eq. (22) is zero, and 

the program occurs numeric overflow error. Especially, in 
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the process of crack propagation analysis, the simulation 

usually cannot be carried out because the calculated point x 

and the node xI coincides when it is necessary to reconstruct 

each crack state and refinement nodes are arranged on the 

crack tip. Therefore, a new function is constructed based on 

original diffraction criterion, and the derivation process is as 

follows: on both sides of the logarithm of equation (22), we 

obtain: 

 

1 2 0
( ) ( ( )) ( 1) ( ).lns x ln s s x lns x      (23) 

 

Eq. (23) shows the logarithmic form of Eq. (22). 

To simplify calculation, this paper proposes a new function 

type which uses an equivalent distance expression in weight 

function, a binary linear equation, to deal with the crack dis-

continuous line. the equivalent distance is in the form of 

this: 
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It can be seen that the Eq. (24) has similar proper-

ties with Eq. (22): equivalent distance will increase with the 

decrease of 0
s  or the increase of 1 2

( )s s x when other con-

ditions remain unchanged. Compared with Eq. (22), the Eq. 

(24) has an advantage that it can directly calculate the case

0
0s  , whereas, when the denominator in Eq. (22) is zero, 

the program often occurs numeric overflow error. After test-

ing, when A=3.1, Eq. (24) can make the results of method 

with high accuracy. 
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Fig. 3 Calculation process of the cracked structure weight 

function 

4. Verification of new method 

Considering that the mostly mechanical mode of cracks 

in the project is composed of tension, bending and concen-

trated force, the three typical crack theoretical models are 

established in this paper. In order to verify above conclu-

sions, this paper calculates analytical solution of the crack 

model firstly, then takes analysis and verifies the conclu-

sions.  

4.1. Case 1: single edge crack specimen under uniform ten-

sion at both ends 

The single edge crack specimen is shown as Fig. 4, 

its length L=800 mm, width b=100 mm, thickness B=1 mm, 

the remote stress of structure is 50 MPa, crack length is 

10 mm, which locates in the specimen center. 

L

crack
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Fig. 4 The both side was tensioned 

SIF is the key parameter to characterize the stress 

and strain fields around the crack tip, as originally described 

by Irwin, SIF plays a dominant role because it indicates the 

singular intensity of the crack field.  

According to the manual of stress intensity factor, 

the analytical solution of the stress intensity factor of the 

structure is as following: 
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where the shape function Y [18] is: 
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So according to Eq. (26) and Eq. (27): 

331.7 MPa mm.
I

K 
 

In this paper, matlab program for mesh free method 

analysis of crack is completed as there is no special software 

for mesh free computing. The program is made up of 7 parts; 

these are discrete function disnode() which create nodes in 

solving domain, weight function weight(), shape function 

shape(), stiffness function kmatrix(), boundary applied 

function bondary(), displacement solution of function disu() 

and the stress intensity factor function sif().  

For this structure, with disnode()，this model is ar-

ranged uniformly 891 discrete nodes, which the distance be-

tween adjacent nodes is 10 mm，except the distance be-

tween two nodes of the crack line is 0. Thus the entire struc-

ture is divided into 80 10 sub-domains of integration, 36 

Gaussian nodes are in each sub-domain of integration. The 

nodes distribution scheme is shown as Fig. 5. Then the crack 

tip nodes are refinement by circled shape, which the refine-

ment nodes are arranged every 45 degrees on the circumfer-

ential direction; on radial direction, the nodes are arranged 

on the location where the distance to crack tip node is 

1,2,3,4 mm respectively. As shown in Fig. 6, the number of 

the refinement nodes is 36, so the total node number is 

927.The form of primary function is linear primary func-

tions, once the node coordinates and the node number are 

obtained, the calculation on the shape function and the 

weight function will also be conducted no longer be joined 

into elements, the preparation work of data is much more 

concise than the finite element. 
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Fig. 5 Distribution scheme 

 

 

Fig. 6 Node encryption of crack tip  

Then the weight function of each Gaussian node is 

calculated by the function weight () according to mesh free 

method. The connection line between nodes and Gaussian 

nodes may deal with the crack line owning to that there are 

cracks in structures; there is a new problem which we need 

to take account for: firstly, we should check if the connec-

tion line between the Gaussian node and node I intersects 

with the crack line; if not, we may substitute the distance 

between the two nodes into Eq. (7) to obtain the weight 

function directly, otherwise the equivalent distance will be 

obtained in Eq. (24). Till the calculation process loops 

through all the nodes which are in the influence domain of 

Gaussian nodes.  

After that all nodes’ displacement are obtained, the 

stress intensity factor of the crack tip can also be calculated 

by the function sif(), that which is to obtain the displacement 

of the nodes on the crack line and the distance between the 

nodes on the crack tip, and we can get the stress intensity 

factor (SIF) result by mesh free method based on displace-

ment extrapolation method [19]: 

330.3MPa mm.
I

K   

4.2. Case 2: a pair of concentrated normal forces on the 

crack tip 

In order to deal with the discontinuity line of the 

crack structure in mesh free method with the higher preci-

sion.  

The boundary condition of the Fig. 7 is taken as a 

pair of concentrated normal forces on the crack tip, namely 

P=1000N. The other does not change is shown in Fig. 7.  

The analytical solution for the stress intensity fac-

tor is: 
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where the shape function Y [18] is: 
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So according to Eq. (28) and Eq. (29): 

519.1MPa mm.
I

K   

L

b
P  

 

Fig. 7 A pair of concentrated normal forces on the crack tip  

When the meshfree method is used, the layout 

scheme, the node encryption criterion and so on are equal to 

the both side was tensioned, and only the loading position is 

changed. The results can be calculated by program: 

509.3MPa mm.
I

K   

4.3. Case 3: under pure bending condition 

The boundary condition of the Fig. 4 is taken as 

under pure bending condition and its force situation is 

shown in Fig. 8. 

 

L

crack
b MM  

 

Fig. 8 Under pure bending condition 

The analytical solution for the stress intensity fac-

tor is: 
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where the shape function Y [18] is: 
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So according to Eq. (30) and Eq. (31): 

491.2 MPa mm.
I

K    

When the mesh free method is used, the layout 

scheme, the node encryption criterion and so on are equal to 

the both side was tensioned, and only the loading position is 

changed. The results can be calculated by program: 

480.4 MPa mm.
I

K   
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4.4. Result comparison 

The above results are shown in Table 1. Through the 

comparison of the analytical results of above problems, the 

Eq. (24) as a new function can be considered to deal with 

the discontinuity line of the crack structure in mesh free 

method with the higher precision. 

 

Table 1 

Comparison of the results of three kinds  

of stress cases ( MPa mm ) 

Computing Method Case 1 Case 2 Case 3 

Analytic Method 331.7 519.1 491.2 

Mesh free Method 330.3 509.3 480.4 

5. Conclusions  

Because mesh free method discretizes the entire 

solution domain to independent nodes instead of connecting 

nodes into the elements, the method which deals with the 

crack discontinuity line by using binary linear equation as 

the weight function’s independent variable is presented 

based on the mesh free diffraction criterion. Through com-

parison of analytical results of different crack problems, it 

is proved that equations and chosen parameters are proper 

and stress intensity factor can be calculated precisely, that 

which also verified the method valid. Also, this method 

avoids the numerical overflow error which may occur when 

the node coincides with the calculated point in the pro-

cessing. 
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Yuantao Sun, Zengzeng Zhang, Qing Zhang, Xianrong Qin 

RESEARCH ON CRACK DISCONTINUOUS 

INTERFACE SIMULATION METHOD BASED ON 

THE MESHFREE DIFFRACTION CRITERION 

S u m m a r y 

Mesh free method is a new numerical method 

whose solution domain only discredited into independent 

nodes. To model crack discontinuous interface in practical, 

the equivalent distance for the weight function arguments is 

adapted. Firstly, the paper analysis the feature of the func-

tion, which point out that the methods have their own disad-

vantages. And then the paper put forward new binary linear 

equation, which is used to the weight function arguments to 

dispose of the crack’s noncontiguous interface. The function 

can simulate the displacement field around crack tip or crack 

closure line and also avoid the value overflow phenomenon 

which the node and a computation superposition occurs in 

the present processing method. The method has provided 

new mentality and idea for the present mesh free method in 

crack analysis. Finally, three typical crack theoretical mod-

els are established as example. The comparison with the an-

alytical solution shows that the displacement value the crack 

and the stress intensity factors has a better precise based on 

the new method, and also verified the method is valid. 

Keywords: mesh free method, crack discontinuous inter-

face, weight function, diffraction criterion. 
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