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Nomenclature and assumptions 

 

Nomenclature 

 

MSE – Multi-state element; MSS – Multi-state system; 

BN–Bayesian network; DBN–Dynamic Bayesian network; 

ARA–Arithmetic Reduction of Age; ARI–Arithmetic Re-

duction of Intensity; UGF–Universal generating function; 

k–Perfect state for MSE; 
i , j
 –Failure rate transiting from 

state i to state j;  –Instantaneous state-transition rate ma-

trix; pi(t)–Probability function of MSE at state i at constant 

t; gi–Performance level of MSE; u(z,t)–u-function of MSE 

at constant t; Us(z,t)–u-function of MSS at constant t; 

 
isk

p t –Probability function of MSS at state ki at constant 

t; 
isk

g –Performance level of MSS; w–Constant demand of 

MSS; R(t)–Reliability of MSS at instant t. 

 

Assumptions 

 

1. During the useful life period of an element, its 

time lingering at a state follows exponential distribution;  

2. During the wear-out life period of an element, its 

failure rate increase with time;  

3. In the Markov process, the state probability at a 

future instant, given the present state of the process, does 

not rely on the states occupied in the past;  

4. A MSS is put into use at 0t  in perfect func-

tionality and maintenance measures are taken when its reli-

ability drops below the given value;  

5. MSS is combined with multiple MSEs in series 

or in parallel;  

6. The performance level of MSS can be detected 

immediately according to its electric parameters or output 

performance.  

 

1. Introduction 
 

Multi-state elements (MSEs) refer to those that 

have different performance levels, including perfect func-

tionality, complete failure and intermediate states [1-3]. Sys-

tems composed of MSEs and having multiple performance 

levels determined by these elements are called multi-state 

systems (MSSs). MSS theory draws a lot of attention now-

adays and a variety of researches are carried out around this 

topic.  

Markov process is widely used to describe state-

transition between different states of MSE and MSS [2, 4-

6]. Anatoly et al. [2] presented a multi-state Markov model 

for a power generating unit to calculate important reliability 

indices. In literature [6], Anatoly et al. put forward several 

methods to model for non-repairable elements and repaira-

ble elements by applying Markov process. To obtain the re-

liability and availability of complex systems, dynamic 

Bayesian network (DBN) and universal generating function 

(UGF) are adopted in many researches.  

DBN, developed on Bayesian network (BN) and 

hidden Markov process, has advantages in reasoning for-

ward and backward and predicting the change of random 

variables. Liu et al. [7, 8] established a dynamic Bayesian 

network (DBN) of subsea blowout preventer to perform re-

liability analysis and common cause failure analysis. Dan-

iele et al.[9] established a DBN framework inside a system 

or among systems to assess cascading effects for a power 

grid. However, it is difficult to obtain conditional probabil-

ity values for DBN because of lacking of data. In this case, 

UGF which expresses discrete random variables using alge-

braic procedures is a better choice. The reliability of MSS 

under desired performance level is calculated by using pol-

ynomial assemble operator through like-terms collection 

calculation. Mi et al. [10] performed reliability analysis of 

an excavator rectifier feedback system by applying modified 

Markov and belief UGF approach. Li and Enrico [11] put 

forward an analytical multi-state modeling approach to as-

sess the reliability of electric power systems on the base of 

UGF.  

During the useful life period of equipment, its fail-

ure rate is approximately regarded as a constant. For a MSE, 

state-transition rates between states are also regarded as 

constants. In the process of modeling, state-transition rates 

and repair time are all constants [12, 13]. With the increas-

ing of service years, the equipment moves from the useful 

life period toward the wear-out life period. And a phenome-

non occurs that failures happen more frequently than before. 

By referring to recorded data, it’s obvious that the failure 

rate and state-transition rates between states are not con-

stants any more. Models based on virtual age and imperfect 

repair are proposed to offer suggestions in making mainte-

nance decisions [14-16]. Maria et al. [17] put forward mod-

els based on Arithmetic Reduction of Age (ARA) and Arith-

metic Reduction of Intensity (ARI) to analyze imperfect re-

pair. Fan et al. [18] made a cost effective strategy to mini-

mize the total cost of imperfect degradation-based mainte-

nance under imperfect repair.  

However, these aforementioned models focus on 

binary state elements and systems which are not available 
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for MSEs and MSSs anymore. For example, visual life mod-

els by applying Kijima I and Kijima II are only suitable for 

binary reliability models. Aiming at this limitation, this pa-

per will establish a degradation model for MSE considering 

aging factor under period maintenance. During the useful 

life period continuous time Markov models are established 

for MSEs, while non-homogenous continuous time Markov 

models will be built during the wear-out life period by in-

troducing an aging factor. In order to obtain the reliability of 

MSSs, UGF is adopted to combine the performance levels 

and probability functions of MSEs through combination op-

erators. By comparing the reliability during the useful life 

period with that during the wear-out life period, mainte-

nance measure can be adjusted to maintain a desired relia-

bility value.  

3. Stochastic degradation for MSE during the useful life 

period 

During the useful life period of MSE, degradation 

begins from the perfect state k  to lower state  1i i k  . 

Markov process can be applied to model this state-transition 

process which assumes that the next state of the element 

only relates to its current state and the transition time fol-

lows exponential distribution. State-transition rate of MSE 

is a constant denoted as   1 2
i , j

i j ,i j , , ,k  、  . The 

stochastic degradation process is shown in Fig. 1, and its in-

stantaneous rate matrix   is denoted as follow: 

 

1 2 1

1 1 1 2 1 1

2 2 2 1

1 1

0

0 0

0 0 0

k ,k k ,k k , k ,

k ,k k , k ,

, ,

,

.

   

  



 





   

 
 
 
 
 
 
 
   (1) 

 
According to the stochastic degradation process, 

differential equations can be written to obtain state proba-

bilities for the Markov process presented in Fig. 1: 
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where     i
p t Pr X t i   is the state probability of X(t). 

2 ,11k k , 1 2k k  , 3,2

,1k

, 2k 1,1k 

k 1k  2 1

 
 

Fig. 1 Stochastic degradation process for MSE during its 

useful life period 
 

Because the degradation begins from the perfect 

state k , the initial conditions can be denoted as: 

 

       1 2 1
0 1 0 0 0 0

k k k
p , p p p .

 
      (3) 

 

Through Laplace-Stieltjes transformation, state 

functions of MSE in different states can be obtained: 

At instant t, the probability that the MSE is in state 

k is: 
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At instant t, the probability that the MSE is in state 

k-1 is: 
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G G
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where:
1

1

i

i i , jj
G 




 . To obtain   2p t k   , the MSE can get to state 2k   from state k  through state 1k  , 
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Or the MSE get to state 2k   from state k  directly: 
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For MSE, there are two ways to degrade to state 

2k   from state k , four ways to degrade to state 3k   

from state k , eight ways to degrade to state 4k   from 

state k  . There are 
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state i  from state k . Without loss of generality, the prob-

ability function that the MSE is in state k  at instant t  can 

be summarized as follows: 

1. Degrade from state k   to state i   directly 

(without intermediate states): 

     

    

0 1 1 1

0

t
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(8) 

 

2. Degrade from state k  to state i  with one in-

termediate state j : 
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2
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where  1 1j i , ,k   . 

3. Degrade from state k to state i  with  3 4 1n n , , ,k i    intermediate states: 
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where  1
1 2j k ,k , ,i n     , 1

1
n

j j k     . For 

any n , there are 
1k i

r

  
 
 

 combinations. 

4. Aging degradation for MSE during the wear-out life 

period 

During the wear-out life period of the “bath curve”, 

the degradation of MSE is not only related to its current state, 

but also depends on its service age. Weibull distribution is 

widely used to model degradation process for binary state 

equipment, which is not suitable for multi-state equipment 

[18, 19]. Non-homogenous continuous time Markov model 

(NHCTMM) is applied here to model the degradation of ag-

ing MSE [20, 21], and the corresponding process is shown 

in Fig. 2.  
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 ,2k t  1,1k t 

k 1k  2 1

 
 

Fig. 2 Aging degradation process for MSE during wear-out 

life period 

Let    1 2t , , ,k   represent the state of MSE 

at instant t . The transition probability from instant s  to 

instant t  to transit state i  to state j  can be denoted as:  

 

      i , j
p s ,t Pr t j | s i ,     (11) 

 

where  1 2s t ,i, j , , ,k , j i   . 

Similar to Markov process, the instantaneous state-

transition matrix  t  for NHCTMM can be denoted as: 
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Combined with the initial conditions in Eq. (3), 

NHCTMP equation can be solved to determine the proba-

bility functions in different states of MSE:  

At instant t  , the probability that the MSE is in 

state k  is: 
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At instant t  , the probability that the MSE is in 

state 1k   is: 
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Similarly, to obtain   2p t k   , the MSE can get to state 2k   from state k  through state 1k  , 
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Or the MSE get to state 2k   from state k  directly.  
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The probability function that the MSE is in state 

k  at instant t  can be summarized as follows: 

1. Degrade from state k  to state i  directly  

(without intermediate states):  

       
1

1

1 1

0 1 11 1

0 0

t t
k i

,i k , j k ,i i , jj j
p t exp s ds exp s ds d .





    
 

 

  
    

      
            (17) 

 

2. Degrade from state k  to state i  with one intermediate state  1 2 1l i ,i , ,k    : 
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3. Degrade from state k  to state i  with  3 4 1n n , , ,k i    intermediate states: 
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      

    

  
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where 
1k i

h ,
r

  
  
 

 1 2 1
g

l i ,i , ,k ,   

1n
i l l k ,    1 2g , , ,n.  

5. Degradation modeling for MSS 

Universal Generating Function (UGF) is widely 

used in reliability evaluation and risk assessment for MSS 

[22–24]. Performance levels and probability functions of 

MSE are expressed in the form of polynomial represented 

by discrete variables. The UGF of MSS can be obtained 

through combination operators determined by logic rela-

tions between MSEs.  

UGF of a MSE can be denoted as: 

 

       

 

1 2

1 2

1

i

k

k
g g g

i

i

g

k

u z ,t p t z p t z p t z

p t z ,



   

 



 (20) 

 

where  1 2i k
g g ,g , ,g  is a performance level of MSE, 

and  i
p t  is its corresponding probability function.  

UGF of MSS can be denoted as: 

 

       

 

1 2

1 2

1

s

si s s

sks

s

k
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i

g

sk

U z ,t p t z p t z p t z

p t z ,



   

 


 

(21) 

 

where 
1 2i ssk sk sk sk

g g ,g , g 
   is a performance level of 

MSS, and  
isk

p t is its corresponding probability function. 

Usually, MSS can be simplified as a series-parallel 

structure. In order to determine the performance parameters 

of MSS, UGF of elements in the MSS are obtained firstly. 

Then, the parallel system regarded as a subsystem is re-

placed by an equivalent element in series. Keep doing this 

until there is no parallel subsystem in the system. At last, 

UGF of MSS is determined by the remaining series system. 

A MSS model with N parallel subsystems is shown in Fig. 3. 
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Nn

... ...

subsystem 1 subsystem 2 subsystem  i subsystem  N

 
 

Fig. 3 A MSS model with N parallel subsystems 

 

For subsystem i with ni elements in parallel, the 

states’ performance between the subsystem and its elements 

can be denoted as: 

 

 1 2 ii i i in
X f G ,G , ,G ,  (22) 

 

where i
X  represents the performance of subsystem i ;  

1 2 ii i in
G ,G , ,G   represent the performance of elements in 

the parallel system.  

UGF of subsystem i  can be denoted as: 
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        

   

1 2

1

i

i

ik

i i i in

M
x t

ik

k

U z ,t U z ,t ,U z ,t , ,U z ,t

p t z ,





 

 
 

(23)

 

 

where i
M  is the state number of subsystem i ; 

      1 2 ii i iM
x t ,x t , , x t  represents the state performance 

of subsystem i  at instant t ; 

      1 2 ii i iM
p t , p t , , p t   represents its corresponding 

state probability.  

Assume that a MSS is consisted of N   subsys-

tems in series, then the states’ performance between the 

MSS and its subsystem can be denoted as: 

 

 1 2 N
Y f X , X , , X ,  (24) 

 

where Y  represents the performance of MSS;  

1 2 N
X , X , , X

 
represent the performance of subsystems. 

UGF of MSS can be denoted as:  

 

        

   

1 2

1

sys

s

N

M

y t

s

s

U z ,t U z ,t ,U z ,t , ,U z ,t

p t z ,





 

 
 

(25)

 

 

where 
sys

M  is the state number of MSS; 

    1 sysM
y t , , y t represents the state performance of 

MSS at instant t ;       1 2 sysM
p t , p t , , p t represents 

its corresponding state probability. 

Use the following operator   to obtain the sys-

tem availability at instant t  for any demand w : 

 

      

    

1

1

sys

s

sys

s

M
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M
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s

U z,t ,w p t z ,w

p t z ,w ,

 







 
   

 







 

(26) 

 

where     
   

 0

s
s sy t

s

s

p t , y t w
p t z ,w

, y t w



 



 . w   repre-

sents the constant demand of MSS. When the state perfor-

mance of MSS is higher than w , the system is available. 

The reliability of MSS at instant t  can be denoted as: 

 

      
 s

s

y t w

R t U z ,t ,w p t .


    (27) 

6. Case study 

A compressor system of an engine is consisted of 

three aging elements, a first-stage rotor represented by ele-

ment 1, a second-stage rotor represented by element 2 and a 

stator represented by element 3, shown in Fig. 4. The first-

stage rotor and the second-stage rotor play important roles 

in air suction and compression. The first-stage rotor has two 

states, having 40% and 0 performance level for state 2 and 

state 1 respectively. The second-stage rotor has three states, 

having 60%, 30% and 0 performance level for state 3, state 

2 and state 1 respectively. The stator offering assistance for 

the rotors has four states, having 100%, 60%, 30% and 0 

performance level for state 4, state 3, state 2 and state 1 re-

spectively. The efficiency of the compressor is determined 

by these two rotors and the stator. According to recorded 

data and consulting domain experts, state-transition rates for 

these three elements during the useful life period and the 

wear-out life period are listed in Table 1.  
 

1

2

3

 
 

Fig. 4 Structure of the compressor system 

Table 1 

State-transition rates for elements in the compressor 

Ele-

ment 

Rate during the 

useful life period 

(/y) 

Rate during the wear-out life 

period (/y) 

λ2,1 λ3,2 λ4,3 λ2,1(t) λ3,2(t) λ4,3(t) 

1 0.2 - - 0.2+0.1t2 - - 

2 0.6 0.3 - 0.6+0.2t 0.3+0.1t - 

3 0.8 0.4 0.2 0.8+0.4t 0.4+0.2t 0.2+0.1t 

 

6.1. Degradation modeling for MSE 

To perform degradation analysis, element 3 with 

four states is taken for example. According to Eqs. (8)-(10), 

probability functions in different states for element 3 during 

the useful life period can be obtained as follow: 
 

  

  

  

  

1 4

1 4 1 2

1 4 1 2 0 8

1 4 0 8

4

3

2 1
2

3 3

2 1
1 1

3 3

. t

. t . t

. t . t . t

. t . t

p t e ,

p t e e ,

p t e e e ,

p t e e .











 

  

 

  
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    
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     
  
 

Similarly, according to Eqs. (17)-(19), probability 

functions in different states for element 3 during the wear-

out life period can be obtained as follow: 
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Probability curves of element 3 in different states 

during the useful life period and the wear-out life period are 

depicted in Fig. 5. Where   3 4 3 2 1P i i , , ,   represents 

the probability curve of element 3 during the useful life pe-

riod, and   3 4 3 2 1P i' i ' , , , 
 

represents the probability 

curve of element 3 during the wear-out life period. Because 

the existence of aging factor, the probability curve in state 4 
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of element 3 during the wear-out life period drops more rap-

idly to 0.0150 than that to 0.0608 during the useful life pe-

riod. As two intermediate states, there are transitions from 

upper state to state 3 and state 2 and transitions from these 

states to state 1. Probabilities in state 3 and state 2 are rela-

tively lower all the time. However, the probability curve in 

state 1 increases rapidly with the increasing of time. And it’s 

obvious that because of aging factor the probability in state 

1 during the wear-out life period is higher arriving at 0.9598 

than that arriving at 0.8922 during the useful life period, 

which is consistent with the practice. 

In order to obtain the reliability curve and failure 

curve of element 3, state 4, state 3 and state 2 are summed 

as an operation state, shown in Fig. 6. Influenced by aging 

factor, the reliability of element 3 is lower than that without 

aging factor. At the end of one year, the reliability of element 

3 during the useful life period will reach at 0.3142, while 

that during the wear-out life period will reach at 0.2385.  

By referring to literature [13, 20], the same result 

can be obtained to verify our model during the useful life 

period without considering aging factor.  

6.2. Reliability analysis for MSS 

According to Eqs. (8)-(10) and Eqs. (17)-(19), 

probability functions for element 1 and element 2 in differ-

ent states are listed in Table 2. 

 

  

Fig. 5 Probability curves of element 3 in four states Fig. 6 Reliability curve of element 3 

Table 2 

State probability functions for element 1 and element 2 

Element 
During the useful life period During the wear-out life period 

1 2 3 1 2 3 

1 0 2
1

. t
e


  
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e
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t t
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e e
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e
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2 2

0 1 0 6 0 15 0 9. t . t . t . t
e e
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  
2

0 15 0 9. t . t
e
 

 

 

UGF for three elements can be denoted as: 
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Because element 1 and element 2 are connected in 

a parallel subsystem, a new element can be used to replace 

the subsystem. Then the performance of the whole system 

can be determined by the new element and element 3. UGF 

of the compressor is written as follow and its probability 

function in different states are listed in Table 3. 
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Reliability curves of the compressor under differ-

ent demand values are drawn in Fig. 7. If 70%w > , the re-

liability during the useful life period will arrive at 0.7844 

while that during the wear-out life period will arrive at 

0.7815 at the end of 0 2. y . If 0 30%< w , the reliability 

during the useful life period will arrive at 0.6065 while that 

during the wear-out life period will arrive at 0.5944 at the 

end of 0 2. y  . It’s obvious that the higher the demand is, 

more quickly the curve will drop. In order to ensure its op-

eration time and avoid unnecessary dropdown, reasonable 

demand should be set. Comparing to the curves during the 

useful life period, the curves during the wear-out life period 

have relative lower reliability values. Thus, when making 
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maintenance measures, aging factors should be taken into consideration.  
Table 3 

Performance levels and probability functions of the compressor 

Performance Probability function 

1
0

s
g %  

                               1 1 2 1 3 1 1 1 2 2 1 1 2 3 1 2, , , , , , , ,
p t p t p t p t p t p t p t p t   

 
 

2
30

s
g %  

                                   1 1 2 2 3 2 3 3 3 4 3 2 1 1 2 3 1 2, , , , , , , , ,
p t p t p t p t p t p t p t p t p t      

   
 

3
40

s
g %  

               1 2 2 1 3 3 3 4, , , ,
p t p t p t p t 

 
 

4
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s
g %  

                                   1 1 2 3 3 3 3 4 3 3 1 2 2 2 1 2 2 3, , , , , , , , ,
p t p t p t p t p t p t p t p t p t     

   
 

5
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s
g %  

           1 2 2 2 3 4, , ,
p t p t p t  

6
100

s
g %  

           1 2 2 3 3 4, , ,
p t p t p t  

 

Assume the demand is 50%, reliability function for the compressor can be denoted as: 
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Fig. 7 Reliability curves under different demand values 

 
The corresponding reliability curves are 

 3 40 60w %, %  and  3 40 60w ' %, %  shown in Fig. 7. 

To maintain a reliability level at 80%, maintenance circle 

during the useful life period is forty-five days, while it’s 

forty-three days during the wear-out life period when taking 

aging factor into consideration.  

7. Conclusions 

On the base of state-transition modeling for MSE 

during the useful life period, model for degradation process 

is established during the wear-out life period by introducing 

aging factor.  

1. For MSE in the useful life period, state-transi-

tion process can be determined by setting continuous time 

Markov model.  

2. When aging factor is considered, state-transition 

rates between states for MSE are no longer constants. By 

solving non-homogenous continuous time Markov model, 

state probability functions can be obtained.  

3. To calculate the reliability of MSS under differ-

ent demand values, UGF of MSS should be solved on the 

base of UGFs for elements and the combination operator. 

It’s obvious that the reliability is relatively lower when con-

sidering aging factor, which can offer suggestions in making 

maintenance measures. 
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Z.Q. Li, T.X. Xu, J.Y. Gu, L.Y. Fu, J.Z. Zhao 

PERFORMANE DEGRADATION MODELING FOR 

MULTI-STATE ELEMENT CONDERING AGING  

FACTOR 

 

S u m m a r y 

 

With the increasing of service years, failure hap-

pens more frequently than before, which is consistent with 

the failure rate of equipment during the wear-out life period. 

On the base of continuous time Markov model for multi-

state elements during the useful life period, aging factor is 

introduced to establish a non-homogenous continuous time 

Markov model during the wear-out life period. To obtain the 

reliability of a multi-state element, universal generating 

function is applied to combine its performance levels and 

probability functions. Through a combination operator de-

termined by series-parallel logic relations, universal gener-

ating function of a multi-state system can be obtained. At 

last, a compressor of an engine is taken for example. The 

reliability of the system and its elements considering aging 

factor are relatively lower than that during the useful life pe-

riod. And to maintain a reliability level at 80% under the 

demand of 50%, two days will be reduced from the planned 

maintenance cycle.  

Keywords: Markov model; aging factor; multi-state system; 

universal generating function. 
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