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1. Introduction 

Normal contact stiffness of joint interfaces is vital 

to processes ranging from adhesion to friction, wear and lu-

brication [1, 2]. It is the fact that the rough surface morphol-

ogy affects the contact stiffness profoundly, and contact be-

tween surfaces is the interaction of asperities. Therefore, the 

interaction of asperities has been extensively studied.  

According to the Hertz solution for a single elastic 

sphere, Greenwood and Williamson [1] proposed that inter-

action between contacting asperities was equivalent to con-

tact between a rough surface comprising spherical asperities 

of constant radius and an ultra-smooth flat surface. Assum-

ing asperity heights follow Gaussian distribution, they gave 

a statistical model called GW model, a popular method to 

simulate contact stiffness of joint surface. 

Due to the limitation of statistical approach, the 

GW model relies heavily on statistical roughness parameters 

of sampling length and resolution of measuring instrument. 

It means that unbiased information from surface topography 

is difficult to obtain [2]. Consequently, Majumdar and Tien 

[2] gave a fractal characterization and simulated rough sur-

faces to remedy these deficiencies which depended on the 

scale in the GW model. In addition, Majumdar and Bhushan 

[3] characterized the multi-scaled self-affine topography by 

scale-independent parameters, then they proposed a novel 

mathematical model by using fractal geometry. In their the-

ory, the model (MB model) mainly considered the contact 

between rough surface and ultra-smooth plane. Additionally, 

Wang and Komvopoulos [4] analysed the irrationality of 

MB model and introduced a domain extension of factor as-

sociated with fractal dimension to better match real situation. 

As a result, they established WK contact fractal model with 

more reasonable and impersonal asperity size distribution 

function.  

Recently, some researchers managed to compute 

normal contact stiffness by using microscope property of as-

perities. For example, Zhang [5] proposed a fractal model 

for normal contact stiffness of machine joint surfaces based 

on Hertz contact theory between a sphere and a plane under 

some given hypotheses. It overcame the shortcoming of sta-

tistical analysis in the MB model to avoid excessive depend-

ence upon scale. Subsequently, Wen [6] discussed a modi-

fied model for normal contact stiffness by using micro-con-

tact size distribution function, as well as a mathematical re-

lationship between normal contact stiffness and characteris-

tic parameters of joint surfaces. Generally, they concluded 

that normal contact stiffness increased with the normal load 

and decreased with the fractal characteristic length scale pa-

rameter G. Nevertheless, the variation becomes complicated 

when the fractal dimension D is involved. 

Meanwhile, numerous researchers studied the 

stringency of parameters. For example, Ganti and Bushan [7] 

doubted the scale-independence of fractal parameters, espe-

cially D and G, when they concentrated on the fractal model. 

It leaded more discussion about fractal parameters [8]. He 

and Zhu [9] investigated the fractal parameters D and G of 

two typical kinds of engineering surfaces. The scale-inde-

pendence of fractal parameters was studied by changing the 

sampling spacing t corresponding to spatial measuring res-

olution and the sampling length L. Jiang et al. [10] em-

ployed structure function method to calculate the rough sur-

face fractal dimension and scale coefficient, and they indi-

cated that the theoretical contact stiffness of diverse samples 

is consistent with the experiment data under the different 

contact load. 

Recently, researchers turned their main interests 

into contact stiffness from different points of views. For ex-

ample, Ghafoor et al. [11] established a contact stiffness 

model by using the finite element analysis and gave a novel 

probability concept in the case of mechanical soft contact. 

For the most popular GW model, Wu [12] discussed the sta-

tistical method of micro-bulges on the one dimensional case. 

But the prerequisite of their research is that all the micro-

bulges are half spheres and curvature radiuses are equal, 

which is rather idealized for real situations. Additionally, 

Robert and Jeffrey [13] adopted multi scale methods to 

study the contact load between rough surfaces. Persson [14] 

studied the mechanical properties of the random rough sur-

face. Daniel and Dickrell [15] obtained the contact rigidity 

from the transverse contact stiffness model, which is con-

sistent with the experiment data under the condition of small 

load and small contact stress. Filippi and Kartal [16-17] 

measured the contact stiffness of the joint surfaces.  

The research mentioned above involving the frac-

tal model of normal contact stiffness is applicable for a mul-

titude of mechanical joint interface. The relationships be-

tween the parameters of fractal dimensions and roughness 

amplitude are indicated in the mathematical formulas and 

simulation. Furthermore, another benefit is the convenience 

of calculating. 

However, from the literature, these models have a 

shared problem that they are all based on MB fractal model. 

This means that the contact of two rough surfaces is simpli-

fied to a rigid plane and a single micro-bulge which is equiv-

alent to half a sphere [18-21]. Obviously, the model has its 

limitation. For example, some of these works are confined 

to pure elastic deformation of the contacting sphere [22-31]. 

An attempt to solve this problem is given by L. Kogut and 

I. Etsion [32]. They presented general solutions for the elas-

tic-plastic contact, but it still aimed at a deformable sphere 

and a rigid flat. 
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It is well-known that joint interfaces are constituted 

by two rough surfaces. For the single micro-bulge of the 

rough surfaces, they could be regarded as equivalent spheres 

with curvature radius R. Thus, the two micro-bulge of the 

rough surfaces are equivalent to two different half spheres. 

In this paper, the main objective of our research is to offer a 

new fractal model of normal contact stiffness which is more 

universal than before. Meanwhile, the evolution of the elas-

tic-plastic contact is analysed involving three distinct stages 

which range from complete elastic through elastic-plastic to 

fully plastic deformation. Moreover, we could find that the 

previous model is only one of the special cases.  

2. Normal contact stiffness model of the joint surface   

2.1. The contact of two spheres 

 

2.1.1. Perfectly elastic deformation stage 

 

Joint surface essentially composed of two rough 

surfaces could be simplified to a rough surface and a true 

plane [33-35]. This paper considering system of contact 

model of two rough surface fractal characteristics is in order 

to make contact more general. Two convex bodies of the 

rough surface contact are equivalent to two hemispheres. 

Let 1
R and 2

R be the radius of the two half spheres. 

The two hemispheres just contact on the point O when no 

load is applied. The state is as shown in Fig. 1. 

 
 

Fig. 1 Two convex bodies of the rough surface 
 

 
 

Fig. 2 Two spheres normal contact deformation 

When the two hemispheres are under the action of 

the normal load p, two spheres will produce normal contact 

deformation, the normal contact deformation of the first 

hemisphere is 1
  and the second one is 2

 , then the total 

normal contact deformation is 21
  .The contact 

state of the two hemispheres is as shown in Fig. 2. 

In engineering practice, it is a common phenome-

non that two curved objects contact each other to transfer 

pressure. For example, the contact between the ball of roll-

ing bearing and its seat, wheel and rail, etc. Before loading, 

these contacts are seemed to be point contacts or line con-

tacts. Due to the material deformation after loading, these 

point or line contacts become contact surfaces. There are 

large pressures on the small convex surface and area nearby. 

Considering contact problem, it is often assumed that sur-

face is rigid smooth. Based on the analysis of deformation, 

subjecting to the contact distribution of the deformation, the 

maximum compressive stress on contact surface is proposed. 

According to Hertz theory, the relationship be-

tween the normal contact deformation  and the normal 

load p [36] can be expressed as: 
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where 1
R and 2

R  are the equivalent curvature radius of the 

two hemispheres, 1
k and 

2
k  satisfy the equation 

)()1( 1

2

11 Evk  , )()1( 2

2

22 Evk  , which 1
E

and 2
E  are the elastic modulus of two contact materials, 1

v

and 2
v  are the corresponding Poisson ratio.  

Then the relation between normal load p and nor-

mal contact deformation   can be given as: 
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1 2

1
k k

E
  , (3) 

 

where E is the equivalent elastic modulus of the two mate-

rials and it satisfies:  

 
2 2

1 1 2 2
(1 ) (1 )E v E v E    . 

 

Substituting from equation (3) into equation (2), 

we obtain: 
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where e
p  is complete elastic contact load. 

The normal contact stiffness e
k  of two asperities 

is given as: 

 

e

e

p
k







.  (5) 

 

Substituting e
p from equation (4) into the equation 

above, 

 
1

1 2 2

1 2

2
e
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k E

R R



. (6) 
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We will discuss two cases as following, one is 

21 RR  , and the other is 21
RR  . Obviously, the case of

21
RR   is similar to the one of

21 RR  . The occasion of

21
RR   is similar to the contact between an asperity and a 

flat plane [37]. 

I. When
21 RR  , because the deformation of the 

smaller hemisphere is stronger than the other during con-

tacting, we choose the sectional area of the smaller one. 

Based on the geometrical relationship of asperities before 

deformation, we consider 1R , we can get: 

 

1
2a R   , (7) 

 

where a   is sectional area of micro-contact with curvature 

radius 1
R . So the normal contact deformation can be given 

as: 
 

1
2

a

R





 . (8) 

 

Using   from equation (8) into equation (6), we 

obtain: 
 

1

2 2

1 2

2 '
2 ( )

e

R
k E a

R R
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
. (9) 

 

2.1.2. Perfectly plastic deformation stage 

 

When c
 4.76  the contact of asperities entry a 

range of complete plastic deformation, where c
  is the crit-

ical deformation when micro contact turns from perfectly 

elastic stage to elastic-plastic transition deformation. De-

pending on the fully plastic deformation mechanism, we can 

express the contact load as [37]: 
 

2
p

p H R  . (10) 

 

The critical deformation c
 for the inception of 

plastic contact is given by [33, 34]: 
 

2

2
c

kH
R

E




 
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, (11) 

 

where R is the equivalent radius of curvature, H is the hard-

ness of soft material, both of H and Y satisfy YH 8.2 in 

which Y is the yield strength of softer materials , k  is the 

hardness coefficient whose value is associated with the 

Poisson Ratio and 0.454 0.41k   . 

 

2.1.3. The elastic-plastic transition deformation stage 

 

When cc
 4.76 , the contact is in the stage 

of elastic-plastic transition deformation. The contact load of 

this stage is given as [39]: 
 

1.38

2
.

3
ep

c

p kH R


 


 
   

     (12) 

Now substituting equation (17) and (12) into equa-

tion (5), the normal contact stiffness can be expressed as: 
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2. 2. The elastic-plastic fractal model of normal contact stiff-

ness of joint surface 

 

The normal deformation of asperity on joint sur-

face will be in a fully plastic deformation stage when 

c 4.76 . That is, there exists normal contact stiffness in 

the other stages, complete elastic and elastic-plastic defor-

mation. 

The curvature radius of the asperity can be given 

as: 
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where G is the characteristic length scale parameter and D 

is fractal dimension. 

From equation (6), the  can be obtained as: 

 

2
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Substituting e
k from equation (9)  and 1

R from 

equation (14) into equation (15) , yields: 

 

2
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Comparing the equation (11), (14), (15), the rela-

tion of  and c
 can be rewrote as: 

 

1
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where '
c

a
 
is the critical truncated area of  single asperity 

turns from perfectly elastic deformation into elastic-plastic 

transition deformation stage. And the expression can be 

shown as: 
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In order to calculate cross-sectional area of normal 

load from the critical contact area to the largest area accu-

rately, the size distribution function was given as: 
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where   is the domain extension factor and 1 . 

The normal contact stiffness of the whole joint sur-

face can be shown as: 
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(20)

 

 

The relation between cross-sectional area of the 

elastic contact 'a and the actual contact area a is given as 

[18]: 
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where '
l

a  is cross-sectional area of  the largest micro con-

tact, a  is actual contact area of the largest contact point, r
A  

is the total actual contact area. 

Using the equation (21) into the equation (20) we 

obtain: 
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So the dimensionless total normal contact stiffness 
*

nK
 
can be written as: 
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where 
*

G is dimensionless characteristic length scale pa-

rameter, 
*

r
A  is dimensionless real contact area, 

*

ca
 
is di-

mensionless critical contact area. a
A

 
is nominal contact area 

and   is plasticity index. They are written as: 
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3. The elastic-plastic fractal model of normal contact 
load of joint surface 

 

Substituting e
p  from equation (9) into equation 

where the completely elastic contact load of the joint surface 

can be given as: 
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Using e
p from Eq. (10), the completely plastic  

contact load on joint surface can be given as following: 
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Substituting 
epp from Eq. (12), we can get the  

elastic-plastic contact load on joint surface:  
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When 5.1D , the total normal load can be shown as: 
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Then we combine the formula (21) into the formula (27) and get the equation as: 
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Using the total normal load in a non-dimensional form *
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







 
  

        
  

 
 

  
    
 


,






 

   

(29)

 

 

where 
a

c

c

a

r

r

aa
A

a
a

A

A
A

A

G
G

EA

P
P 

****
,,, . 

 

If  5.1D , 

 
3 1 1 3

24 2 4 4

1 2

'
2 '

'

l

e l

c

aR
P EG a ln

R R a
 






, (30) 

 
1 3 1

24 4 4
3

5.6 ' 76.4 '
2

p l c
P Y a a


 , (31) 

 
1

1 3 0.12 4

4 4
2.8(1 76.4 )3

4 0.18

c

ep l

kYa
P a

 


 . (32) 

 

We can get the total normal load as: 

 

eppe
PPPP  , (33) 

1 3 3 1

24 4 4 2

1 2

1

1 0.12 4
2 4

'
' 2

'

2.8(1 76.4 ) '3 3
5.6 76.4 ' ,

2 4 0.18

l

l

c

c

c

aR
P a EG ln

R R a

kYa
Y a

 







  


 

  




 

 

3

4
1 3 1

24 4 2

1 1

1 24 4

1

1 0.12 4
2 4

2
2

3 3

2.8(1 76.4 ) (2 )3 3
5.6 76.4 (2 ) .

2 4 0.18

r

r

c

c

c

R A
P A EG ln

R R
a

kY a
Y a

 

 







 
 

 
    

  


 

 




 

(34)

 

 

Giving the total normal load in a non-dimensional 

form as: 
3

4
1 3 1 *

* * * 24 4 2

1 1

1 2 *4 4

1

1 0.12 * 4
2 * 4

2
2

3 3

2.8(1 76.4 ) (2 )3 3
5.6 76.4 (2 )

2 4 0.18

r

r

c

c

c

R A
P A G ln

R R
a

k a
a

 

 










 
 

 
    

  


 

 




 

(35)

 

 

where 
a

c

c

a

r

r

aa
A

a
a

A

A
A

A

G
G

EA

P
P 

****
,,, . 

 

Because 


nK and 


P  are the function of


r
A , from 

the equation (22),(29),(35),we build the implicit function re-

lationship of 


nK and 


P ,which is a complicated non-linear 

relationship. 

II. When:  

RRR 
21 . (36) 
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Put equation (36) into the equation (1) to get the 

relation of  : 

 
1

2 2 2 3
1 2

9 ( )

8

p k k

R




 
  
 

. (37) 

 

Through the deformation of equation (37), the re-

lation between normal contact deformation  and normal 

load p can be expressed as: 

 
1

32

2

1 2

2 2

3 ( )

R
p

k k






. (38) 

 

Substituting for  21
kk    from equation (3) in equa-

tion (38):  

 

1 3

2 2
2 2

3
e

P ER  . (39) 

 

Based on equation (5) and equation (39), we obtain: 

 
1 1

2 22
e

k ER  . (40) 

 

Based on the geometrical relationship of micro-

bluge before deformation and the typical value of fractal 

roughness parameters G, we consider 1R .Then we 

can get the relationship between 'a and 1
R , which is: 

 

1
2a R   . (41) 

 

Through the deformation of equation (41), the re-

lation between 'a and 1
R can be given as: 

 

1

'

2

a

R



 . (42) 

 

Using equation (42) and equation (40), the rela-

tion of normal contact stiffness of two micro convex bodies 

e
k and 'a can be expressed as: 

 

'
2

2
e

a
k E


 . (43) 

 

The normal contact stiffness on elastic-plastic 

stage can be given as: 

 
1.38

1.38( 1) 1.38 0.88

1

2
2.38

3

2.382
.

3

ep

ep

c

D D

c

D

dp
k kH R

d

kHa a

G




 



 



 
    

 

 
 

 

(44)

 

 

The normal contact stiffness of the total joint sur-

face can be obtained as: 

1

1

' '

'
76.4 '

2

1.38 2 2

1

2

1 12 2

2 2

( ') ' ( ') '

2.38 2.8 (1 76.4 ) '

3 1.38(1 )

'
' ' .

(1 )

c l

c
D

c

a a

n ep ea
a

D D

l

D

D D

D D

l

l c

K k n a da k n a da

DkY a

D G

DE a
a a

D

















 

  

 
 

 

 
     

 

 

(45)

 

 

Finally, we can have the final form of the total nor-

mal contact stiffness: 

 

 

2
2

1.38 2

2

2

( 1)

2
2

2 1
2

2
2 1

2
2

2

2(2 )
2.38 2.8 (1 76.4 )

3 1.38(1 )

2(2 )

2(2 )
2 ,

(1 )

D

D

rD

n D

D

D

D
rD

D

r cD

D
DkY A

D
K

D G

D
DE A

D D
A a

D
D





























 
 

 
 
 
 

 
 

 
 

      
      

    
  
 

 

(46)

 

 

where ccrDll aaA

D

D
aaaa 2,

)2(2
2,2

2

2












. 

Give the total normal contact stiffness in a non-di-

mensional form as: 
 

 

2
2

1.38 *2

2

2
*

*( 1)

2
2

*2 1
2

2
12

* * 2

2

2

2(2 )
2.38 2.8 (1 76.4 )

3 1.38(1 )

2(2 )

2(2 )
2 ,

(1 )

D

D

rD

n D

D

D

D
rD

D

r cD

D
Dk A

D
K

D G

D
D A

D D
A a

D
D

 



























 
 

 
 
 
 

 
 

 
 

      
      

    
  
 

 

(47)

 

 

where  

 

E

Y

A

a
a

A

A
A

A

G
G

AE

K
K

a

c

c

a

r

r

aa

n

n  ,,,,
****

. 

 

If 5.1D , substituting for e
p  from equation(39)  

in equation where the completely elastic contact load of the 

joint surface can be given as following: 

 

2

3 2 3 2( 1) 2

2 2 2

( )

.
3(3 2 )

l

c

a

e ea

D

D D DD

l l c

P p n a da

EG D
a a a

D

 







 

  

   
     



 

(48)

 

 

Substituting for 
p

p  from equation (10) in equa-

tion where the completely plastic contact load of the joint 

surface can be obtained as: 
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1

176.4 '

0

22 2

2(1 )2 2 2

( ') '

5.6 ' 76.4 '
.

2(2 )

D
ca

p p

DD D D

D

l c

P p n a da

YD a a

D





 



 





 

(49)

 

 

Substituting for 
epp from equation (12) in equa-

tion where the  elastic-plastic contact  load of the joint sur-

face can be expressed as: 

1

1

'

76.4 '

2.38 1.88 2

1 2

2

2 2

( ') '

2.8 1 76.4 '

' .
2 3(2.38 1.88 )

c

D
c

a

ep ep

a

D D

D
cD D

l

P p n a da

kYa
D

a
D





 





 

 
  

 






 

(50)

 

 

Therefore, we have the total normal contact load of the joint surface: 
 

2 2

2 3 2 3 2 2(1 )1 2

2 2 2 2

2.38 1.88 2

1 2

5.6 76.4 '2
' ' '

2 3(3 2 ) 2

2.8 1 76.4 '

.
3(2.38 1.88 )

D D

D D D D DD

c

e p ep l l c

D D

D
c

Y aD EG
P P P P a a a

D D

kYa

D




 

   

 



   
            

 
   

 
 





   

(51)

 

 

Combine the equation (21) and the equation (51) to get the final form: 
 

 

3 2
2 22 2

2 2(1 )1 3 2 2

2 2
2 2

2 2

2.38 1.88 2

1 2

5.6 76.4 (2 )2(2 ) 2 2(2 )
2

2 3(3 2 ) 2

2.8 1 76.4 (2 )

.
3(2.38 1.88 )

D D
D D

D DD D
c

r r cD D

D D

D
c

Y aD D EG D
P A A a

D D
D D

kY a

D




 


 

  

 

 



 
                       
    

 

 
   

 
 





 

(52)

 

 

Give the total normal contact load in a non-dimensional form as: 
 

 

 
 

3 2

2 2
2 3 2* 1

* * * *2 2

2 2

2 2

2.38 1.88 2
2 *2 1 2

*2(1 ) 2

2(2 ) 2 2(2 )
2

2 3(3 2 )

2.8 1 76.4 2
5.6 76.4 2

2 3(2.38 1.88 )

D D

D DD

r r cD D

D D
D D D
D c

c

D D G D
P A A a

D
D D

k a
a

D D




 






 

 

 
  


 
                     
    

 

 
     

   




,



    

(53)

 

where
E

Y

A

a
a

A

A
A

A

G
G

EA

P
P

a

c

c

a

r

r

aa

 ,,,,
****

. 

When 5.1D , the elastic, elastic-plastic, plastic 

normal contact load can be given as: 

 
1 1 3

2 4 4
'

'
4 '

l

e l

c

a
P EG a ln

a


 , (54) 

 
1 3 1

24 4 4
3

5.6 ' 76.4 '
2

p l c
P Y a a


   , (55) 

1

1 3 0.12 4

4 4
2.8(1 76.4 ) '3

'
4 0.18

c

ep l

kYa
P a




 . (56) 

 

We can have the expression of the total normal 

contact load as following: 

 

1 3 1 1

24 4 2 4

1

0.12 4

' 3
' 5.6 76.4 '

4 ' 2

2.8(1 76.4 ) '3
.

4 0.18

e p ep

l

l c

c

c

P P P P

a
a EG ln Y a

a

kYa








   


  




 






 

(57)

 

Put the equation (56) into the equation (57), so that 

we can get the final form: 
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3
14

1 1 1 0.12 4
24 2 4

2 2

2 2

2.8(1 76.4 ) (2 )(2 )2(2 ) 3 3
5.6 76.4 (2 )

4 2 4 0.18

cr

r cD D

c

kY aD AD
P A EG ln Y a

D D a




 





 

  
   

  
  

   
   

.  (58) 

 

Give the total normal contact load in a non-dimensional form as: 
 

 
   

3
1

4 0.12 * 41 1 1*

* * * 2 *4 2 4

2 2

*2 2

2.8 1 76.4 2(2 )2(2 ) 3 3
5.6 76.4 2

4 2 4 0.18

cr

r cD D

c

k aD AD
P A G ln a

D D a


 

 





 

 
   

    
   
   

, (59) 

 

where
E

Y

A

a
a

A

A
A

A

G
G

EA

P
P

a

c

c

a

r

r

aa

 ,,,,
****

. 

 

Because 


nK  and 


P are the function of 


r
A , 

based on the equation (47),(53),(59), we build the implicit 

function  relationship of 


nK  and 


P , which is a compli-

cated  non-linear relationship. 

4. The digital simulation of joint surface’s normal  

contact stiffness fractal model 

In this thesis, we give the simulation for the case 

when 21
RR   and the related materials parameters 

),,,( EY are settled, with fractal dimension D and fractal 

roughness parameters G are given.  

 

  
 

Fig. 3 The change law of total dimensionless normal con-

tact stiffness 


nK with total dimensionless contact 

load P*and the fractal dimension’s (D take1.1,1.2 

and 1.3) impact on the total dimensionless normal 

contact stiffness * *
( 1.0 10, 1.5)

n
K G E     

 

Fig. 4 The fractal dimension’s (D take 1.1, 1.2 and 1.3) im-

pact on the total dimensionless normal contact stiff-

ness ( 5.1,100.1 


EG ) 

 

 
 

 

(a) 1.1D  
 

(b) 9.1D  
 

Fig. 5 The fractal roughness parameters 


G ’s impact on the total dimensionless normal contact stiffness 

)100.1( 


EGK n
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Fig. 6 The three-dimensional plot of total dimensionless 

normal contact stiffness 

nK , total dimensionless 

contact load


P and the fractal dimension’s (D 

take1.1,1.2 and 1.3) impact on the total dimension-

less normal contact stiffness 


nK  

Fig. 7 The three-dimensional plot of total dimensionless 

normal contact stiffness 

nK , total dimensionless 

contact load


P and the fractal roughness parameters 


G ’s impact on the total dimensionless  normal con-

tact stiffness )5.1( 

nK  

 

At this point is known by the formula (47), (53), 

(59) that total dimensionless contact load 


P and total di-

mensionless normal contact stiffness 


nK are both complex 

functions of dimensionless real contact area Ar*. Therefore, 

according to the literature [19] ,we  take plasticity index 

0.7,1.5, 2.5;   Poisson's ratio 0.29  ,elastic modulus

11

21 1007.2  EE ,dimensionless roughness parameters 

90.1 


EG , 110.1 E , 1 2
  ,fractal dimension 

9.1~1.1D . Figs. 3 to 6 are ,respectively, given by the 

change law of total dimensionless contact load


P ,the sim-

ulation results of fractal dimension D’s, fractal roughness 

parameters  
G ’s plasticity index  ’s impact on normal 

contact stiffness considered over elastic-plastic deformation 

mechanism. 

5. The analysis of simulation results 

1. It can be seen from Fig.3, under the considera-

tion of elastic-plastic transition mechanism , when the frac-

tal dimension 9.1~1.1D ,total dimensionless normal 

contact stiffness 


nK increases with the increasing of the to-

tal dimensionless contact load


P it is non-linear relation-

ship. 

2. According to Fig. 3, total dimensionless  normal 

contact stiffness 


nK changes with the  total dimensionless 

contact load 


P and  the  fractal dimension’s influence on 

total dimensionless normal contact stiffness ,we select frac-

tal dimension 1.1D , 9.1D  respectively, and simulate 

the fractal roughness parameters 


G and plasticity index 

  ’s impact on the total dimensionless normal contact stiff-

ness. The total dimensionless  normal contact stiffness


nK  

increases with the increasing of fractal roughness parame-

ters 


G , in Fig. 5, a. The total dimensionless  normal con-

tact stiffness increases with the  plasticity index  ’s in-

creasing, in Fig. 5, a. But when 9.1D , the total dimen-

sionless normal contact stiffness 


nK decreases with the in-

creasing of fractal roughness parameters  in Fig.5, b; the to-

tal dimensionless  normal contact stiffness decreases with 

the  plasticity index  ’s increasing. 

3. According to Fig. 6, when the fractal dimension 

9.1~1.1D , total dimensionless normal contact stiffness 


nK increases with the increasing of total dimensionless 

contact load


P it is non-linear relationship, which gains the 

same result with  Figs. 3 and 4. 

4. According to Fig. 7, the total dimensionless nor-

mal contact stiffness


nK increases with the increasing of 

fractal roughness parameters 


G ,which gains the same re-

sults with Fig. 5, a and b. 

Acknowledgements 

This work was financially supported by National 

university student innovation project (201410504066, 

20150504077). Thanks to Prof. Jiajun Yang, he is the corre-

sponding author. 

References 

1. Greenwood, J A.; Williamson, J B P. 1966. Contact of 

nominally flat surfaces, Mathematical and Physical Sci-

ences, 295(87): 300-319. 

http://dx.doi.org/10.1098/rspa.1966.0242. 

2. Majumdar, A.; Tien, C.L. 1990. Fractal Characteriza-

tion and Simulation of Rough Surfaces, Wear 

136(2):313-327. 

http://dx.doi.org/10.1016/0043-1648(90)90154-3. 

3. Majumdar, A.; Bhushan, B. 1990. Role of fractal ge-

ometry in roughness characterization and contact me-

chanics of surfaces, ASME Journal of Tribology, 112 (2): 

205-216. 

http://dx.doi.org/10.1115/1.2920243. 

4. Wang, S.; Komvopoulos, K. 1994. Fractal theory of the 

interfacial temperature distribution in the slow sliding 

1.1

1.15

1.2

1.25

1.3

0

2

4

6

x 10
-7

5

10

15

20

25

0
0.2

0.4
0.6

0.8
1

x 10
-9

0

2

4

6

x 10
-7

0

5

10

15

20

25

GP*

K
n



 712 

regime:Part I-elastic contact and heat transfer analysis,  

ASME Journal of Tribology, 116(4): 812-818. 

http://dx.doi.org/10.1115/1.2927338. 

5. Xueliang, Zhang.; Yumei, Huang.; Ying, Han. 2000. 

Fractal model of the normal contact stiffness of machine 

joint surfaces based on the fractal contact theory, China 

mechanical engineering, 11(7):727- 729. 

http://dx.doi.org/10.3321/j.issn:1004-132X.2000.07. 

003. 

6. Shuhua, Wen.; Xueliang, Zhang.; Meixian, Wu.; 

Xiaoguang, Wen.; Pengyun, Wang. 2009. Fractal 

model and simulation of normal contact stiffness of joint 

interfaces and simulation, Journal of agricultural ma-

chinery, 40 (11):197-202. 

7. Ganti, S.; Bushan, B.1995. Generalized fractal analysis 

and its applications to engineering surfaces, Wear, 

180(1-2):17-34. 

http://dx.doi.org/10.1016/0043-1648(94)06545-4. 

8. Wang, S.; Konvopoulos, K. 1995. Fractal theory of 

temperature distribution at elastic contacts of fast sliding 

surfaces, Journal of Tribology, 117(2): 203-215. 

http://dx.doi.org/10.1115/1.2831227. 

9. He, L.; Zhu, J. 1997. The fractal character of processed 

metal surfaces, ASME J. Tribol, 208(1-2): 17-24. 

http://dx.doi.org/10.1016/S0043-1648(96)07330-9. 

10. Shuyun, Jiang.; Yunjian, Zheng.; Hua, Zhu. 2010. A 

contact stiffness model of machined plane joint based on 

fractal theory, Journal of Tribology, 132(1): 1-7. 

http://dx.doi.org/ 10.1115/1.4000305. 

11. Ghafoor, A.; Dai, J, S.; Duffy, J. 2004. Stiffness mod-

eling of the soft-finger contact in robotic grasping, 

ASME Journal of Tribology, 646(11): 135-140. 

http://dx.doi.org/10.1115/1.1758255. 

12. Wu, J. J. 2001. The properties of asperities of real sur-

face, ASME Journal of Tribology, 394(11): 1946-1950. 

http://dx.doi.org/10.1115/1.1353179 

13. Robert, L. J.; Jeffrey, L. S. 2006. A multi-scale model 

for contact between rough surfaces, Wear, 261(11-12): 

1337-1347. 

http://dx.doi.org/10.1016/j.wear.2006.03.015. 

14. Persson, B. N. J. 2006.  Contact mechanics for ran-

domly rough surface, Surface Science Reports, 61(3): 

201-227. 

http://dx.doi.org/10.1016/j.surfrep.2006.04.001. 

15. Dickrell, D. J.; Sawyer, W. G. 2011. Lateral contact 

stiffness and the elastic foundation, Tribology Letters, 

41(1): 17-21. 

http://dx.doi.org/10.1007/s11249-010-9666-5. 

16. Filippi, S.; Akay, A.; Gola, M. M. 2004.  Measurement 

of tangential contact hysteresis during microslip, ASME 

Journal of Tribology, 482(5): 78-85. 

http://dx.doi.org/10.1115/1.1692030. 

17. Kartal, M. E.; Mulvihill, D. M.; Nowell, D.; Hills, D. 

A. 2011. Measurements of pressure and area dependent 

tangential contact stiffness between rough surfaces us-

ing digital image correlation, Tribology International, 

44(21): 1188-1198. 

http://dx.doi.org/10.1016/j.triboint.2011.05.025. 

18. Shuhua, Wen.; Xueliang, Zhang.; Meixian, Wu.; 

Xiaoguang, Wen.; Pengyun, Wang. 2009. Combining 

with the surface normal contact stiffness of fractal model 

is established and simulation, Journal of agricultural ma-

chinery, 40(11): 197-202. 

19. Nashan, Wang; Xueliang, Zhang; Guosheng, Lan; 

Shuhua, Wen; Yonghui, Chen; Liqin, Liu; Zuo-

zheng, Niu. 2014. The critical parameters of continuous 

contact elastic-plastic fractal rough surface normal con-

tact stiffness model, Journal of vibration and shock, 

33(9): 72-77. 

http://dx.doi.org/10.13465/j.cnki.jvs.2014.09.013. 

20. Xueliang, Zhang; Meiyu, Huang; Weiping, Fu; 

Wenpeng, Zhang. 2000. The fractal model of rough 

surface normal contact stiffness, Journal of applied me-

chanics, 17(2):  31-36. 

http://dx.doi.org/10.3969/j.issn.1000-4939.2000.02.006. 

21. Xueliang, Zhang; Meiyu, Huang; Ying, Han. 2000. 

The method of machine joint surface is based on the the-

ory of the fractal contact to contact stiffness model, Chi-

nese mechanical engineering, 11(7): 727-730. 

http://dx.doi.org/10.3321/j.issn:1004132X.2000.07.003. 

22. Xueliang, Zhang. 2002. The dynamic characteristics of 

machine joint surface and its application. Beijing: China 

science and technology publishing house: 1-2. 

23. Shuhua, Wen; Xueliang, Zhang; Meixian, Wu. 2009. 

Fractal model of normal contact stiffness of joint inter-

faces and its simulation, Journal of agricultural machin-

ery, 40(11): 197-202. 

24. Huiguang, Li; Heng, Liu; Lie, Yu. 2011. Contact stiff-

ness of rough mechanical joint surface, Journal of xi 'an 

jiaotong university, 45 (6):  69-74. 

http://dx.doi.org/10.7652/xjtuxb201106013. 

25. Li, Huiguang; Liu, Heng.; Yu, Lie. 2012. Dynamic 

characteristics of rod fastening rotor for gas turbine con-

sidering contact stiffness, Journal of vibration and 

shock, 31(7):  4-8. 

http://dx.doi.org/10.3969/j.issn.1000-3835.2012.07.002. 

26. Zhushi, Rao; Songbo, Xia; Guangming, Wang. 1994. 

A study of contact stiffness of flat rough surfaces. Jour-

nal of Mechanical Strength, 16(2): 72-75. 

27. Yanting, Yi ; Xue, Zhai; Zhi, Wang. 2012. Influences 

of normal contact stiffness on an assembly’s vibration 

models, Journal of vibration and shock, 31(6): 171-174. 

http://dx.doi.org/10.3969/j.issn.1000-3835.2012.06.035. 

28. Yi, Liu.; Heng, Liu.; Jun,Yi. 2013. Equivalent method 

for normal contact stiffness considering plastic contact 

layer, Journal of vibration and shock, 32(7):  43-47. 

http://dx.doi.org/10.3969/j.issn.1000-3835.2013.07.009. 

29. Xueliang, Zhang.; Yumei, Huang.; Ying, Han. 2000. 

Fractal model of the normal contact stiffness of machine 

joint surfaces based on the fractal contact theory, China 

mechanical engineering, 11(7): 727-729. 

http://dx.doi.org/10.3321/j.issn:1004132X.2000.07.003. 

30. Guosheng, Lan.; Xueliang, Zhang.; Hongqin, Ding. 

2011.  Modified contact model of joint interfaces based 

on fractal theory, Transactions of the Chinese Society 

for Agricultural Machinery, 42(10): 217-223.  

http://dx.doi.org/10.3969/j.issn.1000-1298.2011.10.042. 

31.  Shuyun, Jiang.; Yunjian, Zheng. 2010. A contact 

stiffness model of machined joint surfaces, Journal of 

Tribology Transactions of ASME, 132(1): 1-7. 

http://dx.doi.org/10.14257/ijca.2014.7.6.03. 

32. Kogut, L.; Etsion, I. 2002. Elastic-plastic contact anal-

ysis of a sphere and a rigid flat, American Soci-

ety of Mechanical Engineers, 69(5):  657-662.  

http://dx.doi.org/10.1115/1.1490373. 

33. Xueliang, Zhang.; Yumei, Huang.; Shuhua, Wen. 

2000. Fractal model of contact stiffness of joint surface, 

http://dx.doi.org/10.1115/1.1758255
http://dx.doi.org/10.1115/1.1353179
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/


 713 

Transactions of the Chinese Society for Agricultural 

Machinery, 31(4): 89-91. 

34. Xueliang, Zhang.; Shuhua, Wen. 2002. A fractal 

model of tangential contact stiffness of joint surfaces 

based on the contact fractal theory, Transactions of the 

Chinese Society for Agricultural Machinery, 33(2): 91-

93. 

35. Xueliang, Zhang.; Shuhua, Wen. The dynamic charac-

teristics of machine joint surface and its application, Sci-

ence and technology of China press, Beijing. 

36. Guangqin, Wang. 2008. Elastic mechanics, China rail-

way publishing house: 183-186. 

37. Shuhua, Wen.; Xueliang, Zhang.; Meixian, Wu. 2009. 

Fractal model of normal contact stiffness of joint inter-

faces and its simulation, Journal of agricultural machin-

ery, 40(11): 197-202. 

38. Liou, J L. 2006. The theoretical study for microcontact 

model with variable topography parameters, Tiwan: Na-

tional Cheng Kung University. 

39. Jinmin, You.; Tianning, Chen. 2009. Fractal model for 

normal dynamic parameters of joint surfaces, Journal of 

Xi’an Jiao Tong University, 43(9): 91-94. 

http://dx.doi.org/10.7652/xjtuxb200909020. 

 

 

Jingfang Shen, Sha Xu, Wenwei Liu, Jiajun Yang 

 

FRACTAL MODEL OF NORMAL CONTACT 

STIFFNESS BETWEEN TWO SPHERES OF JOINT 

INTERFACES WITH SIMULATION 

 

S u m m a r y 

 

The contact stiffness of joint surface plays a signif-

icant role in the overall static and dynamic characteristics of 

mechanical systems. When considering joint interfaces with 

two rough surfaces, the traditional model based on Hertz 

contact theory between a sphere and a plane is difficult to 

use, especially for increasingly complex engineering sur-

faces. In order to overcome the weakness, here we propose 

a new contact stiffness model in view of the influence of 

domain extension factor between two rough surfaces. We 

study the deformation mechanism and the critical contact 

parameters. Subsequently, we analyze evolution of the elas-

tic-plastic contact involving three distinct stages ranged 

from complete elastic through elastic-plastic to fully plastic 

deformation. Our fractal model is more universal than the 

traditional model based on some strict assumptions which 

simplify the contact of two rough surfaces to a rough surface 

and a rigid plane. In fact, the traditional model could be re-

garded as a special case in our new model. Simulations show 

that non-dimensional normal contact stiffness increases 

with dimensionless contact total load under the mechanism 

of elastic-plastic transition when the fractal dimension is be-

tween 1.1 to 1.5. The results indicate that contact stiffness 

of our fractal model is appropriate and the theoretical con-

tact stiffness is consistent with the experiment data. 
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