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1. Introduction 

 

Creep phenomenon may be hazardous for mechan-

ical and electromechanical composites, connections, net-

works and devices. Recently, the metal matrix composites 

(MMC’s) are generally employed to design the mechanical 

systems and devices due to their advantages. Therefore, 

analysis of the creep behavior is essential and significant for 

safe designing the fibrous composite devices. Different the-

oretical method is presented for analyzing the second stage 

creep of the short fiber composites subjected to axial load 

using nonlinear displacement functions. Behavior of crept 

matrix is described by an exponential creep law, whilst the 

fibers behave elastically in general. The major plan of this 

research work is prediction of the creeping response and be-

havior in the fibrous composites for preventing unwanted 

events, over and above, controlling the creep deformation 

rate theoretically and numerically. Newly, the creep analy-

sis of the fibrous composites is one of the important chal-

lenges in various applied sciences and technologies. MMC’s 

contain a lot of advantages such as excellent conductivities. 

Using the short fiber composites is recently growing be-

cause of their applications in different industries. The ele-

vated temperature creep behavior of SiC short fibers rein-

forced Al alloys is the significant topic of investigations that 

intended at analyzing the ability of the mentioned compo-

sites for using as reinforced materials at the elevated tem-

perature applications [1-10]. So, analysis of the crept rein-

forced materials behavior is significant and fundamental, 

because, the happening of the creep in the reinforced mate-

rials can be risky. So, the plasticity and creep investigation 

is more important in the various industries. Numerous in-

vestigators have analyzed the creep behavior in view of the 

diverse approaches [1-3].  

The model of Shear-Lag usable to irregular fibrous 

composites has been introduced [4-8]. For example, Cox [4] 

proposed a stress transfer method in the unidirectional long 

or short fiber composites, which is known as the shear lag 

theory. The creep of dispersion reinforced aluminum based 

metal matrix composite has been experimentally analyzed 

[9, 10]. The second stage creep of SiC/Al composite at 

573 K was experimentally studied [9].  

Moreover, analysis of the creep deformation in 

non-reinforced regions of crept short fiber composites has 

been done under tensile load using the imaginary fiber tech-

nique [11]. In the recent years, the theoretical methods have 

been introduced for analyzing nonlinear differential and or-

dinary equations with purpose of obtaining suitable solu-

tions and algorithms. Additionally, some analytical and ex-

perimental attempts were performed   to study the creep be-

haviors [12-14]. 

Also, recently interesting research work has been 

done about creep in the optoelectronic short fiber compo-

sites by different approaches [15]. 

In addition, interesting and applied research works 

were done by various investigators about creep analysis [16-

20]. For example, a study has been carried out regarding the 

simulation method of linear creep parameters of laminated 

composites when the composite was loaded along the joint 

of the layers. In which, the developed method was based on 

the numerical integration of the second kind Volterra inte-

gral equation taking out the stress mean before the integral 

[16]. 

This paper tries to present a comprehensive study 

on the second stage creep of the short fiber composite in or-

der for predicting and analyzing the creep behavior using 

nonlinear displacement functions theoretically and numeri-

cally.   

 

2. Materials and methods 

 

Here, a unit cell model as axisymmetric (repre-

sentative of a complete short fiber composite) is assumed to 

simulate the creep of fibrous composite shown in Fig. 1. 
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Fig. 1 Unit cell model 

 

It is supposed that a cylindrical fiber with a radius 

a and a length 2l is inserted in a coaxial cylindrical matrix 

with an outer radius b and a length 2l ' . The volume fraction 

and aspect ratio of the fiber are presented by f and s=l/a re-

spectively. Additionally, k l ' a / lb  is considered as a pa-

rameter in relation with the geometry of the unit cell. An 

applied axial tensile loading σ0, is uniformly applied on the 

end faces of the unit cell (at z l '  ). The creep behavior of 

the matrix is introduced by an exponential function as the 

following in Eq. (1):  
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where A and B are the creep constants of the crept matrix 

material, and also the equivalent stress e σ  and the equiva-

lent strain rate e  have been introduced in Eq. (1). The gen-

eralized constitutive equations for the creep of the matrix 

are considered as below: 
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In addition, the incompressibility relation must be 

satisfied, that is: 
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Parameters of u  and w  are radial and axial dis-

placement rates respectively. In addition, the equivalent 

stress e σ  and equivalent strain rate e  are given by: 
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The equilibrium equations for the axisymmetric 

problem considering the cylindrical coordinates ( , ,r  θ  z ) 

are given as the following forms: 
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At which, the parameters of , ,r z    and rz  are 

the strain rate components in the directions indicated by sub-

scripts. Moreover the parameters of , ,r zσ  σ  σ  and rzτ  are 

the radial, circumferential, axial, and shear stress compo-

nents, respectively.   

 

3. Boundary conditions 

 

For obtaining the steady state creep behavior, the 

following boundary conditions (BC’s) are given as the fol-

lowing: 
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Based on equilibrium equation for axial force at the 

z direction, we have:  
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f m
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Where the superscripts m and f indicate the crept 

matrix and elastic fiber and the bar sign on the stress symbol 

( m
z ) denotes the average value over the cross sections of 

the matrix and fiber. It should be noted that all results are in 

relation with the crept matrix in the second stage creep of 

the short fiber composites. 

Absence and presence of the superscript m indicate 

that mentioned parameter is related to the matrix, but pres-

ence of the superscript f is necessary for indicating the fiber. 

For instance,    , ,, .
m m
z z u r z u r z  

 
secondary and 

primary edges of the unit cell are depicted in Fig. 2 in the 

second stage creep subjected to tensile axial stress [19].  

The radial and axial displacement rates u  and w  

are determined by means of the incompressibility and ap-

propriate boundary conditions (BC’s). Then, stress fields are 

predicted employing the constitutive and equilibrium equa-

tions considering incompressibility, boundary conditions 

and geometric relations (Eqs. (1-12)). The nonlinear func-

tion of  u r , z  is given as the following: 
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Therefore, the axial displacement rate  ,w r z   is 

achieved by the incompressibility condition as follows: 
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Here, the unknown coefficients of 'jk s  are also 

obtained by boundary conditions presented in Eqs. (8a-h). 
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The shear stress in the crept matrix is determined by Eqs. 

(1-5), that is:  
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For simplifying the computations, the value of bu  

is obtained by reference of [9]. Stresses in the matrix, 

, r
m m
z 

 
and 

m
  are obtained by solving the equilibrium 

and constitutive equations considering geometry relations 

simultaneously (Eqs. (1-12)). 
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Fig. 2 Primary and secondary edges (front view) 

 

4. Results and discussions 

 

For investigating the confirmation of the current 

theoretical method, the SiC/Al6061 composite is selected as 

a investigation case. Finite element calculations are done 

employing the FE commercial code of ANSYS. The model 

geometry is chosen as shown in Fig. 1, and the surface con-

ditions are applied as presented in Eqs. (8a-h).  

Also, the axisymmetric nonlinear quadratic ele-

ment of PLANE 183 is used for FEM analysis. For the com-

posite used here (SiC/Al6061), the volume fraction of fibers 

is 15% and the fibers have an aspect ratio of 7.4 (s=7.4) and 

k = 0.76, which are in accordance with the suggestions made 

by Morimoto et al. [9]. Furthermore, the second stage creep 

constants of the matrix material, A and B, in Eq. (1) are con-

sidered as A = exp(-24.7) and B = 6.47, which have been 

given by Morimoto et al. [9]. The applied load and temper-

ature are considered as 0 80app    MPa and T=573K 

respectively. Tables 1-3 show the creep behavior of the 

short fiber composite by obtained values of stresses at  

r = b-κ (κ is a positive value and small enough).  

Table 1 

Comparison among the shear, equivalent, axial, radial and 

circumferential values using the analytical and FE methods 

Stresses in 

matrix (MPa) 

Normalized axial 

Position (z/l) at  

r = b-κ 

0 0.5 1 

Shear stress (new work) 10−5 10−5 10−5 

Equivalent stress (new work) 28.8 28.8 28.8 

Shear stress (FEM) 10−5 10−5 10−5 

Equivalent stress (FEM) 30 29.7 29.5 

Axial stress (analytical, new work) -61.2 -1.3 52 

Axial stress (FEM) -59.4 -0.8 50.4 

Radial stress (analytical, new 

work) 
-95 -33.5 46 

Radial stress (FEM) -95.2 -34.1 46.2 

Circumferential stress (analytical, 

new work) 
-86 -26 26 

Circumferential stress (FEM) -85.5 -27.2 26 

 

According to Tables 1-3, suitable agreements are 

found. Founded on the computed results, great and increas-

ing gradients and slopes are found at the shear stress at the 

interface and equivalent stress behaviors at the central loca-

tions of the elastic fiber. 

Table 2 

Comparison between the shear and equivalent results 

 using the analytical and FE methods at r=a+ κ 

Methods 
Stresses in 

 matrix (MPa) 

Normalized axial 

 position (z/l) at r = a+ κ 
0 0.1 0.5 1 

New work 
Shear stress 0 19.2 28.4 29 

Equivalent stress 0 32.6 47.8 52.7 

FEM 
Shear stress 0 20.1 25.6 30.5 

Equivalent stress 0 33.1 47 53.1 

Table 3 

Comparison among the axial, radial and circumferential 

values using the analytical and FE methods at r=a+ κ 

Stresses in 

 matrix (MPa) 

Normalized axial 

 position (z/l) at  r = a+ κ 
0 0.5 1 

Axial, Circumferential and 

 Radial stresses (New work) 
-90.1 -37.4 25.7 

Axial, Circumferential and 

 Radial stresses (FEM) 
-89.8 -37 -379.1 

 

However, small slopes and gradients are seen for 

the shear (at the interface) and equivalent stress behaviors at 

the end of the elastic fiber clearly. In addition, the changes 

of the gradients at the interface are owing to changes of the 

geometric factors, material properties, and applied stress 

and load. However, linear behaviors are considered in the 

axial, radial and circumferential stress components at the in-

terface and outer surface of the unit cell. In addition, 

changes in gradient of the axial, radial and circumferential 

stresses are flat and consistent. According to the computed 

and obtained results, the interfacial shear and equivalent 

stresses have logarithmic and non-linear behaviors whilst 

the axial, radial and circumferential stress behaviors are lin-

ear at the interface. Interestingly, excellent compatibilities 

are found between the analytical and numerical results. 

Figs. 3-5 prove and show the finite element (FE) solution of 
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the crept short fiber composite. Fig. 3 shows contour plot 

and nodal solution of the crept short fiber composite. In ac-

cordance with Fig. 3, the significant locations are obtained 

and predicted. 

 

 
 

Fig. 3 Nodal solution (Presentation of the critical regions: 

MX, MN) 

 

Fig. 4 schematically reports the equivalent stress 

behavior of the creeping short fiber composite that is loga-

rithmic with variable gradients (at the interface). Also, 

Fig. 5 explains that the equivalent stress behavior of the 

creeping short fiber composite at the outer surface is approx-

imately invariable with consistent gradients. The mentioned 

behaviors show that these behaviors are controllable.  

 

 
 

Fig. 4 Comparing the FEM and analytical method results for 

predicting the equivalent and shear stress behaviors 

at r=a+ κ 

 

Equivalent and shear stresses at the outer surface 

and interface (i.e. at r=a+ κ, b- κ) were graphically pre-

sented in Figs. (4, 5). As seen, both the present theoretical 

and FE methods show a logarithmic behavior for interfacial 

equivalent stress. In addition, the results show that the inter-

facial equivalent stress gradients are very large near the cen-

ter of the elastic fiber. However, these gradients are small in 

the other regions of the fiber. 

 
 

Fig. 5 Comparison of FEM and analytical method results 

to predict the equivalent stress behavior at r=b- κ 

 

Table 4 

Comparing among the present theoretical method, FEM re-

sults, and experimental data [9] for obtaining the compo-

site creep strain rate (1/s) 

Stress 

(MPa) 

Theoretical 

 method, 

 (New work) 

FEM 
Experimental 

 [9] 

80 9
1.45 10


  9

1.19 10


  8
6.67 10


  

60 10
3.73 10


  10

2.93 10


  10
7.38 10


  

 

According to Table 4, the composite creep strain 

rates determined by the present theoretical method, FEM, 

and the experimental methods have been compared. The ob-

tained results present a suitable and good agreement among 

the values of theoretical method, FEM, and experimental 

data. Also, it is concluded that the equivalent and shear 

stress behaviors are similar to function behavior of 𝑓(𝑥) = 

= 𝐴0√𝐴1𝑥|0
𝑧/𝑙

. That is, the equivalent and shear stress behav-

iors are similar to the function behavior of  𝐴0√𝐴1𝑥|0
𝑧/𝑙

 ap-

proximately.  

 

5. Conclusions 

 

A new theoretical approach is proposed to study 

the second stage creep in the short fiber composites sub-

jected to the axial load based on nonlinear functions with 

application in the fibrous composites. Accuracy of the ob-

tained theoretical results is suitable. The good accuracy is 

due to employing the nonlinear high order displacement 

functions and basic and constitutive equations. Also, as an 

important and interesting result and conclusion, it is con-

cluded that the equivalent and shear stress behaviors and 

trends are close to function behavior of 𝑓(𝑥) = 𝐴0√𝐴1𝑥|0
𝑧/𝑙

 

mathematically. The present formulation (Eqs. (10, 11)) can 

be applied and used in the elasticity and plasticity problems 

based on well-behaved functions. These two important 

functions have been determined by MATLAB program and 

codes. 

Therefore, we can employ the mentioned approach 

to predict the creep behavior of the fibrous composites to 
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prevent undesired and unsafe events, as well as, control of 

creep deformation rate theoretically. Significant gradient 

changes are found in the shear and equivalent stress behav-

iors that are due to the nature of the creep parameters. More-

over, the interfacial shear and equivalent stress behaviors 

are the same with logarithmic functions; linear behavior is 

seen in the axial, radial and circumferential stresses at the 

interface and outer surface of the creeping unit cell. The 

smooth gradients are considered in the axial, radial and cir-

cumferential stress behaviors. The major advantage of the 

presented model is its capability in prediction of the stress 

fields, displacement and strain rate component behaviors. 

The present theoretical method is also comprehensive and 

easy owing to proposing the accurate displacement rate 

fields. Lastly, the present theoretical model may be em-

ployed in different scientific engineering problems in the 

applied physics and mechanics like elastic and plastic anal-

ysis of nano-composites and related engineering fields. It 

should be mentioned that the present model is simpler than 

the other available models. 
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EFFECT OF NONLINEAR FUNCTIONS ON  

PREDICTION OF THE CREEP BEHAVIOR  

IN FIBROUS COMPOSITES THEORETICALLY 

 

S u m m a r y 

 

This paper presents the analysis of the creep behav-

ior for safe designing the fibrous composite devices. Special 

theoretical method is presented for analyzing the second 

stage creep of the short fiber composites subjected to axial 

load using nonlinear displacement functions. Behavior of 

creeping matrix is described by an exponential creep law, 

whilst the fibers behave elastically in general. The major 

plan of the present research work is prediction of the creep 

behavior in the fibrous composites for preventing unwanted 

events, over and above, controlling the creep deformation 

rate theoretically and numerically. Finally, good compatibil-

ities are seen between finite element method and present 

theoretical method results. As an important result and find-

ing, in general, the mentioned behaviors are ascending along 

with soft gradients, and so they are controllable and desired. 

 

Keywords: creep, composite, nonlinear displacement 

function. 
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