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1. Introduction 

 

Finite Element Method (FEM) is a powerful tech-

nique for simulating real life problems, but it is only able 

to provide an approximated solution that necessitates relia-

ble error control of computed solutions. The various error 

estimation techniques have been developing for last several 

years. A critical review of different error estimation tech-

niques to get the practical finite element solution of linear, 

non-linear and transient problems is given in [1]. Error 

estimators can either be classified based on its convergence 

through the global effectivity index, which is defined as 

ratio of the estimated error to the true error or can be clas-

sified based on the procedures to obtain the estimates. The 

classification of error estimators based on convergence are 

asymptotically exact, asymptotically (upper) bounded and 

asymptotically not bounded. The classification of error 

estimators as per the estimation procedure are the residual-

based error estimators [2], constitutive relation error (CRE) 

based error estimators [3] and the recovery-type error es-

timators [4]. The explicit-type recovery error estimator in 

energy norm is proposed in [5] for the linear elasticity 

problem using smooth solution. In [6], a posteriori error 

estimate has been developed and improved convergence is 

shown using non-coinciding meshes for problems in linear 

elasticity. An effective error estimator presented in [7] is 

based on continuous estimated stress field that is achieved 

by interpolating from nodal stresses over the element with 

the shape functions. In [8], it is shown that the technique of 

duality error majorants can serve as an effective local indi-

cator of modeling errors of nonlinear problems. A posterio-

ri error estimate based on an equilibrated stress reconstruc-

tion that is obtained from mixed finite element solutions of 

local Neumann linear elasticity problems is presented in 

[9]. The quality of recovery based error estimation depends 

on the way to obtain the smoothed or post- processed con-

tinuous stress field. The recovery techniques are based on 

the least square fitting of velocity (or the displacement) 

field or their derivatives (stress field) by a higher order 

polynomial over a patch of elements or nodes. The various 

authors have proposed procedures for recovery of post- 

processed stress field. The super-convergent patch recov-

ery scheme is proposed in [10] in which post- processed 

stresses are obtained by interpolating from a stress surface 

fitted to the superconvergent stress points surrounding the 

node of interest. In [11], a patch recovery scheme is em-

ployed in which recovery is performed for all components 

simultaneously.  The coupling of the stress components is 

made through the equations of equilibrium. In [12], com-

putational aspect of Goal-oriented error estimates (GOEE) 

based on enhanced Superconvergent Patch Recovery is 

presented in controlling the local error in quantities of in-

terest (QoI). A method of extrapolation based on patch 

recovery is proposed in [13] for obtaining continuous 

stress field in a local manner.  A recovery technique based 

upon the least square fitting of velocity field over an ele-

ment patch is proposed in [14]. In [15], a moving least 

squares (MLS) recovery-based procedure to obtain post- 

processed smoothed stresses field is presented in which the 

continuity of the recovered field is provided by the shape 

functions of the underlying mesh. Investigations are re-

ported in [16] for getting improved recovery of stress field 

using domain decomposition method in heterogeneous 

structures. In [17], an improvement of the SPR technique, 

called SPR-C technique (Constrained SPR), is presented 

and uses the appropriate constraint equations in order to 

obtain stress interpolation polynomials in the patch. 

Investigators have also shown interest to study the 

effectivity of error estimators and propose different tech-

niques to enhance the effectivity indices of error estima-

tors. In [18], the formulations for recovery based error es-

timators, relying upon the Zienckiewicz-Zhu recovered 

gradient, are presented and their results in terms of 

effectivity indices are compared. In [19]., it is analysed the 

effectivity of the Zienkiewicz-Zhu error estimator consid-

ering the depending parameters such as smoothing proce-

dure, the type of refinement (uniform or adaptive), the type 

of triangular element (linear or quadratic), and the number 

of integration points used in the numerical integration of 

the error estimation. The upper and lower bounds for the 

effectivity index to judge the quality of error estimator for 

linear and unstructured triangular meshes is computed in 

[20]. The present study aimed to present a recovery of 

higher derivative of field variable utilizing moving least 

squares (MLS) technique over a patch of mesh independ-

ent nodes for formulating a posteriori error estimator. The 

moving least squares (MLS) procedure has inherent com-

pleteness, robustness and continuity [21] and, proved to 

interpolate random data with higher accuracy. The perfor-

mance of proposed error estimator is compared on bench-

mark elastic problems with ZZ error estimator [10], which 

evaluates the error using the recovery technique based up-

on the least square fitting of stress field over a mesh de-

pendent nodes patch, in term of effectivity and rate of con-

vergence. 

2. Problem formulation 

Let us consider the two-dimesional linear elastic 

problem. It is to find a stress field  and a unknown 
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displacement field u, satisfyimg over a domain  that is 

bounded by ut  = . Static equilibrium: 

 

0=+ PLT in , (1) 

 

where: P is the force vector and 
TL is the derivative opera-

tor. The strain vector () can be calculated as follows: 

 

.uL=  (2) 

Boundary conditions: 

tn = on t  (3) 

 

and  

 

on ,u  (4) 

in which n is the unit outward normal on the boundary 

ut  = , t and u are prescribed tractions and dis-

placements on t and u , respectively. Constitutive rela-

tion:  

,D =  (5) 

 

where: D contains elasticity coefficient of linear isotropic 

constitutive law that relates the stress to strain. 

According to the Finite Element Method, the 

equilibrium equations are numerically solved in a domain 

that is discretized into several finite elements. The dis-

placements of any point within an element are calculated 

based on the following equation: 

 

,Nu =  (6) 

 

where:  is the nodal displacement matrix, u is the dis-

placement of a certain point within an element and N  is 

the matrix of the interpolation functions, also known as 

shape functions. Since the strains can be related to the nod-

al displacements in the following formula: 

 

.BNL  ==  (7) 

 

In which, B is the strain interpolation matrix, and 

the stresses within an element can also be related to nodal 

forces, the relationship between nodal forces and nodal 

displacements can be described as follows: 

 

.Kf =  (8) 

 

In the above equation, f is the nodal force vector 

and D is known as the stiffness matrix. The global equa-

tions are obtained from assembly of elemental equations. 

The K and f matrices are found from following equations. 

 

.dDBBk j

T

iij =


  (9) 

 

.bddtf iiiij

t

 +=


  (10) 

where b is the body force per unit volume. 

3. Error estimation 

The error in computed stress, *

e is defined as the 

difference between the exact or (recovered) values of 

stress,  , and respective computed values, h  ,  i.e. 

 

.e h*  −=  (11) 

 

The error can be evaluated in any appropriate 

norms. Since the finite element solution minimizes the 

error in the energy norm, the magnitude of the error in en-

ergy norm is a good measure of the overall quality of solu-

tion. The integral measure of the error in energy norm may 

be defined as follows:  

 

.deDee

/

*T*

21









=  



  (12) 

 

The standard measure of the quality of error esti-

mators i.e., effectivity index, , is defined as ratio of esti-

mated error and true Error. An estimator is asymptotically 

exact for a particular problem if its effectivity index con-

verges to one when the mesh size approaches to zero. 

 

,
e

ees
=  (13) 

 

where: e denotes the exact error in energy norm, and 

ese represents the evaluated error estimate. 

4. Moving Least Squares based recovery technique 

In Moving Least Square (MLS) technique, three 

components are used to express the function )(xu with the 

approximation )(xu h , a weight function )(xw associated 

to each node, a basis )(xP , usually consisting of a poly-

nomial, and a set of coefficient, )(xa which are functions 

of the coordinates. Let the nodes be defined by 1x  ... nx  

where 1x  = ),( 11 yx  in two dimensions. The MLS 

)(xu h approximation can be defined as: 

 

,uxu.xxu
m

i
iii

h )()()(
1

 ==
=

 (14) 

 

where: )(x is shape function and m is the total number of 

terms in the basis. In the present study, the basis function is 

)(xP  has adopted m as six for linear elements. 

 
2 2( ) 1, , , , , .hP x x y x xy y =    (15) 

 

The )(1 x is given as:  

 

.xxwxPxa.xPx T )()()()()( 11

1

1 −= −  (16) 
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The vector of coefficients )(xa can be obtained 

by minimizing a weighted residual as follows: 

 

  ,uxax(PxxwJ
n

i

h

ii

T

ii

2

1

)())(
=

−−=  (17) 

 

where: n is the number of nodes i and )( ixxw − is a weight 

function in two-dimension associated to each node (do-

main of influence of that node) which is usually built in 

such a way that it takes a unit value in the vicinity of the 

point  where the function and its derivatives are to be com-

puted and vanishes outside a region i surrounding the 

point ix . The support of the shape function )(1 x is equiva-

lent to the support of the weight function. The following 

cubic spline weight function with circular domain of 

influence is considered in the present study: 

 

==− )()( dwxxw i  

,

dfor

dfor

dfor

ddd

dd

































−+−

+−

=

1
2

1
1

2

1

0
3

4
44

3

4

44
3

2

32

32



 (18) 

 

where: wi dxxd /−= and wd is the size of influence do-

main of the point ix . 

Minimization of weighted residual leads to: 

 

,xBxa.xPx hT  )()()()( 1−=  (19) 

 

where: )().()()(
1

i

T

i

n

i
ii xPxPxxwxa 

=

−= and 

)]()(,.....,),()([)( 111 nnn xPxxwxPxxwxB −−= . 

By putting MLS shape function into the well-

known form of shape function equation, we get: 

 

,.xNx hT  )()( =  (20) 

 

where: )()().()( 1 xBxaxPxN TT −= . 

The derivatives of weight function with respect to 

ix is computed easily using the chain rule of differentia-

tion. 

 

==
ii dx

dd

dd

ddw

dx

dw )()(
 








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























−+

+

=

1
2

1
1

2

1

0

)484(

)128(

2

2

dfor

dfor

dfor

dx

dd
dd

dx

dd
dd

i

i

. (21) 

2
2 2

2 2

( ) ( )

ii

d w d w d d d

dxdx dd

 
= = 

 
  

2

2

2

(8 24 ) 1

2

1
(8 8 ) 1

2

10

i

i

dd
d

for ddx

dd
d for d

dx

for d

  
 +  

  
 

  
= −    

  
 
 
 
 

. (22) 

5. Adaptive Mesh Improvement Strategy 

The refinement strategy depends on the nature of 

the accuracy criterion that is to be satisfied. A very com-

mon requirement is to specify the achievement of a certain 

minimum percentage error in the energy norm.The error in 

individual elements in relation to the global error helps us 

to decide which portions of the mesh need improvement. 

In the present study, the energy norm of the error is adopt-

ed for assessing of the quality of the solution and h-

refinement scheme is employed for improving the mesh. 

The detail of the adopted mesh improvement scheme is 

given in [22]. 

The permissible global error is given by:  
 

,
k

e
e

allow

allow


=  (23) 

 

where: allow is  the prescribed  error  percentage, e  is the 

global strain energy error, k is a factor lying between 1.0 to 

1.5 to prevent oscillation. The following relation gives the 

permissible error in the ith element: 
 

N

e
e

allow

)i(allow
= , (24) 

 

where: N are total number of element. The so-called ele-

ment refinement parameter i  guides the refinement: 

 

.
e

e

)i(allow

i
i =  (25) 

 

If i   1, refinement is needed. The new element 

size newh  is found with the help of the following equation: 

 

,
h

h
p/

i

old
new 1
=  (26) 

 

where: p is the order of the approximating polynomial and 

oldh  is the old size of the ith element. 

6. Numerical example 

The performance and reliability of the error esti-

mators are investigated by2-Dbenchmark example and 

plate problem in elasticity for which exact solution is 

available. The linear and higher order elements have been 

used for the discretization of the domain. 
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6.1. 1×1 Square test problem 

The benchmark examples considers an infinite 

domain problem where it is extracted a 1×1 square domain, 

centred at the origin of coordinates with body loads 

),( yx bb  over the domain. Mesh sequences with 3and6 node 

triangular elements are considered for the analyses. The 

uniform and unstructured refinements has been used. The 

exact displacement solution ),( vu  and body loads ),( yx bb , 

a 3rdorder polynomials, are given in Equation 27 to 30. The 

corresponding Neumann boundary condition is imposed.  

,u 0=  (27) 

 

*)1(*)1(** yxyxv −−−= , (28) 
 

)21(*)21(*)( yxbx −−+=  , (29) 
 

)1(*2*)2()1(*2 xxyyb y −+−−−=  ), (30) 

 

The constants α and β are given as: 

,*/*E ))1()21((  +−=  ),1(2(  += */E  

 

where: E and  are modulus of elasticity and Poisson’s 

ratio respectively with a value of 1.0 N/mm2 and 0.3. 

The test problem domain is discretized with two-

dimensional three and six node triangular elements. Uni-

form subdivision of elements is used for refinement pro-

cess. The adaptive mesh improvement strategy is also used 

to study the local error distribution with desired solution 

accuracy having 3 and 8% global error. The refinement is 

guided through the error predicted ZZ and proposed inter-

polation type error estimators. The initial structured mesh 

with three node and six node triangular elements is shown 

in Fig. 1.  
 

       

a) Structured nesh 

       

b) Unstructured mesh 

Fig. 1 Initial domain discretization with triangular ele-

ments  

The variation of error in energy norm i.e. conver-

gence rate and effectivity of error estimators for the test 

problem sequence of refinement with3-node triangular 

elements are given in Tables 1 to 4.The convergence rate 

and effectivity of error estimatorswith6-node triangular 

elements are given in Tables 5 and 6.  

Table 1  

Convergence rate for test problem using 3-node  

Triangular Mesh (Structured mesh) 

1/h 

Error In Energy Norm 

FEM ZZ 
Proposed 

Recovery 

1/4 0.0937491 0.1442486 0.0312265 

1/8 0.0484492 0.0595053 0.0069389 

1/12 0.0325124 0.0340202 0.0028514 

1/16 0.0244409 0.0226413 0.0015211 

1/24 0.0163211 0.0126257 0.0006328 

1/32 0.0122480 0.0829942 0.0003423 

Rate of Convergence 0.9787520 1.3731344 2.1705202 
 

Table 2 

Effectivity for test problem using 3-node 

Triangular Mesh (Structured mesh) 

1/h 
Effectivity 

ZZ Recovery Proposed Recovery 

1/4 1.4313480 0.9180188 

1/8 1.3629726 0.9776879 

1/12 1.2941474 0.9896826 

1/16 1.2449615 0.9940918 

1/24 1.1824685 0.9973320 

1/32 1.1450787 0.9984889 

Table 3 

Convergence rate for test problem using 3-node 

Triangular Element (Unstructured mesh) 

Unstructured 

Mesh 
Error in energy norm 

No. of 

element 
DoF FEM ZZ Proposed 

45 66 0.067890 0.054832 0.090307 

88 118 0.050178 0.064004 0.030592 

223 270 0.030645 0.014470 0.034043 

925 1014 0.013872 0.004278 0.009970 

Table 4 

Effectivity for test problem using 3-node 

Triangular Element (Un-structured mesh) 

Unstructured Mesh Effectivity 

No. of elem. DoF ZZ Proposed 

45 66 0.971302 1.058595 

88 118 0.977561 1.007610 

223 270 0.986683 1.011595 

925 1014 1.006059 0.995079 

Table 5 

Convergence rate for test problem using 6-node 

Triangular Mesh (Structured mesh) 

1/h 
Error In Energy Norm 

FEM ZZ Proposed Recovery 

¼ 0.01320 0.004930 0.001680 

1/8 0.00339 0.000808 0.000243 

1/12 0.00151 0.000297 0.000075 

1/16 0.00085 0.000147 0.000032 

1/24 0.00038 0.000069 0.000055 
Rate of Con-

vergence 
1.973341 2.533340 2.852823 
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Table 6 

Effectivity for test problem using 6-node 

Triangular Mesh (Structured mesh) 

1/h 
Effectivity 

ZZ Recovery Proposed Recovery 

¼ 0.950244 1.081681 

1/8 0.950675 1.054713 

1/12 0.952948 1.041312 

1/16 0.954808 1.033640 

1/24 0.957291 1.025262 

6.2. Plate problem 

This problem involves square portion (4x4) from 

an infinite elastic plate having a rigid central circular inclu-

sion with a radius (a) of 1 unit and it is the typical problem 

of a stress concentration in an infinite membrane. The ex-

act stress field for the problem are given in following equa-

tions [23]: 

2

2

4

4

1 (1.5cos 2 cos 4 )

,

1.5 cos 4

x

a

r

a

r

 

 





  
− + +  

  =  
 

+  

 
(31)

 

 

2 4

2 4
(1.5cos 2 cos 4 ) 1.5 cos 4 ,

y

a a

r r



   

=

   
= − − +  

   

 
(32)

 

 
2 4

2 4
(1.5sin 2 sin 4 ) 1.5 sin 4 ,y

a a

r r
    

   
= − + +  

   
 (33) 

 

where: 222 yxr += . The one quarter of square domain 

need to be modeled because of symmetry of plate problem. 

The finite portion of the plate discretized with triangular 

mesh is shown in Fig. 2. The boundary conditions are as  

follows. Along the circular arc, both displacement compo-

nents are zero. Along the symmetry line, the normal dis-

placement component and shear stress are zero. Static 

boundaries conditions are imposed from the traction com-

puted from the above equations. 
 

   
 

Fig. 2 Plate domain discretization with triangular meshes 
 

Table 7 
 

Error in energy norm for Plate problem using 3-node 

Triangular Element (Unstructured mesh) 

Mesh Error in energy norm 

No. of 

element 
DoF FEM ZZ Proposed 

86 114 0.013788 0.012764 0.009215 

119 150 0.010032 0.009099 0.006685 

352 404 0.006011 0.004332 0.004281 

Table 8 

Global errors and Effectivity of Error Estimators 

for plate problem 

Mesh & Error ZZ Estimator Propos. Estimator 

No. of 

elem. 

Error % 

(Actual) 
Effectivity  

Error 

%  
Effectivity Error% 

86 11.1 0.976716 10.8 0.816645 9.15 

119 5.03 1.085633 4.91 0.908882 4.34 

352 4.83 0.954128 4.63 0.991225 4.81 

7. Discussion 

The finite element analysis numerical results to 

compare the performance of the proposed error estimation 

technique and Zienkiewicz- Zhu (ZZ) error estimation 

technique on two benchmark problems has been presented 

for linear (3-node) and higher order elements (6-node) 

structured as well as unstructured triangular mesh in Table 

1-8 and Figure 1- 6. For both 3-node structured and un-

structured mesh, and 6-node unstructured mesh, the con-

vergence obtained with the help of proposed mesh inde-

pendent node patch (element free Galerkin (EFG) ap-

proach) based recovery scheme is found to be better than 

that for the mesh dependent node patch based ZZ super 

convergent recovery scheme. Besides, the order of error in 

comparison to ZZ scheme is smaller, thereby indicating 

higher effectivity of the propose error estimation scheme.  

The effectivity of error estimation is also com-

pared for 3-node and 6-node structured and unstructured 

meshes through Tables 2, 4, 6 and 8, and seen that element 

free Galerkin (EFG) approach based recovery technique 

perform better than the ZZ super convergent recovery 

technique specially in problems with singularity. In ZZ 

recovery scheme, especially linear elements, there is a pos-

sibility of less accurate recovery for boundary nodes since 

element dependency provide lesser number of nodes.   

Such difficulty does not arises with the propose element 

free recovery scheme. 

The adaptively refined meshes plot given in Figs. 

3 to 6, obtain through the ZZ and proposed EFG error es-

timators using triangular elements give a picture of distri-

bution of local error in the finite element solution domain. 

The meshes depict that the structured mesh adaptively re-

fined with finer element in areas of high local error to get a 

uniform accuracy throughout the domain. It also concludes 

from the mesh plots that the initial domain sub division 

greatly affects the quality of the refined meshing. The 

coarser initial mesh will result in a uniform error in the 

domain overlooking the high gradients zones.  It also infers 

from the mesh plots that the propose error estimator effec-

tively and efficiently compute the error in energy norm of 

the recovered solution both at local and global levels.  

Table 9 and Table 12 present actual global error 

of the FE solution and global error respectively of struc-

tured and unstructured mesh predicted by the proposed and 

ZZ error estimators.  The number of element in the mesh 

and degree of freedom (DOF) is also given. Table 10 and 

Table 13 depict the number of element and DOF in adap-

tively refined triangular structured and unstructured mesh 

respectively at prescribed target error of 3% and 8% using 

ZZ error estimator. 
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Table 9 

Number of element and DOF in triangular element struc-

tured mesh along with actual and predicted global errors 

Structured Mesh (Initial) 

No. of 

element 
DoF 

Global 

Error % 

(Actual) 

Global Error 

(Estd, ZZ) 

Global 

Error 

(Prop.) 

16 50 39.1 60.8 37.1 

64 162 20.1 28.8 19.7 

144 338 13.5 18.0 13.4 

256 578 10.2 12.9 10.1 

576 1250 6.8 8.1 6.8 

1024 2175 5.1 5.9 5.1 

 

  

a) 3% target error 

  

b) 8% target error 

Fig. 3 Adaptive mesh with triangular elements at different 

initial uniform sub-division (ZZ error estimator, 3% 

and 8% target error) 

Table 10 

Number of element and DOF in adaptively 

refined mesh (ZZ estimator) 

1/h 

(Initial 

Sub 

div.) 

Adaptive Mesh  

(3% target) 

Adaptive Mesh  

(8% target) 

No. of 

element 
DoF 

No. of 

element 
DoF 

¼ 18564 18986 2676 2836 

1/8 5739 11478 1615 1758 

1/12 9806 10170 1386 1538 

1/16 9208 9564 1436 1576 

1/24 8452 8802 -- -- 

1/32 8530 8888 -- -- 

 

Table 11 and Table 14 depict the number of ele-

ment and DOF in adaptively refined structured and un-

structured mesh at prescribed target error of 3% and 8% 

using proposed interpolation based error estimator. It is 

clear from the tables that triangular mesh and mesh im-

provement as per local error prediction through zz error 

estimator needs more elements to achieve the target accu-

racy as compared to proposed estimator. The tables show 

that more or less similar number of elements is required in 

uniform mesh or adaptive mesh to get the lower target ac-

curacy. However, required number of elements increased 

to get the higher accuracy of solution. 

 

   

a) 3% target error 

   

b) 8% target error 

Fig. 4 Adaptive mesh with triangular elements at different 

initial uniform sub-division (Proposed estimator, 3% 

and 8% target error) 

Table 11 

Number of element and DOF in adaptively 

refined mesh (Proposed estimator) 

1/h 

(Initial Sub div.) 

Adaptive Mesh 

(3% target) 

Adaptive Mesh (8% 

target) 

No. of 

element 
DoF 

No. of 

element 
DoF 

¼ 5271 5488 717 800 

1/8 6600 6852 1080 1186 

1/12 7438    7714 1132 1224 

1/16 7492 7874 1072 1190 

1/24 7993 8294 -- -- 

1/32 7802 8186 -- -- 
 

Table 12 
 

Number of element and DOF in unstructured mesh 

along with actual and predicted global errors 
 

Unstructured Mesh (Initial) 

No. of 

element 
DoF 

Global Error 

% (Actual) 

Global Error 

(Estd, ZZ) 

Global 

Error 

(Prop.) 

45 66 28.27 44.55 35.09 

88 118 20.89 31.19 22.89 

223 270 12.76 18.04 13.39 

925 1014 5.77 `6.9 5.76 
 

Table 13 
 

Number of element and DOF in adaptively refined mesh 

(ZZ estimator, 3% and 8% target error) 
 

Initial 

Mesh 

Elements 

Adaptive Mesh (3% 

target) 

Adaptive Mesh (8% 

target) 

No. of 

element 
DoF 

No. of 

element 
DoF 

45 11099 11440 1581 1718 

88 9263 9602 1357 1496 

223 7582 7928 1111 1248 
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a) 3% target error 

   

b) 8% target error 

Fig. 5 Adaptive mesh with triangular elements at different 

initial unstructured mesh (ZZ error estimator, 3% 

and 8% target error) 

Table 14  

Number of element and DOF in adaptively refined mesh 

(Proposed estimator, 3% and 8% target error) 

Initial 

Mesh 

Elements 

Adaptive Mesh (3% 

target) 

Adaptive Mesh (8% 

target) 

No. of 

element 
DoF 

No. of ele-

ment 
DoF 

45 8182 8466 1117 1226 

88 6415 6680 914 1024 

223 5661 5930 955 1070 

 

   

a) 3% target error 

   

b) 8% target error 

Fig. 6 Adaptive meshing at different initial unstructured 

discretization (Proposed estimator, 3% and 8% er-

ror) 

8. Conclusions 

In the present work, effective interpolation type 

gradient recovery based estimation technique for error in 

finite element solution is proposed. The recovery is based 

on Moving Least Squares approximation (element free 

Galerkin approach) of the displacement field or their deriv-

atives over a patch of nodes in a circular boundary. The 

performance of proposed error estimator has been com-

pared with that of the ZZ error estimator by applying it to 

benchmark elastic problems using structured as well as 

unstructured meshes. The proposed mesh independent 

node patch based recovery scheme is found to be better 

than that for the mesh dependent node patch based ZZ su-

per convergent recovery scheme. The adaptive mesh im-

provement strategy, based on guidance of the local error 

predicted by ZZ and proposed error estimators, has also 

been used to study the error distribution in the domain. It 

conclude from the results that propose error estimator ef-

fectively and efficiently compute the errors both at local 

and global levels in FE domains. 
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M. Ahmed, D. Singh, M. N. Desmukh 

INTERPOLATION TYPE STRESS RECOVERY 

TECHNIQUE BASED ERROR ESTIMATOR FOR 

ELASTICITY PROBLEMS 

S u m m a r y 

A finite element method coupled with error esti-

mation has gained considerable prominence in industry. 

However, effective and reliable error control of finite ele-

ment solution is always a challenging task particularly for 

incompressible and large deformations problems. Effective 

interpolation type gradient recovery based error estimation 

procedure is proposed in the present study. The recovery is 

based on Moving Least Squares approximation (mesh free 

approach) of the displacement field or their derivatives by 

a higher order polynomial over a patch of nodes in a circu-

lar boundary. The performance of error estimation scheme 

in terms of its effectivity and convergence has been com-

pared with that of Zienkiewicz-Zhu (ZZ) super-convergent 

recovery scheme by applying the scheme to benchmark 

elastic problems. Error estimators compute the error in 

energy norm of the recovered solution both at local and 

global levels. The adaptive meshing based on guidance of 

the local error predicted by ZZ and proposed interpolation 

type error estimators, is also used to study the error distri-

bution in the domain. The proposed mesh independent 

node patch based recovery scheme is found to be better 

than that for the mesh dependent node patch based ZZ su-

per convergent recovery scheme 

 

Keywords: error estimation, effectivity, error norm, re-

covery procedures, mesh free approach, convergence. 
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