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1. Introduction

Filament-wound composite pipes and vessels are
widely used in commercial industries such as fuel tanks,
portable oxygen storage, and compressed natural gas
(CNG) pressure vessel transportation. Using of these mate-
rials under a high temperature environment is increasing.
One of the causes for damage in these laminated composite
materials includes delimitation. In order to evaluate this
phenomenon, the thermal stress analysis taking into ac-
count the transverse shearing stresses and the normal stress
in the thickness direction is necessary. In addition, a tran-
sient thermal stress analysis as well as a steady thermal
stress analysis becomes important, because maximum
thermal stress distribution occurs in a transient state.

Lee [1] preformed the analysis of thermal stresses
within multilayered cylinder under axial symmetry peri-
odic boundary conditions. Ootao and Tanigawa [2] consid-
ered an angle-ply laminated cylindrical panel with simply
supported edges due to a nonuniform heat supply in the
circumferential direction. Shahani and Nabavi [3] solved
transiented thermoelasticity problem in an isotropic thick-
walled cylinder analytically by using the finite Hankel
transform. Talor and Radu [4] considered the sinusoidal
transient temperature for an isotropic hollow cylinder in an
axis symmetric condition for the analyses of the thermal
fatigue in the pipe lines. Hocine [5] investigated on
thermo-mechanical behaviour of multilayer tubular com-
posite in axis metric steady state conditions. His results
show that thermal effect has the greatest influence on ra-
dial stresses and strains. Zamani Nejad and Rahimi devel-
oped a complete and consistent 3-D set of field equa-tions
by tensor analysis to characterize the behavior of FGM
thick shells of revolution with arbi-trary curvature and
variable thickness along the meridional direction [6].

Bakaiyan and Hosseini [7] studied the stress and
deformation of the filament-wound pipes under combined
internal pressure and temperature variations with axisym-
metric and steady-state consideration.

In the previous works thermal conduction and
elasticity equations was solved only for the steady or the
symmetric condition.

This investigation is concerned with the theoreti-
cal treatment of the transient thermal stress problem in-
volving a two layered anisotropic hollow cylinder with non
uniform temperature in the circumferential direction.

2. Analyses

An infinitely long angle-ply laminated hollow
cylinder composed of N layers is shown in Fig. 1. The cyl-

inder's inner and outer radii are denoted as a and b respec-
tively. It is assumed that each layer has the orthotropic
material properties and the fiber direction in the ith layer is
alternated with ply angle ¢ to the z-axis.

Fig. 1 a) Coordinate system and b) boundary conditions of
a multi layered hollow cylinder with inner and outer
radii are denoted as a and b respectively

2.1 Heat conduction problem

It is assumed that initially the laminated hollow
cylinder is at constant temperature and the temperature of
outer surface changes by an arbitrary function of time and
angle of the form f(6)g(r) . The temperature distribution
is assumed to be a two-dimensional distribution in r—6
plane. The transient heat conduction of each layer and the
initial and thermal boundary conditions in a dimensionless
form are given in the following forms [2]
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where T is the temperature, K, and K, are the thermal dif-
fusivities in the » and 6 directions, respectively, 4, is the
thermal conductivity in the r direction, ¢ is time, Ty, Ky and
Ag are the typical values of temperature, thermal diffusivity
and thermal conductivity, respectively. In Eq. (4) the sub-
scripts L and T denote the fiber and transverse directions,

respectively. g_(r) and ]7(9) are the arbitrary functions of
time and angle respectively. Introducing the finite sine
transformation with respect to the variable 6, the solution

of Eq. (1) can be obtained to satisfy Eq. (3). This solution
is shown as follows

T= iﬁ( p,7)(C,sin(nd) + C,cos(nd)) (6)

where C, and C, are constants and can be found from
Eq. (2). By using Fourier transform for functionf (8),
Eq. (2) can be written as
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Since, the function T_n (p,7) is still unknown, ac-

cordingly, substituting T from Eq. (6) into Eq. (1) results
in
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The solution of the Eq. (9) may be accomplished
by using the finite Hankel transform as described in [8].

Finally, the temperature distribution in the cylin-
der can be written as
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and A, are the positive roots of Kemel(a,/lj):o. Also
from [7]
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2.2. Thermal stress analyses

In this section, the transient thermal stress of a
laminated hollow cylinder is analyzed as a generalized
plane strain problem. In each layer, the fiber direction, the
in-plane transverse direction and the radial direction are
denoted by L, T and R, respectively. Each layer has

orthotropic material properties between the fiber-
reinforced direction and its orthogonal direction.
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Stress-strain relations in the dimensionless form
for the ith layer are given in Eq. (14) .Applying the coordi-
nate transformation rule to Eq.(14), stress-strain relations

for the global coordinate system (7, 6, z) are
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where o, are the stress components, &, are the strain

tensor, ¢, and «,,; are the coefficients of linear thermal

expansion, Q,, and Q",, are the elastic stiffness constants,
and o, =a,and E =E, are the typical values of the co-

efficient of linear thermal expansion and Young's modulus
of elasticity, respectively. The strain-displacement equa-
tions can be displayed as flowing equations
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Using stress - strain Egs. (18), the displacement
equations can be displayed in the following form
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In the above equations, comma denotes partial
differentiation with respect to variables that follows. The
boundary conditions in the surface and interfaces are rep-
resented accordingly
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Here, we deal with nonuniform thermal loading.
However, mechanical loading can be considered with
equality of radial stresses with this kind of loading in the
boundary conditions.

2.3 Solving equations

In order to satisfy periodic condition in the angu-
lar direction, the solutions of Eq. (14) are assumed in the

following form
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Substituting Eq. (24) into Eq. (23), the system of
equations can be written in a matrix form of
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Finally, the solution of (23) can be presented in
the following form
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where the matrix e is diagonal matrix and the diagonal

kith element and can be displayed as er =e "
Also, y,, , is the eigenvalue and V' , is the matrix of eigen-
=-1=

vectorsof 4 B.

In the above equation, the unknown parameters
¢y, ..., ¢ are found from the boundary conditions Eq. (17)
for each layer. Noteworthy is that adding of mechanical
loading in boundary conditions, only changes the constant
parameter c¢;. Substituting displacement from Eq. (27) into
strain-displacement equations, Eq. (16), and using stress-
strain equation, Eq. (15), the stresses in each layer are ob-
tained as
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3. Numerical results

For validation of the proposed solution, the results
were compared with the stress function method solution in
isotropic case (in reference [9]) which is a special type of
our solution. It is seen that the results are in close agree-
ment and the average error in each case is less than 0.5%.
Further two-layered pipe with different boundary contions
are investigated. The temperature and stresses in all figures
of this paper are on the maximum value in the angular di-
rection. According to Eq. (28) and thermal boundary con-
ditions in these cases, the maximum peripheral angles,6,

for the temperature, o.» and o.- is 90° and for other
stresses is 0°. Because of using series method, an oscillat-
ing zone in the outer boundary can be seen in the most of
the figures.

To illustrate the foregoing analyses, a typical
composite pipe which composed of E-Glass/Epoxy with
the material properties as stated in Table 1 is considered.

Table 1
Material properties for CNG pressure Vessels [10]
Properties Value
Eiy, kg/mm® 5483.946
E», kg/mm? 1827.982
Es3, kg/mm® 1927.982
Vi2> Vi3 0.25
G1,, kg/mm® 913.991

The thermal conductivity and thermal expansion
coefficients are considered as [2]

2 2
k, =41.1x10° 2 k. =29.5x10°

o, =7.6x10° =, o —14.0x10°
K

It is assumed that each layer consists of the same
orthotropic material. A 2-layered antisymmetric angle-ply
laminated hollow cylindrical with the fibber orientation
(¢/—¢@) with the same thickness is assumed. The inner and
outer dimensionless radii are taken as 0.9 and 1 respec-
tively. Following cases are investigated

L T(1,0,7) = sin(6)

7 ,$=+85
T(a,0,7)=0

5. T(E 0.7) = sin(0)sin(2m). =185
T(a,0,7)=0

;. Z(I_,H,T) = sin(6) | p=d55°
T(a,0,7)=0

For the sake of brevity, the results of case 2 and 3
are not drawn and only the maximum stresses of these
conditions are compared with case 1.

3.1. Results for case 1

Fig.2 shows that the temperature distribution

changes quickly in the time from 7r=Kt/b"=



=0.001-0.003 and reaches finally to the steady state on
7=0.005.
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Fig. 2 Time-dependent temperature distribution versus the

dimensionless radial distance (case 1)
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The distributions of the radial stress, hoop stress
and longitudinal stress across the thickness of the cylinder
at different instants of time were shown in Fig. 3.The high
values of hoop and longitudinal stresses in the external
boundary of the cylinder can be noticed. The maximum
value of radial stress changes with time duration and its
position approaches to the centre of cylinder.

This stress is small in comparison with the hoop
and longitudinal stresses, but has a significant effect on the
destruction of layers [2]. In addition, the maximum values
of normal stresses decrease as the time proceeds.
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The variation of the shearing stresses indicated in
the Fig. 4. It can be noticed that the shearing stresses
o, ,0,, and o,, show the maximum value on the inter-
face of layers.

The shearing stress o+ shows the maximum
value near p =0.96 in a transient state. The value of the
shearing stress o .. rises as the time proceeds and has a
maximum value in the steady state.

The maximum values of . are in the interface
of layers which does not change with time. The maximum



of stresses for different boundary conditions and angles are
compared and shown in Table 2.

Table 2
Maximum absolute stresses for different
boundary conditions

Case: 1 (Sudden) | 2 (Sinusoidal) | 3 (Sudden)
Orientation: ¢ =185 ¢ =185 ¢ =155
s 0.7 0.7 0.8
P 0.8254 0.58 0.70
O 0.014 0.0136 0.0114
P 0.01923 0.0199 0.0986
On 0.00053 0.00053 0.0023
Oro 0.014 0.0136 0.0114

The high value of longitudinal stress in sinusoidal
loading compare to sudden loading can be noticed. In addi-

tion, the maximum stress is on the hoop stress for ¢ = +85°
for sudden loading. Increasing in angle of orientation result

in increasing all stresses except of 0. ando - .
4. Conclusion

The results of numerical analyses in summary can
be classified as follows:
1.by increasing angle of orientation; the amount of
stress discontinuity in layer interface reduces;
2.the most discontinuity in the stresses is seen in

0oz,

3.the shearing stresses o.,0:0 and o, show the
maximum value on the interface of the layers;

4.in an anisotropic cylinder for two dimensional tem-
perature fields, the strain in the axial direction is available
and varies with time, but in the isotropic cylinder this
strain is zero;

5.the longitudinal stress in sinusoidal loading com-
paring to a sudden loading has great value;

6.the increasing in the angle of orientation in sudden
loading, results in all stresses increasing. Further for the
sudden loading, the maximum stress is the hoop stress;

7.1in the sinusoidal loading the hoop stress is less than
the sudden loading and the maximum stress is longitudinal
stress.
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LAMINUOTO TUSCIAVIDURIO CILINDRO
APKROVIMO NESTACIONARIA NEVIENALYTE
SILUMINE APKROVA ANALITINIS SKAICIAVIMAS

Reziumé

Siluminiams jtempiams tiksliai apskai¢iuoti kei-
Clantis temperatiirai ir esant pastoviai apskritiminei apkro-
vai, naudojamos baigtinés Henkelio ir Furje transformaci-
jos. Atlikti dviejy sluoksniy tus¢iavidurio cilindro su skir-
tingo pluosto orientacijos kampais skaiciavimai dinamiskai
ir cikliskai keiiantis temperatiirai. Rezultatai rodo, kad
esant dinaminei apkrovai ir didéjant orientacijos kampui,
visi {tempiai didéja, palyginant su statinés apkrovos sukel-
tais {tempiais. Be to, esant dinaminei apkrovai, didziausi
yra ziediniai jtempiai. Esant ciklinei apkrovai, Ziediniai
itempiai yra maZesni, negu esant dinaminei apkrovai. Siuo
atveju didziausi yra iSilginiai jtempiai. Didziausi tangenti-
niai jtempiai susidaro sluoksniy sandiiroje ir nepriklauso
nuo apkrovimo salygy.

M. A. Ehteram, M. Sadighi, H. Basirat Tabrizi

ANALYTICAL SOLUTION FOR THERMAL
STRESSES OF LAMINATED HOLLOW CYLINDERS
UNDER TRANSIENT NONUNIFORM THERMAL
LOADING

Summary

An analytical solution for the temperature change
and thermal stresses for the circumferential transient load-
ing are obtained using finite Hankel and Fourier transform.
Numerical calculations are carried out for a two-layered



angle-ply hollow cylinder in the different orientation an-
gles with sudden and periodic temperature change with
time. The results indicate that the increasing in the angle of
orientation in sudden loading, results in all stresses increas-
ing comparing to steady state condition. Further for the
sudden loading, the maximum stress is the hoop stress. In a
periodic loading the hoop stress is less than the sudden
loading and the maximum stress is longitudinal stress. The
maximum of shear stresses occur in interface of layers and
is constant with time for all conditions.
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AHAJIMTUYECKOE PEILIEHME
JIAMMHHUPOBAHHOI'O ITYCTOTEJIOTO
[IUJIMH/IPA TIPU HECTAIIMOHAPHOM
HEO/JHOPO/IHOM TEITJIOBOM HAT'PY3KE

Pe3zmomMme

TouHOE peleHHe TEIJIOBBIX HANpPSUKEHUH MpH
W3MEHEHUH TEMIEPAaTypbl U IIOCTOSHHOM OKpY’>KHOM Ha-
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Tpy3Ke MOJTYyYeHO NPH HCIOIb30BAHWM KOHEUHBIX TpaHC-
¢dopmannit Xenkens n Pypre. UncaoBeIe peHIeHUs MOTY-
YeHbI U1 ABYXCJIOWHOTO MyCTOTENOr0 HMIMHAPA C yUeTOM
pa3IMYHON OpHUEHTALMH BOJOKOH NpPU JTUHAMHYECKOM H
LIUKIMYECKOM HM3MEHEHMH TeMIlepaTypbl BO BpeMeHH. Pe-
3yNbTaThl IOKA3bIBAIOT, YTO MIPHU AUHAMHUYECKON TEIUIOBOU
Harpy3Ke M yBEJIMYEHHUM yIja OPUEHTALUU, BCE HampsKe-
HUS BO3PAcTalOT IO CPAaBHEHUIO CO CTATUYECKOH Harpys-
koi. Kpome Toro, mpu AMHAMHYECKOH Harpy3kKe MakKCH-
MaJIbHBIMH SIBJISIFOTCSL OKpYXXHbIe HanpspkeHus. [Ipn k-
JIMYECKOM Harpy3ke OKPY)KHBbIE HANlpsDHKCHUSI MEHBIIE 110
CpPaBHEHMIO C IMHAMUYECKOW Harpy3KOW U B 3TOM Ciydae
MaKCHMaJIbHBIMU SIBIIIFOTCS OCEBBIE HaNpspKeHusl. Makcu-
MallbHble TaHTCHIMANbHBIE HANPSKEHUS IEHCTBYIOT Ha
CTBIKE CJIOEB, SBJIAIOTCS IMOCTOSHHBIMH NPU W3MEHEHHUHU
YCIIOBUI Harpys3KHu.
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