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1. Introduction

Cutting force, tool wear and temperature rise dur-

ing machining are some of the key considerations for both 

the designer, manufacturer of machine tools, and to the end 

user as well. [1, 2]. Manufacturing industries continuously 

focus on low cost machining solutions with reduced lead 

time and good surface quality in order to maintain their 

competitive edge and efficiency [3]. Recent developments 

in cutting tool grades are intended to permit multipurpose 

use both in machining and finishing operations and for a 

wide range of materials [4]. Advancements in coating 

technologies have produced wide range of tools which 

have a special wear resistant coating. Coated tools used for 

metal cutting possess a combination of abrasive wear re-

sistance and chemical stability at high temperature to meet 

the demands of the application [5-7]. 

Product quality is a well-known vital factor that 

has a direct bearing on customer satisfaction. In any indus-

trial sector, be it a small-scale industry or a large industrial 

sector, surface quality is determined by surface roughness 

of the product [8]. Measuring and characterizing the sur-

face finish are the two main indicators of machining per-

formance. Since the newer materials are being developed 

and introduced rapidly in the manufacturing industry, it is 

very difficult for an operator to select optimum cutting 

parameters to achieve best surface finish [9, 10]. The cost 

of machining accounts for a major part of the total value of 

products in any manufacturing industry and plays a central 

role in modern manufacturing. Modeling with the help of 

experimental results forms an integral part in the investiga-

tion of the complicated dynamic mechanisms of machining 

operations. Various approaches have been proposed to 

model and to simulate the machining processes [11]. Op-

timization of cutting parameters is necessary for the 

achievement of minimal surface roughness. The Taguchi 

method of experimental design is one of the widely accept-

ed techniques for off line quality assurance of products 

[12, 13]. This method is a traditional approach for robust 

experimental design that seeks to obtain the best combina-

tion of parameters and their levels with the lowest cost to 

meet customer requirements [14]. Cutting fluids decrease 

friction between the cutting tool and the work piece mate-

rial, preventing surface roughness. The conventional cut-

ting fluids utilized in machining are considered as a prob-

lem for manufacturers. Environmental concerns have be-

come increasingly important to production processes [15]. 

Dry machining and minimum quantity lubricant machining 

have become the focus of attention of researches and tech-

nicians in the field of machining as an alternative to con-

ventional fluids [16, 17]. Optimization of machining pa-

rameters not only improves machining economics, but also 

the quality to a greater extent. Developments in modeling 

surface roughness and optimization of controlling parame-

ters to obtain a surface finish of desired level is possible 

through proper selection of cutting parameters which pro-

duce better performance [18–20]. Influence of built up 

edge on process forces, surface quality and minimum chip 

thickness during machining of titanium alloys, reveals that 

the good surface integrity in terms of favorable stress and 

surface roughness were achieved in machining of titanium 

alloys [23–25]. 

The literature survey reveals that the machining of 

titanium alloy has not been attempted by many researchers. 

In the present investigation, an attempt has been made to 

optimize surface finish and material removal rate on ma-

chining Titanium alloy (Ti 6Al 4V) with ceramic coated 

cutting tool insert. Taguchi parameter design approach and 

ANN technique has been employed to accomplish the ob-

jectives. 

2. Experimental details

Based on a number of research works published 

in the past, three cutting parameters viz., cutting speed, 

feed rate and depth of cut were selected for the experi-

mental work. 

2.1. Machine, material and tool insert 

The turning operation was conducted using CNC-

Super Jobber 500 LM Industrial type of production lathe 

machine with a range of spindle speed 30 rpm to 3000 rpm 

and a 10 kW motor drive. The material used was Ti-6Al-

4V titanium alloy round bar of 30 mm diameter and 

100 mm long. The specimens were turned, centered and 

cleaned by removing the skin for 1mm depth, prior to the 

actual machining. The cutting tool insert used for this 

study was ceramic coated. Fig. 1 shows the sample of Ti-

6Al-4V materials, and Fig. 2 shows the microstructure of 

the Ti-6Al-4V material. Chemical composition of Titanium 

alloy (Ti 6Al 4V) is given in Table 1. 

Fig. 1 Ti–6Al–4V 

http://dx.doi.org/10.5755/j01.mech.4.24.20251


450 

 
 

Fig. 2 SEM Image of Ti-6Al-4V 

Table 1 

Chemical composition of Ti-6Al-4V 
 

Component C V Fe Al Ti 

Weight % 0.027 3.87 0.11 5.81 Reminder 

 

2.2. Surface roughness measurements & MRR calculations  

 

The roughness readings were recorded at three lo-

cations on the work piece and the average value was used 

for analysis. The Material Removal Rate (MRR) was cal-

culated using: 

 

Material Removal Rate = ,
ts

WW fi






  (1) 

 

where: Wi is Initial weight of work piece in grams; Wf is= Final 

weight of work piece in grams; t is Machining time in seconds; ρs 

is Density of titanium alloy 4.5 g/cm3. 

 

3. Taguchi orthogonal array 
 

The Taguchi method is a powerful tool in quality 

optimization. Optimization is carried out to utilize the 

available resources effectively to achieve better results. 

The orthogonal array of twenty seven experiments in a 

particular order covers all factors. In this method, selected 

parameters are assumed to have influence on process re-

sults, which are located at different rows in a designed 

orthogonal array [18]. With such an arrangement com-

pletely randomized experiments can be conducted. This 

method is useful for studying the interactions between the 

parameters, and also it is a powerful design of experiments 

tool, which provides a simple, efficient and systematic 

approach to determine optimal cutting parameters [16]. 

Compared to the conventional approach of experimenta-

tion, this method reduces significantly the number of ex-

periments that are required to model the response func-

tions. Hence the optimality is achieved. The three machin-

ing parameters were selected as control factors, and each 

parameter was designed to have three levels as shown in 

Table 2. 

The turning tests were conducted to determine the 

surface roughness and material removal rate under various 

sets of turning parameters. Roughness is measured using 

Mitutoyo Surface roughness tester. The different combina-

tions of speed, feed rate and depth of cut based on which 

the experiments are conducted is presented in Table 3. 

 

Table 2 

Machining parameter and its levels 

S.No Parameters Units Levels 

1 Speed rpm 1000 1500 2000 

2 Feed mm/rev 0.10 0.15 0.20 

3 
Depth of 

cut 
mm 0.50 0.75 1.00 

 

Table 3 

Experimental results for surface  

roughness and material removal rate 

Run 
No. 

S 
(rpm) 

F 
(mm/rev) 

D 
(mm) 

Ra 
(µm) 

MRR 
(mm3/sec) 

1 1000 0.10 0.50 2.83 424.34 

2 1000 0.10 0.75 3.2 452.65 

3 1000 0.10 1.00 3.64 472.91 

4 1000 0.15 0.50 3.45 465.75 

5 1000 0.15 0.75 4.3 483.96 

6 1000 0.15 1.00 4.52 496.52 

7 1000 0.20 0.50 4.25 485.91 

8 1000 0.20 0.75 4.82 502.74 

9 1000 0.20 1.00 5.72 523.86 

10 1500 0.10 0.50 2.43 512.75 

11 1500 0.10 0.75 2.93 534.85 

12 1500 0.10 1.00 3.35 552.97 

13 1500 0.15 0.50 3.05 524.85 

14 1500 0.15 0.75 3.42 542.86 

15 1500 0.15 1.00 4.05 560.32 

16 1500 0.20 0.50 3.73 553.64 

17 1500 0.20 0.75 4.05 571.95 

18 1500 0.20 1.00 4.72 592.65 

19 2000 0.10 0.50 1.96 581.55 

20 2000 0.10 0.75 2.24 598.53 

21 2000 0.10 1.00 2.95 620.74 

22 2000 0.15 0.50 2.82 596.52 

23 2000 0.15 0.75 3.08 621.95 

24 2000 0.15 1.00 3.65 640.75 

25 2000 0.20 0.50 3.24 620.84 

26 2000 0.20 0.75 3.82 642.86 

27 2000 0.20 1.00 4.02 660.25 

 

4. Results and discussion 

 

4.1. Optimal setting of machining parameters 

 

In turning operation the surface roughness and 

MRR are considered important from quality standpoint and 

economy of machining. After recording the observations, 

the mean values are calculated and various graphical anal-

yses are done by using Minitab 16 software. The measured 

response value along with design matrix is furnished in 

Table 4. 

Taguchi method stresses the importance of study-

ing the response variation using the signal-to-noise ratio, 

resulting in minimization of quality characteristics varia-

tion due to uncontrollable parameter. The roughness was 

considered as the quality characteristics with the concept 

of “smaller-the-better”. From the response tale of surface 

roughness, it is found that feed rate is the predominant 

factor in affecting the roughness value followed by speed 

and depth of cut. 
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Table 4 

Measured response value along with design matrix 

Run 

Number 
S (rpm) F (mm/rev) D (mm) 

Experimental 

Ra (µm) 

Predicted 

Ra (µm) 

Experimental MRR  

(mm3/sec) 

Predicted MRR  

(mm3/sec) 
1 1000 0.1 0.5 2.83 2.873 424.34 428.226 

2 1000 0.1 0.75 3.2 3.329 452.65 451.117 

3 1000 0.1 1 3.64 3.858 472.91 470.558 

4 1000 0.15 0.5 3.45 3.630 465.75 462.919 

5 1000 0.15 0.75 4.3 4.086 483.96 483.897 

6 1000 0.15 1 4.52 4.614 496.52 499.414 

7 1000 0.2 0.5 4.25 4.300 485.91 484.856 

8 1000 0.2 0.75 4.82 4.755 502.74 504.337 

9 1000 0.2 1 5.72 5.284 523.86 523.318 

10 1500 0.1 0.5 2.43 2.318 512.75 512.618 

11 1500 0.1 0.75 2.93 2.773 534.85 533.866 

12 1500 0.1 1 3.35 3.302 552.97 554.087 

13 1500 0.15 0.5 3.05 3.074 524.85 524.354 

14 1500 0.15 0.75 3.42 3.530 542.86 543.689 

15 1500 0.15 1 4.05 4.059 560.32 559.987 

16 1500 0.2 0.5 3.73 3.744 553.64 554.268 

17 1500 0.2 0.75 4.05 4.200 571.95 572.106 

18 1500 0.2 1 4.72 4.729 592.65 591.867 

19 2000 0.1 0.5 1.96 1.879 581.55 577.797 

20 2000 0.1 0.75 2.24 2.334 598.53 601.048 

21 2000 0.1 1 2.95 2.863 620.74 621.976 

22 2000 0.15 0.5 2.82 2.636 596.52 599.847 

23 2000 0.15 0.75 3.08 3.091 621.95 621.184 

24 2000 0.15 1 3.65 3.620 640.75 638.189 

25 2000 0.2 0.5 3.24 3.306 620.84 621.267 

26 2000 0.2 0.75 3.82 3.761 642.86 641.108 

27 2000 0.2 1 4.02 4.290 660.25 661.576 

 

4.2. Analysis of variance 

 

ANOVA is a statistical tool used to analyse the 

test for significance individual model coefficients, test for 

lack of fit. In performing ANOVA, it is essential to identi-

fy the dependent and the independent variables. Dependent 

variables reflect the outcome of the process, and independ-

ent variables reflect the factors that influence the depend-

ent variables. Dependent and independent variables are 

related to each other. For analysing the effect of categori-

cal factors on a response, ANOVA is a useful technique. 

The response table for MRR shows that the speed is the 

predominant factor in affecting material removal rate fol-

lowed by feed rate and depth of cut. The adequacy of the 

developed model was evaluated using the analysis of vari-

ance. It consists essentially of partitioning the total varia-

tion in an experiment into components ascribable to the 

controlled factors and errors. Table 5 and Table 7 represent 

the results of ANOVA for the responses of surface rough-

ness and material removal rate. The best levels of various 

parameters are identified by calculating the average values 

of minimum surface roughness and maximum MRR are 

tabulated in Table 6 and Table 8 respectively. In the 

ANOVA table, the sum of squares is used to estimate the 

square of deviation from the grand mean. The F-ratio is an 

index used to check the adequacy of the model in which 

the calculated value of F should be greater than the F-table 

value. The model is adequate at 95% confidence level. 

The main effect plot for Ra and MRR were repre-

sented in Fig. 4 and Fig. 6. To summarize the responses, 

the plots of various interactions with control factors are 

carried out. The residual plot for means of surface rough-

ness and the residual plot for means of MRR are presented 

in Fig. 3 and Fig. 5 respectively. The best parameters for 

surface roughness has been plotted in Fig. 4 as speed 

2000 rpm, feed 0.10 mm/rev and depth of cut 0.50 mm. 

Fig.6 represents the parametric combination of Speed 

2000 rpm, feed 0.20 mm/rev and depth of cut 1mm for 

maximum Material Removal Rate. 

Table 5 

ANOVA Table for surface roughness (Ra) 

Source DOF SS MS F P % Contribution C 

S 2 15.1250 7.5625 61.93 0.020 24.11 

F 2 30.3670 15.1835 124.35 0.026 48.42 

D 2 14.8711 7.4356 60.89 0.974 23.71 

S*F 4 0.8851 0.2213 1.81 0.220 01.41 

F*D 4 0.1781 0.4450 0.36 0.827 00.28 

S*D 4 0.3104 0.0776 0.64 0.652 00.49 

Error 8 0.9768 0.1221   1.55 

Total 26 62.7135    99 
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Table 6 

Response Table for means of surface roughness (Ra) 

Level S F D 

1 4.081 2.837 3.084 

2 3.526 3.593 3.540 

3 3.087 4.263 4.069 

Delta 0.994 1.427 0.984 

Rank 2 1 3 
 

Table 7 

ANOVA Table for Material Removal Rate (MRR) 

Source DOF SS MS F P % Contribution C 

S 2 4942456 2471228 3910.17 0.000 84.44 

F 2 496518 248259 392.81 0.003 8.48 

D 2 382837 191418 302.87 0.005 6.54 

S*F 4 23870 5968 9.44 0.004 0.40 

F*D 4 398 99 0.16 0.954 0.0068 

S*D 4 1698 424 0.67 0.630 0.0290 

Error 8 5055 632   0.0863 

Total 26 5852832    99.89 
 

Table 8 

Response Table for means of Material Removal Rate (MRR) 

Level S F D 

1 478.7 527.9 529.6 

2 549.6 548.2 550.3 

3 620.4 572.7 569.0 

Delta 141.7 44.8 39.4 

Rank 1 2 3 

 

 
 

Fig. 3 Effect of residual plots for means of surface rough-

ness 
 

 
 

Fig. 4 Main effect plot for surface roughness 
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Fig. 5 Effect of residual plots for means of MRR 

 
 

Fig. 6 Main effect plot for MRR 
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4.3. Artificial neural networks 

 

The multi-layer feed forward ANN is employed in 

this study which consist of simple processing elements 

called neurons divided into input layer, output layer and 

hidden layers. The neurons between the layers are connect-

ed by the weight of links. Each neuron has inputs and gen-

erates an output as the reflection of local information 

stored in connections. The output of each neuron is deter-

mined by the level of the input signals in relation to the 

threshold value. These signals are modified by the connec-

tion weights between the neurons [21-22]. A Schematic 

representation of the basic structure of the multi-layered 

feed forward ANN Architecture is shown in Fig. 7 

 

 
 

Fig. 7 Multi-layered feed forward ANN architecture 

 

4.3.1. Training and testing of Artificial Neural Network 

 

The training of the ANN with error BB Training 

algorithm for 27 input-output patterns has been performed 

using NN toolbox in MATLAB. In the current study, mul-

ti-layer feed forward ANN three neurons in the input layers 

and one hidden layer with ten neurons were considered to 

estimate surface roughness and Material removal rate of 

turning process. The network configuration of 3x10x2 was 

constituted, and it was saved during the determination of 

training parameters. The ANN training simulation was 

carried out using the variable learning rate training proce-

dure of the mat lab NN toolbox. The network used in the 

program is a feed forward network with back propagation 

learning rule. Training begins with all weights set to ran-

dom numbers. For each data record, the predicted value is 

compared to the desired (actual) value and the weights are 

adjusted to move the prediction closer to the desired value. 

Numerous trials were made through the entire set of train-

ing data with the weights being continually adjusted to 

produce accurate predictions. The Experimental roughness 

value along with Artificial Neural Network prediction 

values are tabulated in Table 9. 
 

 
 

Fig. 8 Experimental value of Ra Vs ANN predicted value of 

Ra 

Table 9 

Comparison of ANN predictions with experimental results for Ra and MRR 

Run 

Number 
S (rpm) F ( mm/rev) D (mm) 

Experimental  

Ra (µm) 

ANN Predicted 

Ra (µm) 

Experimental MRR 

(mm3/sec) 

ANN Predicted 

MRR  (mm3/sec) 

1 1000 0.1 0.5 2.83 2.843928 424.34 426.7355 

2 1000 0.1 0.75 3.2 3.352428 452.65 427.4691 

3 1000 0.1 1 3.64 3.950953 472.91 436.0164 

4 1000 0.15 0.5 3.45 3.549086 465.75 426.8887 

5 1000 0.15 0.75 4.3 4.153815 483.96 427.2054 

6 1000 0.15 1 4.52 4.698388 496.52 499.0641 

7 1000 0.2 0.5 4.25 4.349427 485.91 431.8641 

8 1000 0.2 0.75 4.82 4.852869 502.74 502.7885 

9 1000 0.2 1 5.72 5.210794 523.86 524.6546 

10 1500 0.1 0.5 2.43 2.457893 512.75 528.7187 

11 1500 0.1 0.75 2.93 2.809946 534.85 462.2631 

12 1500 0.1 1 3.35 3.308059 552.97 453.7491 

13 1500 0.15 0.5 3.05 2.962426 524.85 488.1307 

14 1500 0.15 0.75 3.42 3.502533 542.86 435.3345 

15 1500 0.15 1 4.05 4.107067 560.32 492.2854 

16 1500 0.2 0.5 3.73 3.704767 553.64 475.1508 

17 1500 0.2 0.75 4.05 4.304752 571.95 523.2008 

18 1500 0.2 1 4.72 4.818412 592.65 555.7671 

19 2000 0.1 0.5 1.96 2.22492 581.55 604.8637 

20 2000 0.1 0.75 2.24 2.436294 598.53 629.8537 

21 2000 0.1 1 2.95 2.776898 620.74 645.8801 

22 2000 0.15 0.5 2.82 2.534986 596.52 574.5421 

23 2000 0.15 0.75 3.08 2.925417 621.95 600.1156 

24 2000 0.15 1 3.65 3.456404 640.75 655.9446 

25 2000 0.2 0.5 3.24 3.090565 620.84 552.4539 

26 2000 0.2 0.75 3.82 3.65722 642.86 647.7786 

27 2000 0.2 1 4.02 4.259511 660.25 654.1854 
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The results of the comparison between the exper-

imental surface roughness (Ra) and material removal rate 

(MRR) with ANN predicted values are presented in Fig.8 

and Fig. 9. Thus, measurement shows that the experimental 

values and predicted values are comparable. 
 

 
 

Fig. 9 Experimental value of MRR Vs ANN predicted val-

ue of MRR 

5. Conclusion 

 

The suitability of the ceramic coated insert for 

machining Ti-6Al-4V alloy was investigated in this study. 

The surface roughness and MRR after the turning opera-

tion were recoded and compared with predicted values 

using DOE and ANN.  The following results can be con-

cluded from the present study. 

1. The experiments were conducted by varying 

the cutting speed, feed rate and depth of cut and the result-

ing surface roughness and material removal rate was 

measured for different cutting conditions. The optimum 

parameter setting for minimization of roughness and max-

imization of material removal rate was arrived. 

2. For surface roughness, the optimal parametric 

combination is S3F1D1 i.e., surface roughness is minimum 

at the parametric combination of 2000 rpm Speed, 0.1 

mm/rev Feed and 0.50 mm depth of cut. 

3. For material removal rate, the optimal paramet-

ric combination is S3F3D3 i.e., material removal rate is 

maximum at the parametric combination of 2000 rpm 

Speed, 0.20 mm/rev Feed and 1 mm depth of cut. 

4. The modelling performance of the neural net-

work has been evaluated. The results clearly show that 

there are highly linear relationships between surface 

roughness and MRR with the cutting parameters. This 

situation validates the employing of ANN to develop a 

model for surface roughness and MRR prediction. The 

ANN model show very good closeness between estimated 

and measured values. 

5. The order of the importance of influential fac-

tors based on the Taguchi response is sequenced as feed 

rate, cutting speed and depth of cut. 

6. The adequacy of the developed model is evalu-

ated by using ANOVA with 95% confidence level, and 

hence the results are quite adequate. 

7. The verification test results reveal that the de-

termined combination of the machining parameters satis-

fies the real requirement of the turning operation in ma-

chining of titanium alloy. 
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J. Rajaparthiban, A. Naveen Sait 

EXPERIMENTAL INVESTIGATION ON MACHINING 

OF TITANIUM ALLOY (TI 6AL 4V) AND OPTIMIZA-

TION OF ITS PARAMETERS USING ANN 

S u m m a r y 

Engineering industries continuously face chal-

lenges in maintaining a consistently high product quality in 

terms of dimensional accuracy and surface finish, sustain-

ing a high production rate, and economical processing of 

materials by minimizing cutting tool wear, rejections and 

rework. In this study, turning of Titanium alloy (Ti-6Al-

4V) has been taken up for optimizing the material removal 

rate and surface finish, the reason being its wide applica-

tion in aerospace industry. Cutting speed, feed rate and 

depth of cut were assigned as the input variables. Design of 

experiments based on Taguchi technique and L27 orthogo-

nal array was employed to analyze the experimental data 

and the predicted values. Analysis of variance was used for 

identify the input parameter exerting maximum influence 

on surface finish and MRR. It was observed that the exper-

imental results are in good agreement with the predicted 

values from DOE and multilayered feed forward Artificial 

Neural Network employed to predict process responses. 

The optimal values of the input and output parameters are 

tabulated.  

 

Keywords: surface finish, Titanium alloy, material remov-

al rate, design of experiments, Artificial Neural Network 

(ANN). 
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