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1. Introduction

With the development of precision instrument and 

equipment, the damage of low frequency vibration is more 

prominent. However, the traditional vibration isolator’s 

ability in suppressing low frequency vibration is limited 

because of its large stiffness and high starting vibration 

isolation frequency. Although the reduction of the vibra-

tion isolator's stiffness could effectively solve the problem 

above, a trade-off between the load capacity and the vibra-

tion isolation performance is unavoidable. In order to solve 

the contradiction, growing attention is focused on high-

static-low-dynamic vibration isolator. Its basic idea is in-

troducing negative stiffness into the traditional vibration 

isolator. On the premise of guaranteeing vibration isola-

tor’s load capacity, its stiffness could be reduced close to 

zero under small vibration amplitude, which could isolate 

the low frequency vibration effectively. Related literature 

is as follows. 

A. Carrella et al. [1] analyzed the simple quasi-

zero-stiffness system composed by linear springs, and 

showed that the force could be approximated by a cubic 

equation of displacement; A. Carrella et al. [2] also ana-

lyzed the force transmissibility, with appropriate system 

parameters, the quasi-zero-stiffness isolator system could 

outperform the linear one; Ivana Kovacic et al. [3] studied 

the optimal combination of the quasi-zero stiffness pa-

rameters and analyzed the dynamic characteristics. Xing-

tian Liu et al. [4] used the pre-stressed Euler buckled 

beams to produce negative stiffness, which offset the posi-

tive stiffness of the linear spring to achieve the characteris-

tic of quasi-zero stiffness; Jiaxi Zhou et al. [5] designed a 

quasi-zero stiffness vibration isolator with cam–roller–

spring mechanisms, the piecewise nonlinear dynamic mod-

el’s peak transmissibility and starting frequency won’t 

overshoot those of corresponding linear systems; Ivana 

Kovacic et al. [6] investigated the effect of static force on 

quasi-zero stiffness. With the change of static force, some 

characteristics of hard stiffness and soft stiffness were de-

veloped. Chao-chieh Lan et al. [7] studied the influence of 

different loads on quasi-zero stiffness isolator and its ad-

justment mechanism to handle different loads; Xiuting Sun 

et al. [8] put forward a time-delayed active control strategy 

of the quasi-zero stiffness system, and this strategy could 

improve isolator’s stability and transmissibility. Yingli et 

al. [9] studied floating raft isolation system with high-

static-low-dynamic characteristic, and the vibration isola-

tion performance was better than linear ones. Will S. Rob-

ertson et al. [10] added a magnetic spring into a vibration 

isolation system to realize high-static-low-dynamic charac-

teristic, which has the properties of weak nonlinear and 

low inherent damping. Daolin Xu et al. [11] presented a 

magnetic isolator with high-static-low-dynamic character-

istic and its performance in low-frequency domain is better 

than other vibration systems. Zhifeng Hao et al. [12] pro-

posed a stable-quasi-zero-stiffness vibration isolator, in 

which SD oscillator was adopted to replace the Duffing 

system, and the precision of the large displacement vibra-

tion was improved. Jiaxi Zhou et al. [13] formed a pyrami-

dal pillar with three compact quasi-zero stiffness springs 

and a 6-DOF QZS vibration isolator is established by 4 

pyramidal pillars. Tao Zhu et al. [14] designed six degree 

of freedom (six-dof) vibration isolator with magnetic levi-

tation as the payload support mechanism and achieved 

high-static-low-dynamic characteristic in all directions. 

Daolin Xu et al. [15] designed a flexible plate type isolator, 

which can eliminate resonance under certain damping. 

However, once these vibration isolator parameters are de-

termined, it cannot be changed and high-static-low-

dynamic mechanical properties will change under overload 

or underload condition, so Daolin Xu et al. [16] also put 

forward a kind of adjustable pneumatic vibration isolator. 

The air mass in cylinder can change according to specific 

load, making isolator keeping high-static-low-dynamic 

characteristic. But this paper did not study vibration isola-

tor parameters' effect on the performance of vibration iso-

lation. 

With pneumatic high-static-low-dynamic vibra-

tion isolator as the research object, this paper studies the 

influence of parameter changes on the nonlinear mechani-

cal properties. Based on this, we design a Ruzicka high-

static-low-dynamic vibration isolation model and investi-

gate its vibration isolation characteristics. In the calcula-

tion process of solving its amplitude-frequency characteris-

tic, a new method – Harmonic Equivalent Linearization 

Method – is used, in which the equivalent linearization 

algorithm is introduced into Harmonic Balance Method. 

This method could greatly simplify the calculation process 

and gives the same result as Harmonic Balance Method. 

The effects of additional stiffness, damping and excitation 

amplitude on nonlinear amplitude-frequency characteristic 

are investigated numerically in Section 6. 

2. Pneumatic vibration isolator model

A cylinder is used as an air spring, as shown in 
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Fig. 1. Fig. 1, a is double chamber spring; Fig. 1, b is sin-

gle chamber spring. The spring consists of air chamber, air 

valve, piston, air vent, etc. The valve can change the mass 

of the air in the chamber and it is closed under the stable 

motion state. When the pneumatic spring is subjected to 

external forces, the piston rod moves, the volume and pres-

sure of the air in the chamber changes. 
 

 

a 

 

b 

Fig. 1 Chamber spring: 1 - The upper air chamber, 2 - the 

lower air chamber, 3 - piston rod, 4 - air valve, 5 - 

piston, 6 - air vent 

There is a state equation for the gas changing pro-

cess without any condition: 

 

1 1 2 2
,

r r
PV P V const   (1) 

 

where: 1
P , 2

P  is the pressure and its unit is Pa ; 1
V , 2

V  is 

the volume of gas and its unit is m3; r  is the air poly-

trophic exponent. The polytrophic process of air in a 

pneumatic spring can be regarded as adiabatic, which 

means r =1.4. 

For a double-chamber air spring, we suppose the 

initial pressure of upper chamber is a
P , its volume is a

V , 

the piston’s effective stressed area is a
A , and the corre-

sponding notations of the lower chamber are b
P , b

V  and 

b
A . The spring is in the stationary state at this time. If the 

pneumatic spring produces displacement x  under the 

downward force F , the volume of the lower chamber is 

changed to: 

 

.
bm b b

V V A x   (2) 

 

With Eqs. (1-2), the pressure in the gas chamber 

can be changed to: 

 

.

r

b

bm b

b b

V
P P

V A x

 
  

 
 (3)

 

 

In the same way, the volume and pressure of the 

upper chamber are changed to: 

 

;
am a a

V V A x   (4) 

.

r

a

am a

a a

V
P P

V A x

 
  

 
  (5) 

 

So we can get the equation: 
 

.
bm b am a

F P A P A    (6) 

 

For a single-chamber air spring, we suppose the 

pressure of the upper chamber is 0
P , which is a constant 

and the same as the atmospheric pressure, the piston’s ef-

fective stressed area is 0
A . The corresponding notations of 

the lower chamber are c
P  and c

A , and its volume is c
V . 

We can get the same conclusion from the single-chamber 

air spring as that from the double-chamber air spring. 

Because the upper chamber of the single air 

chamber spring is connected with the atmosphere, the force 

provided by the upper air chamber is a constant value. The 

upper air chamber of the double air chamber spring is 

closed, and the force it provides can be changed, which 

means that the double air chamber spring can provide more 

force under the same pressure condition, so the double air 

chamber spring is used in the vertical direction to support 

the load. 

To achieve the high-static-low-dynamic property, 

this paper adopts the method of combined positive and 

negative stiffness, as shown in Fig. 2. The vibration isola-

tor is composed of four horizontal single-chamber air 

springs and a vertical double-chamber air spring. l is the 

length of the horizontal swing arm. m is the mass of the 

loaded object. When the vibration isolator is in a static 

equilibrium position, the single-chamber springs would 

maintain at a horizontal position without providing any 

vertical force and the double-chamber spring supports the 

loaded object alone. When the base excitation creates dis-

placement r
x , the vibration isolator would be disturbed 

and the loaded object would deviate from the equilibrium 

position with creating a displacement s
x . 

 

l

Pa, Va, Aa

Pb, Vb, Ab
xr

F, xt

   m

l

Pc, Vc, Ac P0, A0

 

Fig. 2 Pneumatic high-static-low-dynamic vibration isola-

tor 

If the vibration isolator is not disturbed by exter-

nal forces, it would be at equilibrium position and the 

equation is: 
 

b b a a
mg P A P A 

.  (7) 

3. Static analysis of pneumatic vibration isolator 

When the loaded object in the equilibrium posi-

tion is affected by external force F, the displacement x is 

generated, and the following relation is expressed as: 



 424 

0 0
2 2 2 2

4 .

r r r

c b a

c c b b a a

b b a ac c c

V V Vx
F P A P A mg P A P A

V xA V xAV A x l A l x l

      
          
             

  (8) 

 

Suppose the initial height of the double-chamber 

spring‘s upper chamber is a a a
h V A , that of the lower 

one is 
b b b

h V A , and the initial height of the single-

chamber spring‘s lower chamber is c c c
h V A . Set 

0 0
ˆ /F F P A , 

0 0
/

c c c
P A P A  , 0 0

/
b b b

P A P A  , 

0 0
/

a a a
P A P A  , 

0 0
/

m
mg P A  , ˆ

c c
h h l , x̂ x l , 

ˆ
a a

h h l , ˆ
b b

h h l , then Eq. (8) simplifies to: 

 

1 2 3
2

ˆ
ˆ 4 ,

ˆ 1
m b a

x
F H H H

x
      



  (9) 

 

where:  

 2

1
ˆ ˆ ˆ 1 1 1

r

c c c
H h h x      

  
,  2

ˆ ˆ ˆ
r

b b
H h h x  

 
, 

 2
ˆ ˆ ˆ

r

a a
H h h x  

 
. 

Taking the derivative of Eq. (9) subject to x̂ , we 

can get the equation of stiffness k̂  and x̂ : 
 

 

3

2

1 2
2 2

2

3 2 1
2

1 1ˆ ˆ4
ˆ ˆˆ ˆ1 1

ˆ 4
+ .

ˆ ˆ 1ˆ ˆ ˆ 1 1

b

b

r

a c c

r

a
c

r
k H x H

h xx x

r h rx
H

xh x h x



 


  
           


   

(10) 

In order to ensure that the vibration isolator has 

the high-static-low-dynamic characteristic, the vibration 

isolator must be 0 stiffness in the equilibrium position and 

no negative stiffness all the time. In other words, when x=0, 

F=0, k=0 and k=0 is the local minimum, the equation set 

is: 

 

2 2

( 1) ( 1)ˆ 0
ˆ ˆ

ˆ 0 .

ˆ 4 4 0
ˆ ˆ

b a

b a

m b a

b a

c

b a

r r r r
k

h h

F

r r
k

h h

 

  

 


  
     




    

    



  (11) 

 

So, Eq. set (11) becomes: 

 

 

2 2

2 2 2

2

2 2

ˆ ˆ
,

ˆ ˆ ˆ

ˆ ˆ( )1
1 ( ) 1 .

ˆ ˆ ˆ4 4

ˆ ˆ/ /

a b b m

m b b

b b a

b a b m

c

b b a

a b a b

h h

h h h

h h r r

h h h

h h

 
  

 


 

  



   





 (12) 

 

Because 0
b

  , so ˆ ˆ
b a

h h . 

Substituting Eq. (12) into Eq. (19) gives: 

 

2 2

2 2 2 22 2

ˆ ˆ ˆ ˆ ˆˆ
ˆ 4 1 1 .

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ4 4 ˆ ˆ1 1 1

r r r

m c b m b a m a

m

b a b a b b a ac

r h h h h hx
F

h h h h h x h h h xh x x

  


       
             
                     

 (13) 

 

Expand Eq. (13) in third order Taylor: 
 

   
3

2 2 2 2

( 1)( 2) ( 1)( 2) 3 31ˆ ˆ12 .
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ6

m m m m

b a c b aa b a b b a

r r r r r r r rr
F x

h h h h hh h h h h h

   
           

       

    (14) 

 

Assume the parameters’ values of the vibration 

isolator are: m=100 kg; P0=0.101 MPa; A0=0.286×10-3 m3; 

Aa=1.7624×10-3 m3; Ab=1.9635×10-3 m3; Ac=0.314×10-3 m3; 

ha=0.06 m; hb=0.14 m; hc=0.02 m; l=0.08 m and the cor-

responding dimensionless parameters’ values are 

ˆ 1.75
b

h  , ˆ 0.25
c

h  , ˆ 0.75
a

h  , 33.93
m
  . 

In order to verify the error of Eq. (14) is small 

enough, we compare Eq. (14) to (13) with the numerical 

method using the above values. Fig. 3 shows the relation-

ship diagram of the dimensionless force and displacement, 

where F1 represents the Eq. (13) and F2 represents the Eq. 

(14). Fig. 4 shows the relationship diagram of dimension-

less stiffness and displacement, where K1 represents the Eq. 

(13) and K2 represents the Eq. (14). As we can see from 

the figures, the third order Taylor expansion is a good rep-

resentation of Eq. (13) under the small amplitude condition 

( ˆ 0.1x  ), which means error of Eq. (14) is small enough. 

 

 
 

Fig. 3 The relationship between dimensionless force and 

displacement 
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Suppose 
   2 2 2 2

( 1)( 2) ( 1)( 2) 3 3
12

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

m m m m

b a c b aa b a b b a

r r r r r r r rr
T

h h h h hh h h h h h

       
     

     

, take partial derivative T with re-

spect to ˆ
a

h , ˆ
b

h , ˆ
c

h  respectively: 

 

         

2

2 2 2 22 2 22 2 2 2

ˆ3 3 2 ( 1)( 2) ( 1)( 2) 2 ( 1)( 2)
0,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

m m m m a m

a a b ab a c b a b a b b a

r r r r r r r r h r r rdT

dh h h hh h h h h h h h h h

         
     

   

  (15) 

 

         

2

2 2 2 22 2 2 2 2

ˆ( 1)( 2) 3 3 2 ( 1)( 2) 2 ( 1)( 2)
0,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

m m m m b m

b b b a c b a b a b a a b a

r r r r r r r r h r r rdT

dh h h h h h h h h h h h h h

         
      

    

  (16) 

 

2

2

3 1
12 0.

ˆ ˆ ˆ ˆ
m

c b a c

rdT
r

dh h h h

 
    
  

 (17) 

 

 
 

Fig. 4 The relationship between dimensionless stiffness 

and displacement 

Because there is no l  in the dimensionless force, 

in this case, we cannot judge the influence of l  on vibra-

tion isolator. So Eq. (14) needs to be dimensioned, and the 

partial derivative of the third order’s coefficient subject to 

l  is: 

 

   

2

0 0

33 2

6 24 3
0.

6
cb a c b a

P AdT mgr r mgr

dl l hl h h l h h h

 


    
  
 

 (18) 

 

Therefore, it can be concluded that, when the en-

gineering conditions permit, decreasing T , that is, increas-

ing ˆ
b

h , ˆ
c

h  or decreasing ˆ
a

h , m
 (increasing b

h , c
h , 0

A  or 

decreasing a
h , l ), can expand the amplitude region of the 

vibration isolator with high-static-low-dynamic character-

istic. 

4. Ruzicka high-static-low-dynamic vibration isolator 

model 

The traditional high-static-low-dynamic vibration 

isolator model can be simplified as shown in Fig. 5, which 

is quasi-zero and nonlinear. x is the displacement of the 

isolated object with mass m, y is the base excitation dis-

placement, c is the system damping, k0 is the nonlinear 

stiffness, and z is the displacement of the damper. Fig. 5 is 

simplified figure of Fig. 2. 

The Ruzicka high-static-low-dynamic vibration 

isolator model established in this paper, as shown in Fig. 6, 

can be generated by adding a spring into the traditional one. 

k2 is the stiffness of the added spring. When k2 is 0, the 

vibration isolator in Fig. 6 is equivalent to a model without 

a damper; when k2 is infinite, the model in Fig. 6 is the 

same as that in Fig. 5.  

5. A new method to solve the model’s vibration ampli-

tude-frequency characteristic 

To solve the vibration amplitude-frequency char-

acteristic of the model above, there are many methods such 

as Harmonic Balance Method, Perturbation Method, Aver-

aging Method, Multiple Scale Method. However, their 

calculation process is very complex. In this section, a new 

method is introduced to simplify the calculation process, 

which gives the same results as Harmonic Balance Method. 

In this Section, we assume that the vibration amplitude is 

as small as we discussed in Section 3, so nonlinear spring 

restoring force can be expressed as a third order Taylor 

formula.  

c

mx

y

k0 z

            

c

mx

y

k0

z

k2

 
 

Fig. 5 vibration isolator     Fig. 6 Ruzicka vibration isolator 

5.1. The new method – Harmonic Equivalent Linearization 

Method 

The new method is called Harmonic Equivalent 

Linearization Method. In this method, the equivalent line-

arization algorithm [17] is introduced into Harmonic bal-

ance method. As a result, the nonlinear equation is equiva-

lent to the linear equation with the same results, and the 

calculation process is greatly simplified. This method is 

applied to solve the main resonance response of the Duff-

ing equation. 

The calculation process of the new method is as 

following. 
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Suppose the dynamics Duffing equation of the 

Ruzicka high-static-low-dynamic vibration isolator is: 

 
3

1 3
( ) ( ) ( ) 0,mx c x z k x y k x y          (19) 

 

2
( ) ( ),c x z k z y   

 (20) 
 

where: 
3

1 3
( ) ( )k x y k x y    is nonlinear spring restoring 

force in the form of Eq. (14), we get Eqs. (19-20) by force 

analysis of the isolator in Fig. 6. If the natural frequency 

shown in Fig. 6 is 
0

w , then the nonlinear spring restoring 

force 
3

1 3
( ) ( )k x y k x y    could be equivalent to 

0
( )k x y , so 

2

0 0
k mw  and Eqs. (19-20) could be equiva-

lent to:  
 

2

0 0
2 ( ) ( ) 0,x w x z w x y        (21) 

0 2
2 ( ) ( ),w x z k z y      (22) 

where: 
0

2

c

mk
  , 

0
2

c
w

m
  , 

2 2
k k m . 

Therefore, the nonlinear equation could be solved 

as a linear equation by obtaining the natural frequency of 

Fig. 6. 

Setting 0
w t  , 

1 1
k k m , 

3 3
k k m , the free 

vibration equation of Fig. 6 is: 
 

2 3

0 1 3
( ) ( ) ( ) 0,w x k x k x       (23) 

 

where: ( )x   is a periodic function with a period of 2 . 

The solution of Eq. (8) can be written in form as: 
 

1
( ) ( ) ( ),x x x      (24) 

 

where: 1
( )x   is the first-order approximation solution, 

( )x   is the minor error correction of the solution. 

We define: 

 

1
( ) cos .x A   (25) 

 

Substituting Eq. (25) into Eq. (23) and ignoring 

the higher order terms of ( )x   give: 

 
2 2

0 1 3

2 3

0 1 3

( ) ( ) ( cos ) ( )

cos cos ( cos ) 0.

w x k x k A x

w A k A k A

   

  

     

   
 

(26)
 

 

If ( )x  =0, Using Harmonic Balance Method 

with ignoring the higher order harmonics and setting the 

coefficient of the first order harmonic term to be 0, implies 

the first order approximation of the natural frequency is: 
 

2

2 3

0 1

3
.

4

k A
w k   (27) 

 

Define r=z-y; p=x-z; y=Ycoswt; x=Xcos(wt+Ɵ1); 

p=Pcos(wt+Ɵ2); r=Rcos(wt+Ɵ3), Eqs. (19-20) become: 
 

2

0 0
( ) 2 ( ) 0,p r y w p w p r        (28) 

0 2
2 .w p k r    (29) 

The Laplace transform of Eqs. (28-29) is: 
 

 

 

2

0

2

0

( ) ( ) ( ) 2 ( )

( ) ( ) 0.

P s R s Y s s w sP s

w P s R s

   

  
 

(30)
 

 

0 2
2 ( ) ( )w sP s k R s  . (31) 

 

Then the transfer functions are written as: 
 

3

0

1 3 2 3 2

0 2 0 2 0 0 2

2( )
( ) ,

( ) 2 2 2

w sR s
G s

Y s w s k s w k s w s w k



  
  

   
      (32) 

 
3 2

0 2 0 0 2

2 3 2 3 2

0 2 0 2 0 0 2

2 2( )
( ) ,

( ) 2 2 2

w k s w s w kX s
G s

Y s w s k s w k s w s w k

 

  

 
 

   
      (33) 

 
2

2

3 3 2 3 2

0 2 0 2 0 0 2

( )
( ) .

( ) 2 2 2

k sP s
G s

Y s w s k s w k s w s w k  
  

   
      (34) 

 

Amplitude ratios are given as: 
 

3

0

1
2 2 2 2 2 2 2 2

0 0 2 2 0

2
,

(2 ) ( ) ( )

w wR

Y w w w k w k w w





 

   
       

 

(35) 

 

2 2 2 2 4

0 2 0 2 0

2
2 2 2 2 2 2 2 2

0 0 2 2 0

(2 ) ( )
,

(2 ) ( ) ( )

w w k w k wX

Y w w w k w k w w






 
 

   

       (36) 

 
2

2

3
2 2 2 2 2 2 2 2

0 0 2 2 0

,
(2 ) ( ) ( )

k wP

Y w w w k w k w w



 

   
       (37)
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where 

2

2 3

0 1

3

4

k A
w k  , A  is amplitude of x y . 

5.2. The merit of Harmonic Equivalent Linearization 

Method 

Firstly, we will compare the calculation results of 

the new method with that of Harmonic Balance Method. 

If the Harmonic Balance Method is used to calcu-

late Eqs. (19-20), Eqs. (19-20) can be expressed as follows: 

 
3

1 3
( ) ( ) ( ) 0,p r y cp k p r k p r          (38) 

 

2
.cp k r   (39) 

 

Similarly, define r=z-y; p=x-z; y=Ycoswt; 

x=Xcos(wt+Ɵ1), so x=p+r+y. Let p=Pcos(wt+Ɵ2); 

r=Rcos(wt+Ɵ3) and and it can be obtained by Eq. (39) that 

2

2

( )
cwP

r sin wt
k

   , so: 

 

2 2

22

2

1 ( ),
c w

p r P cos wt
k

       (40) 

 

where: 

1

2 2 2

2

2

1
c w

cos
k





 
  
 

, 

1

2 2 2

2

2 2

1
cw c w

sin
k k





 
  

 

. 

 

Substituting Eq. (40) into Eq. (38) gives:  

  

2

2

3
2 2

1 3 12

2 2

( ) ( ) ( )

( ) ( ) 1 ( ) 0.

cwP
w Pcos wt sin wt Ycoswt cwPsin wt

k

cwP c w
k Pcos wt sin wt k P cos wt

k k

  

   

 
        

 

  
          

    

    

(41)

 

 

Using Harmonic Balance Method with ignoring 

the higher order harmonics and setting the coefficient of 

the

first order harmonic term to be 0 gives: 

 

2

1

2 2

1 13
2 2 2 2 2 22 2

3

2 2 2

22 2 2

3
1 ( ) 1 ( ) 1 0,

4

cwP cwP
w Pcos sin Y cwPsin k Pcos sin

k k

k c w c w cw c w
P cos wt sin wt

kk k k

    

 

 

   
         

   

 
      

             
         

   

(42)

 

 

2

1

2 2

1 13
2 2 2 2 2 22 2

3

2 2 2

22 2 2

3
1 1 1 0,

4

cwP cwP
w Psin cos cwPcos k Psin cos

k k

k c w c w cw c w
P sin cos

kk k k

    

 

 

   
          

   

 
      

            
         

     

(43)

 

 

where: 
2 2

2 2

0 1 3 2

2

3
1

4

c w
w k k P

k

 
   

 

. Substituting it into 

Eq. (43) gives: 

 
3 2 2 2

2 0 0 2
.tan cw cwk cww w w k             (44) 

 

Substituting Eq. (44) into Eq. (42) gives: 

 

   

2

2

2 2
2 2 2 3 2

2 0 2 0

.
k wP

Y
k w w cw cwk cww



    

 (45) 

 

Substituting Eq. (45) into Eq. (40) gives: 

 
3

0

2 2 2 2 2 2 2 2

0 0 2 2 0

2
.

(2 ) ( ) ( )

w wR

Y w w w k w k w w






   
 (46)  

 

Substituting Eqs. (44-46) into equation 

x p r y    gives: 

 
2 2 2 2 4

0 2 0 2 0

2 2 2 2 2 2 2 2

0 0 2 2 0

(2 ) ( )
.

(2 ) ( ) ( )

w w k w k wX

Y w w w k w k w w





 


   

 (47) 

 

It can be seen that Harmonic Balance Method 

have the same solutions as the new method, Harmonic 

Equivalent Linearization Method. 

Secondly, if we pay attention to the calculation 

details, we can easily get the conclusion that the calcula-

tion process of the new method is much easier than that of 

Harmonic Balance Method. 

In a world, the new method could greatly simplify 

the calculation process and gives the same results as Har-

monic Balance Method in solving the main resonance re-

sponse of Duffing equation. 
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6. Analysis of the model’s vibration amplitude-

frequency characteristic 

Based on Eq. (36), which is obtained with Har-

monic Equivalent Linearization Method, though there is no 

analytical solution, this section analyzes the influence of 

parameters’ changes on the amplitude-frequency character-

istic by numerical method. Because Eq. (36) is the stable 

solution of the vibration response, we do not consider the 

effect of the initial displacement and velocity of the vibra-

tion in this Section. 

6.1. Effect of additional stiffness on amplitude-frequency 

characteristic 

Using the data in section 3 implies 
3

k =1.22×105,

1
0k  . We assume that damping c  is nonlinear, and the 

damping ratio is constant. Let 0.1  , 0.001Y   and 
2

k  

= 0, 0.01, 0.1, 1, 10,  . The effect of additional stiffness 

on logarithmic amplitude-frequency characteristic can be 

obtained from Eq. (36), which is shown in Fig. 7. It can be 

seen from the figure that, with the increase of additional 

stiffness, both the jump-down frequency and resonance 

peak are reduced, maximum with 
2

0k   and minimum 

with 
2

k   . In the non-resonant part, amplitude transfer 

rate is reduced with the increase of 
2

k , and the higher the 

frequency, the greater the difference. But in the vicinity of 

w = 0, the amplitude transfer rate of 
2

0.1k   is higher 

than that of 
2

k  = 1, 10,  . In the whole frequency band, 

there is not much difference in amplitude transfer rate be-

tween 
2

10k   and 
2

k   . 

 

w

2 1k

2 0.1k

2 10k

2  k

2 0k

2 /dB

 

Fig. 7 The effect of additional stiffness on logarithmic am-

plitude-frequency characteristic under non-linear 

damping condition 

For linear damping, let 0.018c   and 
2

k  = 0, 

0.01, 0.1, 1, 10. The effect of additional stiffness on loga-

rithmic amplitude-frequency characteristic obtained from 

Eq. (36) is shown in Fig. 8, which is similar to that in 

Fig. 7. 

w

2 1k

2 0.1k

2 10k

2 0k

2 /dB

 

Fig. 8 The effect of additional stiffness on logarithmic am-

plitude-frequency characteristic under linear damp-

ing condition 

6.2. Effect of damping on amplitude-frequency characteris-

tic 

Let 0.001Y  , 
2

0.1k   and   = 0, 0.01, 0.1, 0.5, 

1. The effect of under-damping on logarithmic amplitude-

frequency characteristic obtained from Eq. (36) is shown in 

Fig. 9. Under the condition of under-damping, with the 

increase of damping ratio, the resonance peak of ampli-

tude-frequency characteristic curve decreases. When 1 

, there is a noncontinuous curve and the complete curve is 

shown in Fig. 10. In non-resonant part, amplitude transfer 

rate is decreasing with the decrease of the damping ratio. 

Except for the curve with   = 0, as the frequency increas-

es, the amplitude-frequency characteristic curves converge 

to the curve of 1  . 

w

0.1 

0.01 

0.5 

1 

0 

2 /dB

 

Fig. 9 The effect of under-damping on logarithmic ampli-

tude-frequency characteristic 

Under the condition of over-damping, let   = 1, 

5, 10. The effect of over-damping on logarithmic ampli-

tude-frequency characteristic obtained from Eq. (36) is 

shown in Fig. 10. It can be seen from the figure that, in the 

outer region of the dotted line, the damping ratio has no 

obvious effect on the amplitude-frequency characteristic. 

In the inner region of the dotted line, it is discontinuous 

between the upper branch and the lower branch of the am-

plitude-frequency characteristic curve. With the increase of 

damping ratio, the upper branch is closer to the lower 
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branch. Because of discontinuity, the amplitude-frequency 

characteristic can only jump from the upper branch to the 

lower one. Therefore, the resonance can be suppressed by 

controlling the initial state of vibration. 

w

5 

10 

1 

2 /dB

 
 

Fig. 10 The effect of over-damping on logarithmic ampli-

tude-frequency characteristic  

6.3. Effect of base excitation amplitude on amplitude-

frequency characteristic 

Let 
2

0.1k  , 1   and Y  = 0.01, 0.005, 0.001. 

The effect of base excitation amplitude on logarithmic am-

plitude-frequency characteristic obtained from Eq. (36) is 

shown in Fig. 11. We can get that the bigger the base exci-

tation amplitude is, the worse the effect of vibration isola-

tion is. And the Ruzicka high-static-low-dynamic vibration 

isolator put forward in this paper can only be applied to 

small amplitude situations.  

w

0.005Y

0.01Y

0.001Y

2 /dB

 

Fig. 11 The effect of base excitation amplitude on loga-

rithmic amplitude-frequency characteristic  

6.4. Analysis of simulation experiment 

In order to verify the accuracy of Eq. (36), the vi-

bration simulation based on Matlab\Simulink is construct-

ed, as shown in the Fig. 12.  

 
 

Fig. 12 The vibration simulation based on Simulink 

Let 
2

0.1k  , 1   and Y  = 0.001. For the simu-

lation, the initial velocity is 0, and the initial displacement 

is the vibration equation solution. The equation solution 

and simulation solution are shown in Fig. 13. In the non-

resonant segment, the simulation solution is stable, as 

shown in figure 13; in the resonance segment, the simula-

tion appears chaotic phenomenon, which is not marked in 

the figure. It can be seen from the figure, the stable solu-

tions of simulation and equation are similar, which means 

the credibility of the equation solution is higher, and also 

verified that the resonance can be suppressed by control-

ling the initial state of vibration. 

 

w

2 /dB

solution of simulation

stable solution of equation

 

Fig. 13 Logarithmic amplitude-frequency characteristic 

based on simulation 

7. Conclusion 

This paper studies a Ruzicka vibration isolator 

model with high-static-low-dynamic characteristic. Firstly, 

we analyze mechanical property of the quasi-zero stiffness 

spring which is composed of a cylinder, get an approxi-

mate expression of the spring’s static force. This kind of 

spring is the main part of a high-static-low-dynamic vibra-

tion isolator. Also we concluded that, when the engineer-

ing conditions permit, decreasing T , that is, increasing ˆ
b

h , 
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ˆ
c

h  or decreasing ˆ
a

h , m
 (increasing b

h , c
h , 0

A  or de-

creasing a
h , l ), can expand the amplitude region of the 

vibration isolator with high-static-low-dynamic character-

istic. Secondly, a Ruzicka high-static-low-dynamic vibra-

tion isolator with Duffing equation is put forward, which is 

a combination of a Ruzicka vibration isolator and a high-

static-low-dynamic vibration isolator. In the calculation 

process of solving its amplitude-frequency characteristic, a 

new method — Harmonic Equivalent Linearization Meth-

od — is used, in which the equivalent linearization algo-

rithm is introduced into Harmonic Balance Method. This 

method could greatly simplify the calculation process and 

gives the same results as Harmonic Balance Method in 

solving the main resonance response of Duffing equation. 

Finally, the effects of additional stiffness, damping and 

excitation amplitude on nonlinear amplitude-frequency 

characteristic are investigated numerically, and also veri-

fied that the stable solutions of simulation and equation are 

similar. The results show that the Ruzicka high-static-low-

dynamic vibration isolator is suitable for small amplitude 

vibration. The appropriate additional stiffness and damping 

ratio can change the resonance band of the amplitude-

frequency characteristic curve. The amplitude-frequency 

characteristic can only jump from the upper branch to the 

lower one. Therefore, the resonance can be suppressed by 

controlling the initial state of vibration.  
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B. Kang, H. Li, Z. Zhang, H. Zhou  

A STUDY OF A RUZICKA VIBRATION ISOLATOR 

MODEL WITH HIGH-STATIC-LOW-DYNAMIC 

CHARACTERISTIC 

S u m m a r y 

This paper studies a Ruzicka vibration isolator 

model with high-static-low-dynamic characteristic. Firstly, 

we analyze mechanical property of the quasi-zero stiffness 

spring which is composed of a cylinder and get an approx-

imate expression of the spring’s static force. This kind of 

spring is the main part of a high-static-low-dynamic vibra-
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tion isolator. Secondly, a Ruzicka high-static-low-dynamic 

vibration isolator with Duffing equation is put forward, 

which is a combination of a Ruzicka vibration isolator and 

a high-static-low-dynamic vibration isolator. In the calcu-

lation process of solving its amplitude-frequency charac-

teristic, a new method — Harmonic Equivalent Lineariza-

tion Method — is used, in which the equivalent lineariza-

tion algorithm is introduced into Harmonic Balance Meth-

od. This method could greatly simplify the calculation pro-

cess and gives the same result as Harmonic Balance Meth-

od. Finally, the effects of additional stiffness, damping and 

excitation amplitude on nonlinear amplitude-frequency 

characteristic are investigated numerically, and also veri-

fied that the stable solutions of simulation and equation are 

similar. The results show that the Ruzicka high-static-low-

dynamic vibration isolator is suitable for small amplitude 

vibration. The appropriate additional stiffness and damping 

ratio can change the resonance band of the amplitude-

frequency characteristic curve. Therefore, the resonance 

can be suppressed by controlling the initial state of vibra-

tion.  
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isolator, amplitude-frequency characteristic. 
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