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1. Introduction 
 

Much effort has been devoted recently to deter-
mine conditions which guarantee that the assumption of 
local thermal equilibrium (LTE) is accurate when model-
ing of heat transfer in porous media. When it is accurate, 
then the thermal field is well-approximated by a single 
thermal energy equation. An excellent review of conduc-
tive effects in a stagnant porous medium may be found in 
Cheng and Hsu [1]. In their chapter these authors consider 
periodic media and their aim is to determine the effective 
thermal conductivity of the combined medium in the terms 
of the conductivities of the constituent phases. Therefore 
Cheng and Hsu provide important information for those 
wishing to use a single temperature field to model a two-
phase saturated porous medium, or equivalently a compo-
site solid consisting of two different constituents. In other 
circumstances, local thermal nonequilibrium (LTNE) pre-
vails and it is necessary to employ two energy equations, 
one for each phase. The first papers which used two differ-
ent temperature fields presented by Anzelius [2] and 
Schumann [3], and they were both published about eighty 
years ago. In their presented energy equations, we see that 
diffusion and advective (u ∂T/∂x) terms have been ne-
glected in the work of Anzelius. The numerical study by 
Combarnous [4] predated by a couple of decades further 
work on fully nonlinear convection using this model. 
Nakayama et al. [5] have proposed the nonthermal equilib-
rium two-energy equations model for conduction and con-
vection, in which the two-energy equations for the individ-
ual phases at constant porosity are combined together and 
solved analytically. Neild and Bejan [6] stated the simplest 
equations which are generally regarded as modeling un-
steady heat transfer in a saturated porous medium where 
LTE does not apply.  

Great heat generation is one of the efficacious 
reasons to create LTNE condition between phases, (e.g., in 
the fluid phase this factor is appeared as chemical reac-
tion). In the absent of fluid flow, Rees [7] determines both 
analytical and numerical formulae for interfacial heat 
transfer coefficient h in the porous media, when a uniform 
heat generation in fluid phase is produced and uphold 
LTNE condition. Nonthermal equilibrium heat transfer in 
the stagnant porous medium with variable porosity is ana-
lyzed by Nazari and Kowsari [8], where heat generation 
takes place within the solid phase. They use from energy 
equations of the solid and fluid phases with the assumption 
of steady-state and one-dimensional heat conduction.  

Temperature sudden change is another effective 
factor for LTNE condition. When the temperature at the 
bounding surface changes significantly with respect to time 
in each phase, the local volumes of the solid and fluid 
phase can not react quickly and thereupon two equations 
are used to model the fluid and solid phases separately. In 
the two-field model, the energy equations are coupled by 
means of terms which account for the heat lost or gained 
from the other phase. Nouri-Borujerdi et al. [9] inspect the 
effect of LTNE on the evolution of the stagnant tempera-
ture field in a semiinfinite porous medium and then con-
duction takes place more rapidly in one phase than in the 
other, although local thermal equilibrium is always ap-
proached as time increases and in continuance Kayhani et 
al. [10] studied the effect of LTNE on a two-dimensional 
porous media under a step temperature change on the 
boundaries.  

In summarize, special situations for LTNE to oc-
cur in the porous media are: 1) the great heat generation is 
happened in each phases (Chemical Reactions), 2) boun-
dary temperature change suddenly along time, 3) hot fluid 
is injected in the cold porous media and 4) phases have 
different specific heat capacities and thermal conductivi-
ties.  

In some of the LTNE applications such as fruit 
drying technology [11], heat transfer in biological tissues 
[12] and thermal analysis of the porous burner that is re-
viewed by Mujeebu et al. [13], temperature sudden change 
is governed and in some others, such as chemical catalyst 
[14] and nuclear reactors [15], heat generation affect on 
heat transfer process as well as previous condition. 

In the present paper, we assume a two-
temperature model for conduction in a stagnant porous 
medium that is saturated with the incompressible fluid 
which temperature change suddenly in boundary x = 0 and 
simultaneously uniform significant heat generation takes 
place within the solid phase. Also we consider how the 
heat generation in solid alters the behavior of temperature 
gradients in the different values of conductivity and ther-
mal diffusivity ratio. The present paper is in continuance 
performed research projects by Nouri-Borujerdi et al. [9] 
and Kayhani et al. [10]. These projects followed from the 
similarity solution with complicated calculations and with-
out presence of heat generation term. We simplify the solu-
tion method using direct numerical method and inspect the 
effect of heat generation as well as temperature sudden 
change in porous media. 

http://dx.doi.org/10.5755/j01.mech.17.1.204
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2. Model development 
 

As shown in Fig. 1, consider semiinfinite porous 
media that is saturated with a stagnant incompressible 
fluid. Using one-dimensional heat conduction in the porous 
media, the nonthermal equilibrium energy equations of the 
fluid and solid phases are as follows [6, 16]:  
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The subscripts f and s denote fluid and solid 
phases respectively. The quantities ε , ρ  and  are the 
porosity, density and specific heat capacity and 

c
q′′′  is the 

uniform heat generation per unit solid volume. The last 
term in energy equations represent the coupled heat trans-
fer between the two phases because of the existing tem-
perature difference. Many of scientists attempted to deter-
mine suitable values of h have generally relied upon aver-
aging methods, and various assumptions then need to be 
made about closure; (see Rees [17]). Some of these formu-
lations for determination of h, yield a zero value for h 
when Re = 0, which implies that there is no transfer of heat 
between the separate phases when the porous medium is 
stagnant. However, some of others yield nonzero values 
for h in the absence of flow, but the resulting expressions 
are independent of the conductivity of the solid phase. 
Based on presented models for h, we assume interfacial 
heat transfer coefficient as follows: 
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By introducing the following dimensionless pa-
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The governing Eqs. (1) and (2) can be nondimen-
sionalized as: 

 
( )t xxFluid Hθ θ φ θ→ = + −     (5) 

( ) 1t xxSolid Hαφ φ γ θ φ→ = + − +      (6) 

 
Fig. 1 Semiinfinite media 

 
Where that the nondimension parameters are: 
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The above parameters are constant and do not 
vary with temperature. This assumption helps us to verify 
the changes of phases together as well as simplification. 
Nouri-Borujerdi et al. [9] eliminate parameter H from en-
ergy equations by using natural coordinates provided by 
Carslaw and Jaeger [18]. But in this paper, by using the 
natural length scale in relation (3), parameter H will be 
equal to unit.  

Assuming a high temperature sudden change at 
the boundary x = 0, LTNE condition between fluid and 
solid phases is possible and heat generation term amplify 
it. According to the Fig. 1, initial and boundary conditions 
can be simply defined as the following form: 
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 Boundary conditions (10b) showed a sudden 
change of temperature in the boundary of semiinfinite do-
main which induced LTNE between the phases. 
 
3. Solution method 
 

There are many numerical methods for solving 
ordinary differential equations which each of these meth-
ods have certain accuracy. In order to solve Eqs. (5) and 
(6), two different numerical methods have been used. For 
the calculation of second order derivatives, we use from 
compact finite difference and about time from forth order 
Runge-Kutta methods. Compact finite difference is the 
useful method to discrete domain with high accuracy. Ba-
sic of this method is very simple and similar to finite dif-
ference method but with the less error. For example in 
derivation, we use from backward, forward and central 
operators but in the compact finite difference method we 
mix them and use from an operator for derivation. This 
method was completed by Hirsh [19] and Lele [20] gener-
alized it. 

At early and late times we check the results using 
perturbation method. We determine the power series solu-
tion of Eqs. (5) and (6). At the suitable order it is possible 
to proceed easily analytically. We have to use from the 
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other numerical solution (Shooting Method) at the end of 
analytical procedure. 
 
4. Solution at early and late times 
 

In this section we are going to examine results of 
numerical method in the special case at early and late 
times. In this case we assume no heat generation occurred 
in the solid phase. Fig. 2 shows the result of numerical 
method without heat generation when just temperature 
sudden change is the reason of heat transfer in porous me-
dia. 

 

 
Fig. 2 Temperature gradient for 2α =  and 1γ =  

 
In this figure, at early times when , we use 

from power series solution as follow: 
0x →
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At ( )tθ  by derivation than time and place and 
then situation in the Eqs. (5) and (6), we obtain simplified 
equations as below:  
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So boundary equations (10b) change according to 
the power series solution as below: 
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We solve Eqs. (13) and (14) with boundary Eqs. 
(15) to (18) using from shooting method. Result of nu-
merical solution of Eqs. (5) and (6) at the boundary 0x =  
and early time 0 001t .=  is equal result of analytical solu-
tion of Eqs. (13) and (14). This result for 0 15x .Δ =  is 
1.1281. 

We also repeat above progress for late time. In 
Fig. 2, at late times when x →∞ , we use from other 
power series solution: 
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At ( )tθ  by derivation than time and place and 
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We solve Eqs. (21) and (22) with previous bound-
ary equations using from shooting method. The result of 
numerical solution of Eqs. (5) and (6) at the boundary 

0x =  and late time 1000t =  is equal result of analytical 
solution of Eqs. (21) and (22). This result for 0 15x .Δ =  is 
0.0333. Thereupon we can compare values of temperature 
gradients using results of Compact numerical method and 
perturbation method at early and late times. Compact nu-
merical method is reliable and expandable to different 
cases.  
 
5. Result and discussion  
 

In this section we are going to present the com-
plete description about behaviour of temperature gradients 
in the different conditions. Diffusivity ratio α  and poros-
ity-modified conductivity ratio γ  are two important pa-
rameters in this section. In the previous sections, we certi-
fied accuracy of results for temperature gradients using 
Compact numerical method.      

Due to the same initial conditions in both phases, 
graphs in the Fig. 3 have the same start points. In the pres-
ence of heat generation, all of the graphs attain the steady 
state in the negative value of temperature gradients. In the 
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through time domain, initial condition of phases is constant 
in the first node and therefore temperature of second node 
can get to higher temperature values than the first node. 
Finally, temperature gradients of fluid and solid phases are 
stabilized in the negative values. Temperature gradient 
difference is created from the difference between the solid 
and fluid thermal diffusivities. In the Fig. 3, a, with pro-
gress in time, this difference becomes greater. So, the rate 
of difference quicken by the existence of generation term 
in the solid phase. As we know, α  is the ratio of fluid dif-
fusivity to solid diffusivity and when 1α < :  

( ) ( ) ( ) ( )1f f s
s f

s f s

k k
c c

c c
α

ρ ρ
α ρ ρ

< → < → <   (23) 

Unequal Eq. (23) states that specific heat of solid 
phase is less than fluid phase. This means that solid phase 
will be heated and cooled too early rather than fluid phase. 
So when 1<α , the solid curve is placed lower than the 
fluid curve. According to the presence of heat generation 
term in this case, the decrease rate of temperature gradient 
of solid phase rather than fluid phase becomes greater and 
there is no contact point between solid and fluid graphs.  

According to the unequal Eq. (23), in the Fig. 3, b 
when 1>α , specific heat capacity of solid phase is more 
than fluid phase and solid phase will be heated and cooled 
too late and the solid curve is placed higher than the fluid 
curve, but warming late value of solid phase decrease. In 
the Fig. 3, b, the difference between temperature gradients 
is less than Fig. 3, a.  For  the  influence of continuous  
 

 
a 

 

 
b 

Fig. 3 Temperature gradient: a - for 0 2.α =  and 1γ = ;  
b - for 2α =  and 1γ =   

heat generation, this difference dwindles and finally curves 
obtain a coincidence point. At very late times, graph slope 
decreases to zero and the temperature gradient in both 
phases moves towards the infinite with a constant value. 
Similar slops zero at the late times represent that heat gen-
eration effect is counteracted. When the graphs slope is 
zero, heat transfer happens between phases yet, but it 
should be noted that due to the lack of heat generation ef-
fect, the amount of heat transfer always remains constant. 

As it was stated previously, solid specific heat for 
1>α  and 1<α , is larger and smaller than the fluid phase 

specific heat capacity respectively. The important point in 
Fig. 4 is that as the amount of α  increase, time to counter-
act heat generation effect increases. Fluid phase graphs are 
stabilized in the negative value of temperature gradient 
with the constant slop zero and different diffusivity ratios 
α  don’t affect on this value. Solid phase has the similar 
status too. 

 

 
a 
 

 
b 

Fig. 4 Temperature gradient curves: a - for 1γ =  and dif-
ferent values of α ; b - zooming of a 

 
We find out that different diffusivity ratios α  do 

not affect on final values of temperature gradient in the 
phases, but according to the Fig. 5, a and b, different con-
ductivity ratios change final values of temperature gradient 
in the phases and final distance between two phases. Ac-
cording to the relation (9), ( )1 skε−  becomes greater than 

fkε  with decreasing γ  or porosity decreases. With de-
creasing void volumes in the porous media, solid phase 
contribution in the heat generating increases more than 
before. This result is reverse with increasing γ  in the heat 
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transfer process. 
Fig. 6 depicts temperature gradients for 4α =  

and different values of γ . Heat generation effect is coun-
teracted in earlier times when γ  increases. 

 

 
a 
 

 
b 

Fig. 5 Temperature gradient curves: a - for 4α =  and 
0 6.γ = ; b - for 4α =  and 6γ =  

 

 
Fig. 6 Temperature gradient curves for 4α =  and different 

values of γ  
 

For 1γ =  and different values of α , differences 
of temperature gradient between solid and fluid phases are 
depicted in Fig. 7. As we see, for 1>α , as α  increases, 
the difference between solid and fluid phases will increase 
and vice versa, for 1<α  it will decrease. Better to say, by 
going away from the boundary 1α = , the difference of the 
solid and fluid phases becomes more. Moreover, with re-
duction of α , whether this coefficient is greater or less 

than unity causes that the point of maximum differences 
will tend to early times. Based on previous explanation, 
validating such argument is quite easy. With reduction of 
α  and tending towards zero, fluid specific heat capacity 
tends towards infinity, although solid specific heat capacity 
will tend towards zero. 
 

 
Fig. 7 Difference of temperature gradients for 1γ =  and 

different values of α  
 

The differences of temperature gradient between 
solid and fluid phases are depicted in Fig. 8 for 4=α  and 
different values of γ . The graphs state that when γ  in-
creases, the value of the difference decreases and tempera-
ture gradient of the phases are more coinciding. Contact 
point of the phases tend to earlier time when γ  increases. 

 

 
Fig. 8 Difference of temperature gradients for 4=α  and 

different values of γ  
 

6. Conclusion 
 

In this note, we have considered the local thermal 
nonequilibrium due to the temperature sudden change and 
great heat generation in porous media. Energy equations 
presented by Neild and Bejan [6] and Kaviany [16] were 
used as governing equations. After nondimensionalising, 
new parameters such as diffusivity ratio, scaled interfacial 
heat transfer coefficient and porosity-modified conductiv-
ity ratio were defined. Governing equations are solved nu-
merically using Compact method and results valid using 
perturbation method. The effect of defined parameters on 
the behaviour of solid and fluid phases in porous media is 
investigated and results are presented in the form of vari-
ous graphs. The results showed that after the passage of 
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time, temperature gradients in both phases reached to a 
negative fixed amount and remain constant. The diffusivity 
ratio affected the behaviour and positioning of temperature 
gradient in the both phases. Also, the effect of porosity-
modified conductivity ratio was discussed to reach equilib-
rium conditions. In two final figures, the difference amount 
of temperature gradient for all states between both phases 
was presented. 
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M. H. Kayhani, A. O. Abbasi, M. Sadi 

VIETINIO ŠILUMINIO NEPUSIAUSVIRUMO 
PRIKLAUSOMYBĖS NUO STAIGIŲ 
TEMPERATŪROS POKYČIŲ IR ŠILUMOS 
GENERAVIMO PORINGOJE APLINKOJE TYRIMAS 

R e z i u m ė 

Straipsnyje tiriamas staigus temperatūros pokyčio 
ribiniame sluoksnyje x = 0 efektas ir spartus šilumos gene-
ravimas sukuriant lokalią šiluminę nepusiausvyrą pusiau 
begalinėje nekintančioje porėtoje aplinkoje. Kiekvienoje 
fazėje kaip pagrindinės naudojamos dvi šilumos gamybos 
pereinamojo būvio energijos lygtys. Šios dalinės pagrindi-
nės lygtys išspręstos skaitiniu būdu. Dalinėms išvestinėms 
skaičiuoti taikytas COMPACT metodas iš RK4. Tai įpras-
tas, taupantis laiką išvestinių skaičiavimo metodas. Žadi-
nimo ir priartėjimo  metodu tirtas šilumos perdavimo grei-
tis pradinėje ir baigiamojoje fazėse. Šilumos žadinimo tarp 
fazių greitis parodytas paveiksluose. Rezultatai rodo, kad 
šilumos generavimo efektas ir vietinė šiluminė nepusiaus-
vyra yra apribota baigiamojoje fazėje ir kreivių nuolydis 
sumažėja iki nulio, o temperatūros gradientas pastoviu 
greičiu artėja prie begalybės. Detaliai paaiškintas skirtingų 
nedimensinių parametrų poveikis temperatūros gradiento 
kitimui. 
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M. H. Kayhani, A. O. Abbasi, M. Sadi 
 
STUDY OF LOCAL THERMAL NONEQUILIBRIUM 
IN POROUS MEDIA DUE TO TEMPERATURE 
SUDDEN CHANGE AND HEAT GENERATION 
 
S u m m a r y 
 

In this paper we examine the effects of tempera-
ture sudden change in boundary x = 0 and great heat gener-
ating on the creation of local thermal nonequilibrium 
(LTNE) in the semiinfinite stagnant porous media. Two 
energy equations in the transient state and in the presence 
of heat generating are used as the governing equations in 
each phase. These partial governing equations solve nu-
merically. For partial derivatives, we use from Compact 
finite difference method that is the continuous method for 
calculation of derivatives and for progress in time, we use 
from RK4. So we test values of heat transfer rate for early 
and late times using perturbation and shooting methods. 
Rate of heat transfer between phases depict in the figures. 
Results show that effects of heat generating and LTNE are 
restrained at very late times and graphs slope decrease to 
zero. In this time, the temperature gradient moves towards 
the infinite with a constant value. Also, effect of different 
nondimension parameters on behavior of temperature gra-
dients is verified. When diffusivity ratio α increases, time 
to counteract heat generation effect increases. Fluid and 
solid graphs are stabilized in the negative value of tem-
perature gradient with the constant slop zero and different 
diffusivity ratios α don’t affect on this value. So for α > 1, 
the difference between solid and fluid phases will increase 
and vice versa, for α < 1 it will decrease. 

Heat generation effect is counteracted in earlier 
times when conductivity ratio γ increases. So The graphs 
state that when γ increases, the value of the difference de-
creases and temperature gradient of the phases are more 

coinciding and Contact point of the phases tend to earlier 
time. Other characterizations are explained in detailed.  

М. Н. Каихани, А. О. Аббаси, М. Сади 

ИССЛЕДОВАНИЕ МЕСТНОЙ ТЕПЛОВОЙ 
НЕУРАВНОВЕШЕННОСТИ В ПОРИСТОЙ СРЕДЕ В 
ЗАВИСИМОСТИ ОТ ВНЕЗАПНЫХ ИЗМЕНЕНИЙ 
ТЕМПЕРАТУРЫ И ГЕНЕРАЦИЙ ТЕПЛА 

Р е з ю м е 

В этой статье исследуется эффект внезапного 
изменения температуры в предельном слое x = 0 и бы-
страя генерация тепла, создавая локальную тепловую 
неуравновешенность в полубесконечной застойной 
пористой среде. Два уравнения энергии в переходном 
состоянии при генерировании тепла использованы как 
основные в каждой фазе. Эти частные основные урав-
нения решены числовым методом. Для расчета част-
ных производных использован COMPACT от RK4, 
который является известным сберегающим время рас-
чета методом производных. Исследована скорость пе-
редачи тепла на ранней и поздней стадиях при помощи 
возмущения и приближения. Скорость возмущения 
тепла между фазами приведена на рисунках. Результа-
ты показывают, что эффект генерации тепла и местная 
тепловая неуравновешенность снижается в конечной 
фазе и уклон кривых снижается до нуля, а градиент 
температуры изменяется до бесконечности с постоян-
ной скоростью. Кроме того подробно объяснено влия-
ние различных бездименсных параметров на измене-
ние температурного градиента. 
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